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概要 与えられた交通ネットワークに対して，出発地と目的地のべア，および各々のペアに対する交通
需要が与えられたとき，各ルートにおける交通量の均衡状態として知られるのがWardrop 均衡である．
Wardrop 均衡とは，いずれのドライバーも，自分だけがルートを変更することにより，所要時間を減少
させることができない状態であり，このような均衡状態はWardrop の等時間配分原理によって特徴づけ
られる．Wardrop 均衡の概念は，すべてのドライバーが交通ネットワークのすべての情報 (所要時間関
数のパラメータなど) をもち，それ自体がすべてのドライバーの共通認識であるという前提の下で意味
をなす．しかし，現実においては，その前提が必ずしも満たされるとは限らない．そこで，本報告書で
は，各ドライバーが不確実な情報のト-で起こり得る最悪のケースを想定し，それに基づいて自分のルー
トを選択するものと考える．そして，そのときに得られる均衡状態をロバスト Wardrop 均衡と定義す
る．本報告書では，ドライバーの目的地までの所要時間関数に不確実性を組み込み，その不確実性の下
でロバスト Wardrop均衡問題を定式化する．さらに，不確実性を表す集合が 2 ノルムで表されるとき，
ロバスト Wardrop均衡問題を二次錐相補性問題という既存の手法 (平滑化ニュー トン法など) で解くこ
とのできるクラスの問題に再定式化する．最後に，具体的に与えられた交通ネットワークに対して，ロ
バスト Wardrop 均衡問題を計算機で実際に解き，不確実性集合の違いに対するロバスト Wardrop 均衡
解の変化を調べる．

1 Introduction
Since the $1930s$ , the automobiles have been widely used all over the world because of the economic
growth and the technological and scientific development. In order to make the automobile traffic more
efficient, we need to design roadway infrastructures such as highways, traffic signals, and toll roads.

When we build new roads or decide new tolls on a traffic network, we need to forecast the traffic
flow to estimate the effect due to such decisions. In general, all drivers are supposed to select the route
with the minimum cost from the origin to the destination. In other words, the routes with positive
traffic flow have the minimum cost, and more costly routes are not used. This flow distribution prin-
ciple is called Wardrop’s user equilibrium principle [20]. Also, the problem of finding a flow pattern
satisfying Wardrop‘s user equilibrium principle is called the Tkaffic Assignment Problem (TAP). The
TAP is formulated as mathematical programming problems such as a linear or nonlinear optimiza-
tion problem, Variational Inequality Problem (VIP), Mixed Complementarity Problem (MCP), and
Nonlinear Complementarity Problem (NCP) [1, 2, 4, 11, 17, 18].

In order to formulate the TAP as a mathematical programming problem, it is important to model
the cost on each route appropriately. When the route cost function is expressed as the sum of road*1
costs, the route cost function is called additive [1, 4, 17, lS]. Otherwise, it is called non-additive [2, 11].

In the TAP, we suppose that each user has complete information on the traffic network and can
choose a route with minimum cost by using that information. However, in the real traffic network, each
user $s$ estimated cost can be often incorrect due to various uncertainties such as weather changeability
or traffic accidents. Therefore he$/she$ may choose a route with non-minimal cost, and the flow based
on Wardrop‘s user equilibrium principle does not necessarily express the real network flow.

For the traffic model in which the drivers do not know the complete information on the network,
the new concept called the robust Wardrop equilibrium [14, 15, 19] attracts much attention recently.
In the robust Wardrop equilibrium, we assume that each driver can estimate the (uncertainty set” in
which the uncertain data of his$/her$ route cost function are contained, and then choose $his/her$ route
with taking the value of the worst (route) cost function into consideration. In other words, each driver

$*1$ The road in a traffic network corresponds to the link in a directed graph. For more detail, see Section 2.
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chooses his$/her$ route based on the robust optimization policy [3, 6, 5, 13]. The traffic assignment
problem based on the robust Wardrop equilibrium is called a robust TAP, which we will mainly discuss
in the paper.

