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Dirichlet series associated with square of the
class numbers
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1 Introduction

For an even integer k£ and a complex number o such that 2Ro + k£ > 3,
the real analytic Siegel-Eisenstein series of degree 2 and weight & is defined
by

Ey(Z,0) = ) det(CZ + D)™|det(CZ + D)™, Z € Hy,
{c.D}

where the sum is taken over all non-associated coprime symmetric pairs
{C, D} of degree 2 and Hy = {Z = 'Z € My(C);SZ > O} is the Siegel
upper half-space. Let

Ey(Z,0) =) C(T,0,Y)e(tr(TX)), Z=X+iY
T

be the Fourier expansion, where the summation extends over all half-integral
symmetric matrices of size two and e(z) = €>™* as usual. For any non-
degenerate T, it is known that

C(T,0,Y)=b(T,k+20)¢(Y,T,0 + k,0),

where b(T, k4 20) is the Siegel series and £(Y, T, 0 +k, o) is the confluent hy-
pergeometric function of degree 2 (see [9], [8]). Moreover, Kaufhold’s formula
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(8] tells us that

WT, o) = C(U)C(Qa ) > &L gdetm(a—l)

dl (T)

where e(T) = (n,r,m) for T = (:;2 ’;{lz), Lp(s) is defined for D #0,d =0,1
(mod 4) by

Lp(s) = L(s,xpx) Y #(a)Xpx (0)a™*01-25(f /a).
alf

Here the natural number f is defined by D = dk f? with the discriminant dg
of K = Q(vD ) Xk is the Kronecker symbol, p is the Mobius function and

Os n) Zd|n
Following Arakawa [1] and Ibukiyama-Katsurada [6], the Koecher-Maass
series for positive-definite Fourier coefficients of the real analytic Siegel-

Eisenstein series of degree 2 and weight 2 is defined by

b(T,2)
2 HE(T)(det T)°’

TeL} /SL2(2Z)

where L7 is the set of all half-integral positive-definite symmetric matrices
of size 2, the summation extends over all T € L modulo the action T —
T[U) = *UTU of SLy(Z) and E(T) = {U € SLy(Z);T|U] = T} is the the
unit group of 7.

In order to consider the case associated with indefinite Fourier coefficients,
denote by (L; )’ the set of all half-integral indefinite symmetric matrices of
size 2 such that \/—det(T) ¢ Q. Toany T' = (%) € (L;)', we associate the
geodesic semicircle St = {7 = u + ;v > 0, a(u? +v?) + bu + ¢ = 0}. The
unit group E(T') acts on Sr. Then Siegel ([21], [22]) defined the quantity
p(T) as the non-Euclidean length of a fundamental domain on Sy for E(T).
Note here that, when /—det(T) € Q, such a quantity is not finite.

Similar to the case associated with positive-definite Fourier coefficients,
we consider the following series associated with indefinite Fourier coefficients

) w(T)H(T, 2)

|detT|* ’
Te(L3)'/SLa(2)
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where the summation extends over all T € (L3 )’ modulo the action T — T[U]

First of all, by Bocherer, these Dirichlet series are proportional to
> L_q(1)
s—-1/2
d>0 d
3 L_4(1)
s—1/2"°
d<0,—d#0 |d| /

Hence, we shall study these two Dirichlet series.

These Dirichlet series might be called as square analogues of the Shintani
zeta functions, which arise in the theory of prehomogeneous zeta functions
and are defined by

1
Z E(T)(detT)s’
TeL}/SL2(Z) d ( )( © )
Z u(T)
|det T|
Te(Ly ) /SLy(Z)
These series are proportional to

L_4(1)
d>0 de-1/2
Z L_4(1)
d<0,—d#£0 |dfs=1/2
More precisely, Shintani [20] studied the Dirichlet series
1 L—d(l) * 1 L-——d(]')
5—(3)=;ZW, 5_(8)=;T‘ Z Py
d>0 d>0
d=0 (mod ¢)
L_ 1 CI CI
el = Y R eces-y (fes- Ses-n),
d<0,—d#D
) L_4(1)
§.(s) = > a2
d<0,—d#0
d=0 (mod 4)

!

