On weakly Φ -like of order α with respect to certain analytic functions

Mamoru Nunokawa

Emeritus Professor of Gunma University Hoshikuki 198-8, Chuou-Ward, Chiba 260-0808, Japan E-Mail: mamoru_nuno@doctor.nifty.jp

Oh Sang Kwon

Department of Mathematics, Kyungsung University
Busan 608-736, Korea
E-Mail: oskwon@ks.ac.kr

Shigeyoshi Owa

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan E-Mail: owa@math.kindai.ac.jp

Nak Eun Cho

Department of Applied Mathematics, Pukyong National University
Busan 608-737, Korea
E-Mail: necho@pknu.ac.kr

Abstract

For analytic functions f(z) in the open unit disk E, weakly Φ -like of order α with respect to a function g(z) is introduced. The purpose of the present paper is to drive univalency for weakly Φ -like of order α with respect to g(z).

2000 Mathematics Subject Classification. Primary 30C45. Key word and phrases: weakly Φ -like of order α , starlike, univalent.

1. Introduction

Let A be the class of functions of form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $E = \{z : |z| < 1\}$. A function $f(z) \in A$ is called starlike if f(z) satisfies the condition

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \quad (z \in E).$$

For f(z) given by (1.1) and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, let $\Phi(f(z), g(z))$ be analytic on $(f(E), g(E)) \in \mathbb{C}^2$ with $\Phi(f(0), g(0)) = 0$, $\Phi(f(z), g(z)) \neq 0$ and $f(z) \neq 0$ in 0 < |z| < 1, and for arbitrary $\omega \in f(E)$, $\Phi(\omega, g(re^{i\theta}))$ (0 < r < 1) and $0 \le \theta \le 2\pi$ satisfy

$$\frac{d}{d\theta}\arg\Phi(\omega,g(re^{i\theta}))<\frac{1}{2}(3-\alpha)\quad(z\in E)$$

where $1 < \alpha < 2$.

A function is said to be weakly Φ -like of order α with respect to a function g(z) which satisfies the above condition of upper order $\frac{1}{2}(3-\alpha)$ if it satisfies

(1.3)
$$\left|\arg \frac{zf'(z)}{\Phi(f(z),g(z))}\right| < \frac{\pi}{2}\alpha \quad (z \in E)$$

for $1 < \alpha < 2$ (cf. [1] and [2]).

2. Main result

Theorem 1. If f(z) is a weakly Φ -like of order α with respect to a function g(z) of upper order $\frac{1}{2}(3-\alpha)$ for $1 < \alpha < 2$, then f(z) is univalent in E.

Proof. We will prove it by reductive absurdity. Let us suppose that there exists a positive real number r (0 < r < 1) for which f(z) is univalent in |z| < r, but f(z) is not univalent on |z| = r.

Figure 1

In view of Figure 1, we know that there are two points z_1 and z_2 ($z_1 \neq z_2$) such that

$$|z_1| = |z_2| = r$$
, $z_1 = re^{i\theta_1}$, $z_2 = re^{i\theta_2}$, $0 < \beta = \theta_2 - \theta_1$,

for which $f(z_1) = f(z_2)$. Let us put $C = \{z : z = re^{i\theta}, \theta_1 < \theta \le \theta_2\}$ and $C_{f(z)} = \{f(z) : z \in C\}$.

On the other hand, from the assumption of the theorem, we have

$$\begin{split} & \int_{|z|=r} d \arg d \frac{z f'(z)}{\phi(f(z), g(z))} \\ & = \int_{|z|=r} d \arg z + \int_{|z|=r} d \arg d f(z) - \int_{|z|=r} d \arg d z - \int_{|z|=r} d \arg \phi(f(z), g(z)) \\ & = 2\pi + \int_{|z|=r} d \arg d f(z) - 2\pi - \int_{|z|=r} d \arg \phi(f(z), g(z)) \end{split}$$

and

$$\pi\alpha > \int_{|z|=r} d\arg df(z) - \int_{|z|=r} d\arg \phi(f(z),g(z)) > -\pi\alpha.$$

Now then, it is trivial that

$$\int_{|z|=r} d\arg \phi(f(z), g(z)) = 2\pi.$$

This shows that

$$4\pi > \pi\alpha + 2\pi > \int_{|z|=r} d\arg df(z) > 2\pi - \pi\alpha > 0$$

and therefore it must be

(2.1)
$$\int_{|z|=r} d\arg df(z) = 2\pi.$$

Now, we have

(2.2)
$$\int_{C_{f(z)}} d \arg df(z) = \int_{C} d \arg f'(z) dz = -\pi.$$

Putting $L = \{z : |z| = r\}$, then from the assumption of the theorem, we have

$$\pi \alpha > \int_{L=C} d\arg \frac{zf'(z)}{\Phi(f(z),g(z))} > -\pi \alpha$$

and so, we have

$$\pi \alpha > \int_{L-C} d \arg df(z) - \int_{L-C} d \arg \Phi(f(z), g(z)) > -\pi \alpha.$$