The robust Wardrop equilibrium has been studied by some researchers so far. $Ord6\tilde{n}ez$ and Stier-
Moses [14, 15] defined the robust Wardrop equilibrium for the restrictive case where each user’s cost
function can be expressed as the sum of two terms: (1) the term depending on the flow but not involving
any uncertainty and (2) the term not depending on the flow but involving some uncertainty. They
showed that, when the uncertainty set in each route cost functions is polyhedral, the robust TAP can
be formulated as an NCP. On the other hand, Takahashi [19] defined the robust Wardrop equilibrium
for more general route cost functions without $Ord6\overline{n}ez$ and Stier-Moses’ restriction. Moreover, he
showed that the robust TAP can be reformulated as a Second-Order Cone Complementarity Problem
(SOCCP) [8, 10, 12, 16], when the route cost function is additive, the link cost function is linear and
separable$*2$ , and the uncertain set is ellipsoidal. Also Takahashi showed that the robust TAP can be
reformulated as an MCP when the uncertainty set is defined by means of the $\infty$-norm.

For the traffic model with uncertain cost functions, Zhang, Chen and Sumalee [21] studied another
mathematical approach called a stochastic TAP. They assumed that the uncertain data in the cost
functions follow some stochastic distribution, and reformulated the stochastic TAP as a stochastic
complementarity problem that can be solved by using the expected residual minimization method.
Although Zhang et al. discuss the robustness of the obtained stochastic TAP solution, the meaning
of “robust“ is essentially different from that in the “robust“ TAP model. The robustness in Zhang et
al.’s study means that the obtained stochastic TAP solution does not vary so much if the actual value
of the stochastic data varies in some degree. On the other hand, the robustness for the robust TAP
comes from the “robust optimization”, by which each driver chooses his$/her$ route.

In this paper, we consider the robust Wardrop equilibrium in [14, 15, 19] to TAPs with more general
uncertainty structures. In [19], Takahashi only considered the case where the link cost functions in
traffic network are linear and separable, whereas we study the robust TAP without such a linearity
and separability assumption. We also provide the condition for the existence of a robust Wardrop
equilibrium, and reformulate the robust TAP as an SOCCP when the uncertainty set is ellipsoidal.

This paper is organized as follows. In Section 2.1, we describe the traffic model and Wardrop‘s user
equilibrium without uncertainty, and formulate the TAP based on the traffic model and Wardrop‘s
user equilibrium. In Section 2.2, we recall background of some equilibrium problems such as SOCCP,
MCP, and NCP. In Section 2.3, we formulate the TAP as an NCP and an MCP. Moreover we provide
the condition for the existences of a solution for TAP. Section 3 is the main section of this paper. In
Section 3.1, we define the robust Wardrop equilibrium, and formulate the robust TAP as an MCP.
Furthermore we show the condition for the existence of a solution of the robust TAP. In Section
3.2, we formulate the robust TAP with an ellipsoidal uncertainty set as an SOCCP. In Section 4, we
observe the property of equilibria for robust TAPs by means of numerical experiments. In Section 5,
we conclude this paper with some remarks.

Throughout the paper, we use the following notations and definitions: $\Vert\cdot\Vert$ denotes the 2-norm
defined by $\Vert z\Vert$ $:=\sqrt{z^{T}z}$ for a vector $z$ . For a given set $S,$ $|S|$ denotes the cardinality of S. $\mathbb{R}^{n}$ denotes
the n-dimensional Euclidean space. $\mathbb{R}^{m\cross n}$ denotes the set of $m\cross n$ real matrices. For a finite set
$N$ and $z=(z_{1}, z_{2,\ldots,|N|}z)$ , we write $z=[z_{i}]_{i\in N}$ . We often write $z=(x, y)$ for $[x^{T}, y^{T}]^{T}$ . For the
vectors $a$ and $b$ of the same dimension, $a\perp b$ means $a^{T}b=0$ .

2 Preliminaries
In this section, we recall some fundamental background on the TAP and some related topics. In
Subsection 2.1, we give a mathematical expression of the TAP by using Wardrop‘s user equilibrium
principle. In Subsection 2.2, we introduce some classes of complementarity problems, which play an
important role in solving TAPs and robust TAPs. In Subsection 2.3, we reformulate the TAP as a
complementarity problem, and study the condition under which TAP solutions exist.