+ 217%¢(25 — 1) (%’(23) - ?(23 ~1)+271(1=2"2)"1log 2) :
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He discovered the following theorems. See also Datsukovsky [5], Ibukiyama-
Saito [7], Peter [14], Saito [16], Sato [17], Strum [23], Yukie [24].

Theorem 1. The Dirichlet series £_(s) and £*(s) can be meromorphically
continued to the whole s-plane. They satisfy the functional equation

£_(3/2—s) = 2% 1gl/2-2D(5 — 1/2)T(s)(cos ws)€* (s)
— 27 171/2-2 (s — 1/2)['(s)¢(25 — 1).

Theorem 2. The Dirichlet series £4(s) and &(s) can be meromorphically
continued to the whole s-plane. They satisfy the functional equation

£.(3/2 — s) = 227 101/272T(s — 1/2)T'(s)(cos ws)(w€™ (s) + (sin ws)&%(s))
I’ I
+ 271272 (s — 1/2)T(5)¢(25 — 1)(sin7s) (-l:;(s) — T‘—(S — 1/2)) :
Analogously, our main results are meromorphic continuations and func-

tional equations of the square analogues. In the case associated with positive-
definite Fourier coefficients, define

= (9= Ly Leal)?,

T 2 51
T d
d>0

Then put
Z*(s) =m0 (s)[(s — 1/2)¢(25 — 1)=_(s).

In [12], we gave the following result.

Theorem 3. The Dirichlet series Z* (s) can be meromorphically continued
to the whole s-plane. It satisfies the functional equation

I'(s)
(coss)['(s — 1)

Zr(2—s)=E(s) + 2737732 ¢*(2s — 1)¢*(2s - 2).

Theorem 3 has been proved in our previous paper [12]. At this RIMS con-
ference, the author was informed from Professor Sato that Professor Arakawa
got Theorem 3 in his unpublished notebooks [3] pp. 151-152.
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In the case associated with indefinite Fourier coefficients, define

~ L_g(1)? logp  logp \?
Z(s) = Z Idel ~¢(2s —Q)Z(l_ps—l_pzs—1>

d<0,—d#0

+ (23—2){<<')’ ( ) (25 —1) +2(C<’),(2s—2)}.

Here, we used the notation

(C’)'() C”(S)C(g)(s)2< ( ) F”(S)F(S)(S)2(IV(S))2'

The following is our main result.

Theorem 4. The Dirichlet series Z,(s) can be meromorphically continued
to the whole s-plane. It satisfies the functional equation

=.(3/2 )
= 772p(1 —5)— - (s —1/2)T(s+1/2)

x {2m?=_(s + 1/2) (sin7s)Eq(s +1/2)}
+ 2777 %p(1 — s)(cos s)['(s — 1/2)T'(s +1/2)¢(2s — 1)

2 T / I’ /
8 {_(sinws)2(cos7rs)2 i (_f) (s=1/2)+ (_f) (s + 1/2)}’
where o(s) = ¢*(2 — 25)/¢*(2s) with (*(s) = m7%/2T'(s/2)((s).

COSTS

As application, we can now define a Koecher-Maass series for indefinite
Fourier coeflicients of the real analytic Siegel-Eisenstein series of degree 2
and weight 2 by

M;3(s,0)

| det T'|s—1/2
Te(Ly ) /5L2(2Z)

1 I 2
~2%¢(2s —1)((2s - 2) ¥ ( - L 1 _0521: _1)

23
» D

+925¢(25 — 1)C(2s — 2) { (Cc) (25) (%) (25— 1) +2 (2) (25 — 2)} |
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where the summation extends over all T € (L; )’ modulo the action T' — T'[U]
of SLy(Z). Then we have

Theorem 5. The Koecher-Maass series M2(12) (s,0) can be meromorphically
continued to the whole s-plane. It satisfies a functional equation similar to

Theorem 4.