It follows that

$$\begin{split} &\int_{L-C} d \arg df(z) \\ &< \pi \alpha + \arg \Phi(f(z_1), g(re^{i(\theta_1 + 2\pi)})) - \arg \Phi(f(z_2), g(re^{i\theta_2})) \\ &= \pi \alpha + \arg \Phi(f(z_2), g(re^{i(\theta_1 + 2\pi)})) - \arg \Phi(f(z_2), g(re^{i\theta_2})) \\ &= \pi \alpha + \int_{\theta_2}^{\theta_1 + 2\pi} \frac{d}{d\theta} \arg \Phi(f(z_2), g(re^{i\theta})) d\theta \\ &< \pi \alpha + \int_{\theta_2}^{\theta_1 + 2\pi} \frac{1}{2} (3 - \alpha) d\theta \\ &= \pi \alpha + \frac{1}{2} (3 - \alpha)(2\pi - \beta) \\ &< \pi \alpha + (3 - \alpha)\pi = 3\pi \end{split}$$

This show that

(2.3)
$$\int_{|z|=r} d \arg df(z) - \int_{C_{f(z)}} d \arg df(z) < 3\pi.$$

From (2.1), (2.2) and (2.3), we have contradiction. This completes the proof of theroem.

Remak. When f(z) satisfies the hypothesis of Theorem 1, the real part of the function $zf'/\Phi(f(z),g(z))$ can be negative.

Theorem 2. Let $\Phi(f(z), g(z))$ be analytic on (f(E), g(E)) with $\Phi(f(0), g(0)) = 0$, $\Phi(f(z), g(z)) \neq 0$ and $f(z) \neq 0$ in 0 < |z| < 1 and for arbitrary $w \in f(E)$, $\Phi(w, g(re^{i\theta}))$ satisfies the following condition

$$\frac{d}{d\theta}\arg\Phi(w,g(re^{i\theta})) > -\frac{1}{2} \quad (z \in E)$$

where 0 < r < 1 and $0 \le \theta \le 2\pi$. Then, if f(z) satisfies the following condition

$$\operatorname{Re} \frac{z^2 (f'(z))^2}{\Phi(f(z), g(z))} > 0 \quad (z \in E)$$

then f(z) is univalent in E.

Proof. Applying the same method as the proof of Theorem 1, let us suppose that there exists a positive real number r (0 < r < 1) for which f(z) is univalent in |z| < r, but f(z) is not univalent on |z| = r. Also, in view of Figure 1, we know that there are two points z_1 and z_2 $(z_1 \neq z_2)$ such that $|z_1| = |z_2| = r$, $z_1 = re^{i\theta_1}$, $z_2 = re^{i\theta_2}$, $0 < \theta_2 - \theta_1$, for which $f(z_1) = f(z_2)$. From the assumption of the theorem, we have

$$\begin{split} \pi &> \int_C d \arg \frac{z^2 (f'(z))^2}{\Phi(f(z),g(z))} \\ &= \int_C d \arg z^2 + \int_C d \arg(f'(z))^2 - \int_C d \arg \Phi(f(z),g(z)) \\ &= 2 \int_C d \arg z + 2 \int_C d \arg f'(z) - \int_C d \arg \Phi(f(z),g(z)) \\ &= 2 \int_C d \arg z + 2 \int_C d \arg df(z) - 2 \int_C d \arg dz - \int_C d \arg \Phi(f(z),g(z)) \\ &= 2 \int_C d \arg df(z) - (\arg \Phi(f(z_2),g(re^{i\theta_2})) - \arg \Phi(f(z_1),g(re^{i\theta_1}))) \\ &= 2 \int_C d \arg df(z) - (\arg \Phi(f(z_1),g(re^{i\theta_2})) - \arg \Phi(f(z_1),g(re^{i\theta_1}))) \\ &> -\pi. \end{split}$$

It follow that

$$\begin{split} &2\int_C d\arg df(z)\\ &> (\arg\Phi(f(z_1),g(re^{i\theta_2})) - \arg\Phi(f(z_1),g(re^{i\theta_1}))) - \pi\\ &= \int_{\theta_1}^{\theta_2} \frac{d}{d\theta} \arg\Phi(f(z_1),g(re^{i\theta})) d\theta - \pi\\ &> -\frac{1}{2} \int_{\theta_1}^{\theta_2} d\theta - \pi\\ &> -\pi - \pi = -2\pi \end{split}$$

and therefore, we have

$$\int_C d\arg df(z) > -\pi,$$

but from the assumption, we have

$$\int_C d\arg df(z) = -\pi.$$

This is a contradiction and it completes the proof.

Applying the proof of Theroem 2, we have following corollary:

Corollary 1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ be analytic in E and suppose that

$$\operatorname{Re} \frac{z^2 (f'(z))^2}{f(z)^{2-\beta} g(z)^{\beta}} > 0 \quad (z \in E)$$

where $\beta > 0$ and

(2.4)
$$\operatorname{Re} \frac{zg'(z)}{g(z)} > -\frac{1}{2\beta} \quad \text{in } E,$$

then f(z) is univalent in E.

Remark. If g(z) satisfies the condition (2.4), then g(z) is not necessarily a starlike function.

References

- [1] L. Brickman, Φ -like analytic functions, Bull. Amer. Math. Soc. 79 (1973), 555–558.
- [2] M. Nunokawa, S. Owa, O. S. Kwon and N. E. Cho, On Φ -like with respect to certain starlike functins, to appear.