$*2$ The link cost function is said to be separable if its value depends only on the link flow.
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2.1 Mathematical formulation of traffic assignment problem
In this section, we provide a mathematical formulation of TAP. Consider a directed graph $\mathcal{G}=(\mathcal{N}, \mathcal{L})$

corresponding to the traffic network, where $\mathcal{N}$ and $\mathcal{L}$ denote the node (vertex or point) set and the
link (edge or arc) set, respectively. In the real traffic network, the nodes correspond to the origins, the
destinations and the intersections, and the links correspond to the roads. $W$ denotes the set which
consists of origin-destination pairs (OD pairs). We assume that graph $\mathcal{G}$ is strongly connected, that is,
there exists at least one route for every OD pair $w\in W$ . Let $R_{w}$ be the set of all routes between OD
pair $w\in W$ , and $R$ $:= \bigcup_{w\in W}R_{w}$ . For $r\in R,$ $\mathcal{L}_{r}\subset \mathcal{L}$ denotes the set of all links contained in $r$ . $y_{l}\in \mathbb{R}$

and $x_{r}\in \mathbb{R}$ denote the flow of link $l\in \mathcal{L}$ and route $r\in R$ , respectively. Let the link and the route
flow vectors be denoted as $y:=(y_{1}, y_{2}, \ldots, y_{|\mathcal{L}|})$ and $x:=(x_{1}, x_{2}, \ldots, x_{|R|})$ , respectively. $f_{r}$ : $\mathbb{R}^{|R|}arrow \mathbb{R}$

denotes the cost function for route $r\in R$ with variable $x\in \mathbb{R}^{|R|}$ . $t_{l}$ : $\mathbb{R}^{|\mathcal{L}|}arrow \mathbb{R}$ denotes the cost
function for link $l\in \mathcal{L}$ with variable $y\in R^{|\mathcal{L}|}$ . For an OD pair $w\in W,$ $\lambda_{w}$ $:= \min_{r\in R_{u)}}f_{r}(x)$ denotes
the minimum route cost. $d_{w}$ : $\mathbb{R}^{|W|}arrow \mathbb{R}^{|W|}$ denotes the demand function with variable $\lambda$ $:=[\lambda_{w}]_{w\in W}$ .

Next, we describe Wardrop‘s user equilibrium principle which shows drivers’ behavior in the traffic
network. A route flow vector $x\in \mathbb{R}^{|R|}$ is called Wardrop‘s user equilibrium if it satisfies

$[x_{r}>0\Rightarrow f_{r}(x)\leq f_{r’}(x) \forall r’\in R_{w}]$ $r\in R_{w},$ $w\in W$. (2.1)

Wardrop‘s user equilibrium principle states that each driver in the network selects the route with
minimum cost. Conversely, the drivers avoid the routes with non-minimum cost. In other words,
under such an equilibrium, the cost of the route with non-zero flow must be less than or equal to other
routes for the same OD pair, and conversely, any route with non-minimum cost for an OD pair has
no flow.

In addition to Wardrop‘s user equilibrium principle (2.1), the TAP requires the condition that
every route flow is nonnegative and the sum of route flows for each OD pair $w$ is equal to its traffic
demand $d_{w}(\lambda)$ , that is,

$x\geq 0$ ,
$\sum_{r\in R_{\tau}},,$

$x_{r}=d_{w}(\lambda)$ $(w\in W)$ . (2.2)

Combining (2.1) with (2.2), the TAP can be formulated as follows:

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq f_{r}(x)-\lambda_{w}\perp x_{r}\geq 0$ $(r\in R_{w}, w\in W)$ ,

$\sum_{r\in R_{?v}}x_{r}=d_{w}(\lambda)$
$(w\in W)$ , (2.3)

$\lambda_{w}\geq 0$ $(w\in W)$ .

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq f_{r}(x)-\lambda_{w}\perp x_{r}\geq 0$ $(r\in R_{w}, w\in W)$ ,

$\sum_{r\in R_{w}}x_{r}=d_{w}(\lambda)$
$(w\in W)$ , (2.4)

$\lambda_{w}\geq 0$ $(w\in W)$ .
Furthermore, TAP (2.4) can be rewritten equivalently as follows:

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq f(x)-N^{T}\lambda\perp x\geq 0$ , (2.5)
$Nx-d(\lambda)=0$ , $\lambda\geq 0$ ,

where function $f$ : $\mathbb{R}^{|R|}arrow \mathbb{R}^{|R|}$ and matrix $N\in \mathbb{R}^{|W|\cross|R|}$ are defined by

$f(x):=[f_{r}(x)]_{r\in R}$ , $N_{wr}=\{\begin{array}{l}1 r\in R_{w}0 r\not\in R_{w} ’\end{array}$ (2.6)

respectively.
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2.2 Complementarity problems

In this subsection, we introduce some classes of complementarity problems [9]. The complementarity
problem is a kind of equilibrium problem, and has been studied extensively so far since it is mathe-
matically tractable and can be solved efficiently by existing algorithms such as the smoothing Newton
method. In the subsequent sections, we reformulate robust TAPs as complementarity problems.