1.1 Proof of Theorem 4

All of the above Dirichlet series can be regarded as two kinds of Dirichlet
series associated with real analytic Cohen’s Eisenstein series introduced by
Ibukiyama and Saito [7]. One is the Mellin transform and the other is the
Rankin-Selberg convolution. In fact, Ibukiyama-Saito proved Theorem 1 and
2 by taking the Mellin transform of real analytic Cohen’s Eisenstein series.
See also Strum [23] for Theorem 1, where Zagier’s Eisenstein series is used.
We shall prove Theorem 3 and 4 by taking the Rankin-Selberg convolution
of real analytic Cohen’s Eisenstein series.

First, we summarize about Cohen’s Eisenstein series following [7]. See
[11] for a relation with the real analytic Jacobi-Eisenstein series defined by
Arakawa [2].

For an odd integer k£, 0 € C such that —k+2Roc -4 >0and 7€ H =
{u + iv;v > 0}, the Cohen type Eisenstein series is defined by Ibukiyama
and Saito [7] as

F(k,0,7) = E(k,0,7) + 2‘“/2"’(62”"'3 + 6"2”i§)E(k, o, —1/(47'))(—2z'7')k/2,

o0 oo
4
E(k,0,7) = (37)°/? Z E (—5)6?(407' + d)*?|4er + d|7°,
d=lo0dd c=-o0o
where j(v,7) = (¥)e;' (4er + d)*/? is the usual automorphic factor on I'o(4)
[18]. This is a real analytic modular form of weight —k/2 on I'y(4) and has
a Fourier expansion

oc—k

F(k,o,m) =02+ 072 3 | c(d, 0, k)™ 1a(v, —

d=—00

o )
,5), T=u+1iv,



where 74(v, @, §) is the function defined by

ri(v, 0, B) = / ¢~ 2ridu —am—B g, (1)

and its meromorphic continuation to all (e, 8) € C? (see [19], [10]), the d-th
Fourier coeflicient ¢(d, o, k) is given by

L(—l)(k+1>/2d(f7 - ‘1%1')

d, o, k) = 2Ft3/2-2 (~1)(k+1)/2 18
C( g, ) (A 2 C(zo- — k — 1)

((2s—1), D=0

_ L(s,xpg) Zu(a)xDK(a)a‘sal_Qs(f/a), D#0,D=0,1mod4

alf
0, D = 2,3 mod 4,

where the natural number f is defined by D = dx f? with the discriminant
dx of K = Q(v/D), xk is the Kronecker symbol, p is the Mébius function
and os(n) =3, d°.

Put

T(0/2 ~1/2)~2 5 L_g(o—1)2

S-f- F — 25—-40 oc—-1/2
oo( 75) Q C(20_2)2 Idls—a‘+3/2 ?

d<0

— 25—40'7Ta—1/2 P(O’/Z)_z L_d(O' — 1)2
— s—0o 2
¢(20 —2)? s |d|s—o+3/

S (F,s)
d

Note that if o belongs to any compact subset (without poles) in o-plane,

then the series converge absolutely and uniformly for (s) being sufficiently
large. Moreover, put

2rcosmsT(s — o +3/2)T(s + 0 — 3/2)

sinws I'(0/2)2T'(3/2 — 0/2)2 Se(F,8),

A(s, o) =

sinmo

B(s,0) =n1 (cos s — ) I'(s—0+3/2)[(s+0—3/2)S_(F,s).

sinrs

167
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Then it follows from the works by Arakawa [2], Pitale [15], Miiller [13], Zagier
[25] combined with [11] that SE(F,s) can be continued meromorphically to
all s and o and satisfy the functional equation

So(F,1~3s) =m"%p(1 — s) {A(s,0) + B(s,0)} .

The comparison of the reading coefficients of Laurent expansion at o = 2
gives the functional equation of (*(2s)¢*(2s — 1). The comparison of the
residues at o = 2 gives the functional equation of

/ !
=(2s) — =(2s — 1).

¢ ( ¢
The comparison of the constant terms of Laurent expansion at o = 2 gives
Theorem 4.

Note that this approach is taken from Ibukiyama-Saito [7]. They discov-
ered this method in order to prove Theorem 2.

The author would like to thank Professor T. Ibukiyama for suggesting
him of the problem. The author would also like to thank Professor F. Sato
informing him of Prof. Arakawa’s results and two notebooks. The author is
supported by JSPS Grant-in-Aid for Young Scientists (21840036).
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