For given functions $h$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ and $F$ : $\mathbb{R}^{n}\cross \mathbb{R}^{n}\cross \mathbb{R}^{\nu}arrow \mathbb{R}^{n}\cross \mathbb{R}^{\nu}$ , NCP and MCP can be
formulated as

Find $x\in \mathbb{R}^{n}$

such that $0\leq x\perp h(x)\geq 0$ , (2.7)

and

Find $(x, y, \zeta)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross \mathbb{R}^{\nu}$

such that $0\leq x\perp y\geq 0,$ $F(x, y, \zeta)=0$ , (2.8)

respectively. Notice that MCP contains NCP as a subclass since NCP (2.7) reduces to MCP (2.8) by
setting $F(x, y, \zeta);=y-h(x)$ .

The second-order cone complementarity problem (SOCCP) [8, 10, 12, 16] is a more general class
of complementarity problems written as follows:

Find $(x, y, \zeta)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross \mathbb{R}^{l\text{ノ}}$

such that $\mathcal{K}\ni x\perp y\in \mathcal{K}$ , $F(x,$ $y,$ $()=0$ , (2.9)

where $F$ : $\mathbb{R}^{n}\cross \mathbb{R}^{n}\cross \mathbb{R}^{l}$
ノ

$arrow \mathbb{R}^{n}\cross \mathbb{R}^{\nu}$ is a given function, and $\mathcal{K}$ is the Cartesian product of several
second-order cones, that is, $\mathcal{K}=\mathcal{K}^{n_{1}}\cross \mathcal{K}^{n_{2}}\cross\cdots\cross \mathcal{K}^{n_{m}}$ with $n=n_{1}+n_{2}+\cdots+n_{m}$ , and the
$n_{i}$ -dimensional second-order cone $\mathcal{K}^{n_{i}}\subset \mathbb{R}^{n_{a}}$ is defined as

$\mathcal{K}^{n_{t}}=\{(z_{1}, z_{2}^{T})^{T}\in \mathbb{R}\cross \mathbb{R}^{n_{t}-1}|z_{1}\geq\Vert z_{2}\Vert\}$ .

Notice that SOCCP contains MCP as a subclass since $\mathcal{K}$ coincides with the nonnegative orthant when
$n_{1}=n_{2}=\cdots=n_{m}=1$ . In this paper, we formulate the robust TAP as an SOCCP of the form

Find $\zeta\in \mathbb{R}^{\nu}$

such that $\mathcal{K}\ni G(\zeta)\perp H(\zeta)\in \mathcal{K},$ $C\zeta=h$ , (2.10)

where $G$ : $\mathbb{R}^{\nu}arrow \mathbb{R}^{n}$ and $H$ : $\mathbb{R}^{\nu}arrow \mathbb{R}^{n}$ are given functions, and $C\in \mathbb{R}^{v\cross v}$ and $h\in \mathbb{R}^{\nu}$ are given
constants. We can easily see that SOCCP (2.10) can be rewritten as SOCCP (2.9) by letting $x:=G(\zeta)$ ,
$y$ $:=H(\zeta)$ , and

$F(x, y, \zeta):=\{\begin{array}{l}y-H(\zeta)x-G(\zeta)C\zeta-d\end{array}\}$ .

2.3 Complementarity reformulation of TAP and existence of solution

In this section, we show some relation between TAP (2.5) and NCP (2.7) or MCP (2.8), and discuss
the existence of a TAP solution. In order to formulate the TAP as an NCP,we make the following
assumption.

Assumption A In TAP $(2.5)$ , the following conditions hold:

(a) $f(x)\geq 0$ and $d(\lambda)\geq 0$ for any $(x, \lambda)\in \mathbb{R}_{+}^{|R|}\cross \mathbb{R}_{+}^{|W|}$ ,

(b) For all $r\in R,$ $f_{r}(x)x_{r}=0$ implies $x_{r}=0$ .
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Notice that (b) automatically holds if $f(x)>0$ for any $x\in \mathbb{R}_{+}^{|R|}$ . Under this assumption, TAP (2.5)
can be rewritten in the form of NCP (2.7).

Theorem 2.1 [9, Proposition 1.4.6] Suppose that TAP (2.5) satisfies Assumption A. Then, the TAP
can be reformulated as the following $NCP$ equivalently:

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq\{\begin{array}{l}f(x)-N^{T}\lambda Nx-d(\lambda)\end{array}\}\perp\{\begin{array}{l}x\lambda\end{array}\}\geq 0$. (2.11)

By using the above NCP reformulation, we can derive a sufficient condition under which there
exists at least one solution of TAP (2.5).

Assumption $B$ In TAP (2.5), functions $f$ and $d$ are continuous. Moreover, there exists $M>0$ such
that $d_{w}(\lambda)\leq M$ for any $w\in W$ and $\lambda\in \mathbb{R}^{|W|}$ .

Theorem 2.2 [9, Proposition 2.2.14] Suppose that Assumptions 2.1 and $B$ hold. Then, TAP (2.5) has
at least one solution.

We have shown that TAP (2.5) reduces to an NCP under Assumption 2.1. On the other hand,
it also reduced to an MCP under another assumption. In the subsequent numerical experiments, in
order to some (robust) TAPs, we apply a smoothing Newton algorithm to this MCP.

Assumption $C$ In TAP (2.5), It follows $f(x)\geq 0$ and $d(\lambda)>0$ for any $(x, \lambda)\in \mathbb{R}_{+}^{|R|}\cross \mathbb{R}_{+}^{|W|}$ .

Theorem 2.3 Suppose that TAP $(2.5)$ satisfies Assumption C. Then, the TAP can be reformulated
as the following $MCP$ equivalently:

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq f(x)-N^{T}\lambda\perp x\geq 0$ , (2.12)
$Nx=d(\lambda)$ .

3 Traffic assignment problem based on robust Wardrop’s user equi-
librium

In this section, we define the robust TAP and discuss the existence of its solution. We also formulate
the robust TAP with special uncertainty structure as an SOCCP.

3.1 Robust traffic assignment problem and existence of solutions
In this subsection, we provide a mathematical expression of the robust TAP, and study the existence
of a robust Wardrop equilibrium.

Consider the following situation. The cost function $f_{r}^{\hat{u}^{r}}$ for route $r\in R$ contains uncertain data
$\hat{u}^{r}$ . Even though the users cannot estimate the value of $\hat{u}^{r}$ accurately, they know that it belongs to
a certain compact set $U_{r}$ . In such a situation, we assume that each user with OD pair $w$ chooses a
route with minimum worst cost, i.e., a route $r$ such that $r= \arg\min_{r\in R_{w}}\tilde{f}_{r}(x)$ , where

$\tilde{f}_{r}(x)$ $:= \max\{f_{r}^{\hat{u}^{r}}(x)|\hat{u}^{r}\in U_{r}\}$ (3.1)

is called the worst cost function. Moreover, a Wardrop equilibrium with respect to the worst cost
$f_{r}(x)$ is called a robust Wardrop equlibrium.
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Definition 3.1 Let the worst cost function $\tilde{f}_{r}$ be defined by (3.1). Then, a route flow vector $x\in \mathbb{R}^{|R|}$

satisfying
$[x_{r}>0\Rightarrow\overline{f}_{r}(x)\leq\tilde{f}_{r’}(x) \forall r’\in R_{w}]$ $(r\in R_{w}, w\in W)$ , (3.2)

is called a robust Wardrop equlibreum. Moreover, the problem offinding the robust Wardrop equilibmum
is called a robust TAP, i. e., it is to find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$ such that

$0\leq\tilde{f}_{r}(x)-\lambda_{w}\perp x_{r}\geq 0$ $(r\in R_{u}, w\in W)$ ,

$\sum_{r\in R}x_{r}=d_{w}(\lambda),$

$\lambda_{w}\geq 0$ $(w\in W)$ . (3.3)

By using the complementarity reformulation technique in the previous section, we can also show
conditions under which a robust Wardrop equilibrium exists. In what follows, we denote $f(x)$ $:=$

$[\tilde{f}_{r}(x)]_{r=1}^{|R|}\in \mathbb{R}_{+}^{|R|}$ .

Assumption $D$ For the robust TAP (3.3), the following four conditions hold:

(a) For any $x\in \mathbb{R}_{+}^{|R|}$ , there exists $\hat{u}^{r}\in U_{r}$ such that $f_{r}^{\hat{u}^{r}}(x)>0$ for each $r\in R$ .

(b) For each $r\in R$ , the function $h_{r}:\mathbb{R}_{+}^{|R|}\cross U_{r}arrow \mathbb{R}+defined$ by $h_{r}(x,\hat{u}^{r})$ $:=f_{r}^{\hat{u}^{r}}(x)$ is continuous on
$\mathbb{R}_{+}^{|R|}\cross U_{r}$ .

(c) $d(\lambda)>0$ for any $\lambda\in \mathbb{R}_{+}^{|W|}$ .

(d) For each $w\in W$ , function $d_{w}(\lambda)$ is continuous and bounded above on $\mathbb{R}^{|W|}$ .

Theorem 3.1 Suppose that Assumption $D$ holds. Then the robust TAP $(3.3)$ is equivalent to the
following $MCP$:

Find $(x, \lambda)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}$

such that $0\leq f(x)-N^{T}\lambda\perp x\geq 0$ , (3.4)
$Nx-d(\lambda)=0$ .

3.2 SOCCP reformulation for robust TAP with ellipsoidal uncertainty sets
In the previous subsection, we have defined the robust TAP and showed the condition for the existence
of a solution. In this section, we show that the robust TAP can be reformulated as an SOCCP when
the uncertainty sets are described by means of the Euclidean norm.

3.2.1 Robust TAP with general link cost function

In what follows, we assume that each link cost function is expressed as

$t_{l}^{\hat{u}}{}^{t}(y)=t_{l}(y)+\hat{u}_{l}\triangle t_{l}(y)$, (3.5)

where $t_{l}$ : $\mathbb{R}^{|\mathcal{L}|}arrow \mathbb{R}$ and $\triangle t_{l}$ : $\mathbb{R}^{|\mathcal{L}|}arrow \mathbb{R}$ are given functions, and $\hat{u}_{l}\in \mathbb{R}$ denotes the uncertainty
parameter. Moreover, we suppose that the uncertain route cost function $f_{r}^{\hat{u}^{r}}(x)$ is additive, i.e.,

$f_{r}^{\hat{u}^{f}}(x)= \sum_{l\in \mathcal{L}_{r}}t_{l}^{\hat{u}_{l}}(y)$
, (3.6)

where the uncertainty parameter satisfies $\hat{u}^{r}=[\hat{u}_{l}]_{l\in \mathcal{L}}\in \mathbb{R}^{|\mathcal{L}|}$ . Now, let $M\in \mathbb{R}^{|\mathcal{L}|\cross|R|}$ be the link-route
incidence matrix with the $(l, r)$ entry

$\ovalbox{\tt\small REJECT}_{r}\cdot=\{\begin{array}{l}1 (l\in \mathcal{L}_{r})0 (l\not\in \mathcal{L}_{r}).\end{array}$
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Then we have $y=Mx$ , which together with (3.5) and (3.6) yields

$f_{r}^{\hat{u}^{r}}(x)= \sum_{l\in \mathcal{L}_{r}}t_{l}(Mx)+\hat{u}_{l}\triangle t_{l}(Mx)$
. (3.7)

Furthermore, we make the following assumption on the uncertainty set $U_{r}$ .

Assumption $E$ Uncertainty set $U_{r}$ is ellipsoidal for each $r\in R$ , i. e.,

$\ovalbox{\tt\small REJECT}:=\{\hat{u}^{r}\in \mathbb{R}^{|\mathcal{L}|}|\hat{u}^{r}=\overline{u}^{r}+D_{r}\hat{v}^{r},$ $\Vert\hat{v}^{r}\Vert\leq\delta_{r},$ $\}$ ,

where $\overline{u}^{r}$ is a given vector, $D_{r}\in \mathbb{R}^{|\mathcal{L}|\cross|\mathcal{L}}$ I is a given symmetric positive definite matrix, and $\delta_{r}$ is a
given positive scalar.

Under Assumption $E$ , we can represent the worst cost function $\tilde{f}_{r}$ explicitly. To this end, we need
the following lemma.

Lemma 3.1 Let $(a, b)\in \mathbb{R}^{n}\cross \mathbb{R}^{m}$ be arbitmry vectors, $C\in \mathbb{R}^{m\cross n}$ be an arbitrary matrix, and $\delta>0$

be any positive scalar. Let $P\subset \mathbb{R}^{m}$ be defined by

$P:=\{p\in \mathbb{R}^{m}|p=b+Cq, \Vert q\Vert\leq\delta\}$ .

Then we have
$\max_{p\in R^{m}}\{a^{T}p|p\in P\}=a^{T}b+\delta\Vert C^{T}a\Vert$ . (3.8)

Applying Lemma 3.1 to the uncertain route cost $f_{r}^{\hat{u}^{r}}$ with (3.7) under Assumption $E$ , we readily
obtain

$\tilde{f}_{r}(x)=\sum_{l\in \mathcal{L}_{r}}t_{l}(Mx)+\overline{u}_{l}^{r}\triangle t_{l}(Mx)+\delta_{r}\Vert D_{r}diag(M_{r})\triangle t(Mx)\Vert$
, (3.9)

where diag $(M_{r})\in \mathbb{R}^{|\mathcal{L}|\cross|\mathcal{L}|}$ is the diagonal matrix whose diagonal components are given by $M_{lr}(l\in \mathcal{L})$ .
By Theorem 3.1, the robust TAP with $\tilde{f}_{r}(x)$ defined by (3.9) reduces to MCP (3.4) under Assump-

tion D. However, since $f$ is nondifferentiable, it is difficult to apply existing algorithms to MCP (3.4)
directly. To avoid this difficulty, we reformulate the robust TAP as an SOCCP that contains differen-
tiable functions only.

Let $g_{r}(x):= \sum_{l\in \mathcal{L}_{r}}t_{l}(Mx)+\overline{u}_{l}^{r}\triangle t_{l}(Mx)$ and $g(x);=[g_{r}(x)]_{r=1}^{|R|}\in \mathbb{R}^{|R|}$ . Then the worst cost
function (3.9) can be expressed explicitly as

$\tilde{f}(x)=g(x)+\{\begin{array}{l}\delta_{1|_{|D_{2}diag(M_{2})\triangle t(Mx)||}^{|D_{1}diag(M_{1})\triangle t(Mx)||}}\delta_{2}|\delta_{|R|}||D_{|R|}diag(M_{|R|})\triangle t(Mx)||\end{array}\}$ .

Moreover, by using an auxiliary variable $s:=[s_{r}]_{r=1}^{|R|}\in \mathbb{R}^{|R|}$ , MCP (3.4) can be rewritten as the
following problem:

Find $(x, \lambda, s)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}\cross \mathbb{R}^{|R|}$

such that $0\leq g(x)+s-N^{T}\lambda\perp x\geq 0$ ,
$s_{r}=\delta_{r}\Vert D_{r}diag(M_{r})\triangle t(Mx)\Vert(r\in R)$ , (3.10)
$Nx=d(\lambda)$ .

(3.11)

Furthermore, we can reformulate (3.10) as an SOCCP by the following lemma.
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Lemma 3.2 Let $(\xi_{1},\xi_{2})\in \mathbb{R}\cross \mathbb{R}^{k-1}$ be an arbitmry vector with $k\geq 2$ . Then, $\xi_{1}=\Vert\xi_{2}\Vert$ if and only
if there exists a vector $v\in \mathbb{R}^{k-1}$ such that

$\mathcal{K}^{k}\ni\{\begin{array}{l}\xi_{1}\xi_{2}\end{array}\}\perp\{\begin{array}{l}lv\end{array}\}\in \mathcal{K}^{k}$ . (312)

By Lemma 3.2, problem (3.10) can be reformulated as the following SOCCP:

Find $(x, \lambda, s, v)\in \mathbb{R}^{|R|}\cross \mathbb{R}^{|W|}\cross \mathbb{R}^{|R|}\cross \mathbb{R}^{|\mathcal{L}||R|}$

such that $0\leq g(x)+s-N^{T}\lambda\perp x\geq 0$,

$\mathcal{K}^{|\mathcal{L}|+1}\ni[\delta_{r}D_{r}$

diag
$(M_{r})\Delta t(Mx)s_{r}]\perp\{\begin{array}{l}1v^{r}\end{array}\}\in \mathcal{K}^{|\mathcal{L}|+1}$ $(r\in R)$ , (3.13)

$Nx=d(\lambda)$ .

Moreover, if $d$ is a constant function, i.e., $d(\lambda)=d$ for any $\lambda\in \mathbb{R}^{|W|}$ , then SOCCP (3.13) can be rewrit-
ten in the form of SOCCP (2.10) with $\mathcal{K}$ $:=(\mathcal{K}^{1})^{|R|}\cross(\mathcal{K}^{|\mathcal{L}|+1})^{|R|},$

$\zeta$ $:=(x, \lambda, s, v)\in \mathbb{R}^{|R|+|W|+|R|(|\mathcal{L}|+1)}$ ,

$C=[o_{|R|(|\mathcal{L}|+1)\cross|R|}^{N}0_{|R|\cross|R|}$ $000|\begin{array}{l}RRR\end{array}|\cross(|\begin{array}{l}WWW\end{array}|+|\begin{array}{l}RRR\end{array}|(|\begin{array}{l}\mathcal{L}\mathcal{L}\mathcal{L}\end{array}|+1))]$ , $h=\{\begin{array}{l}0_{|R|,d}0_{|R|(|\mathcal{L}|+1)}\end{array}\}$ ,

$F(x, \lambda, s, v):=\{\begin{array}{l}g(x)+s-N^{T}\lambda s_{1}\delta_{1}D_{1}diag(M_{1})\Delta t(Mx)s_{2}\delta_{2}D_{2}diag(M_{2})\Delta t(Mx)|\delta_{|R|}D_{|R|}diag(M_{|R|})\triangle t(Mx)s_{|R|}\end{array}\}$ , $G(x, \lambda, s, v):=\{\begin{array}{l}xlv^{1}1v^{2}|1v^{|R|}\end{array}\}$ ,

where $0_{m}$ and $0_{m\cross n}$ are the m-dimensional zero vector and the $(m\cross n)$ -dimensional zero matrix,
respectively.

3.2.2 Robust TAP with uncertain BPR function

Next we introduce a more concrete link cost function called the U. S. Bureau of Public Roads (BPR)
function [7]. The BPR function $t_{l}(y)$ is defined as follows:

$t_{l}(y)=a_{l}(1+b_{l}( \frac{y_{l}}{c_{l}})^{\nu})$ , (314)

where $v,$ $a_{l},$ $b_{l},$
$c_{l}$ are positive scalars. More precisely, $a_{l}$ represents the free-flow travel time, $b_{l}$

represents the congestion factor, $c_{l}$ represents the traffic capacity of link $l$ , and $\nu$ is usually chosen as a
number between 4 and 5. The BPR function is one of the most popular link cost functions employed in
a mathematical model for the traffic network. We suppose that for all routes $r\in R$ , the cost functions
$f_{r}(x)$ are additive. Then by using the BPR function, we can express the route cost function as follows:

$f_{r}(x)= \sum_{l\in \mathcal{L}_{r}}a_{l}(1+b_{l}(\frac{M_{l}x}{c_{l}})^{\nu})$ , (315)

where $M_{l}$ denotes the l-th row vector of the link-route incidence matrix $M$ .
Now we consider the situation where the data in the BPR function (3.14) involve uncertainties.

Then we formulate such a robust TAP as an SOCCP. In the remainder of this section, we suppose
that Assumption $E$ holds for the uncertainty set.
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Uncertainty in the traffic capacity We consider the situation that the traffic capacity $c_{l}$ is
uncertain. Specifically we suppose that $c_{l}$ is expressed as $c_{l}=\overline{c}_{l}+\hat{u}_{l}$ with nominal $\overline{c}_{l}$ and uncertainty
parameter $\hat{u}_{l}\in \mathbb{R}$ .

Then, the link cost and route cost functions can be expressed as

$t_{l}^{\hat{u}_{l}}(y)=a_{l}(1+b_{l}( \frac{M_{l}x}{\overline{c}_{l}+\hat{u}_{l}})^{\nu})$ , (316)

$f_{r}^{\hat{u}^{r}}(x)= \sum_{l\in \mathcal{L}_{r}}a_{l}(1+b_{l}(\frac{M_{l}x}{c_{l}+\hat{u}_{l}})^{\nu})$ , (317)

respectively. Here we assume that $\hat{u}_{l}>-\overline{c}_{l}$ so that the denominator will not be zero.
In order to obtain the SOCCP reformulation, we had to assume that the uncertain link cost

function is expressed as (3.5). However, function $t_{l}^{\hat{u}_{l}}$ in (3.16) cannot be written in the form (3.5) in
a straightforward manner. We therefore introduce an “approximate link cost function” based on the
first-order Taylor expansion as follows:

$t_{l}^{\hat{u}_{l}}(y)$
$:=a_{l}(1+b_{l}( \frac{M_{l}x}{\overline{c}_{l}})^{\nu})-\frac{\iota \text{ノ}a_{l}b_{l}(M_{l}x)^{\nu}}{\overline{c}_{l}^{\nu+1}}\hat{u}_{l}$. (3.18)

Also the approximate route cost function can be expressed as

$f_{r}^{\hat{u}^{r}}(x)$
$:= \sum_{l\in \mathcal{L}_{r}}a_{l}(1+b_{l}(\frac{M_{l}x}{c_{l}})^{\nu})-\sum_{l\in \mathcal{L}_{r}}\frac{\nu a_{l}b_{l}(M_{l}x)^{\nu}}{c_{l}^{\nu+1}}\hat{u}_{l}$. (3.19)

Since the uncertainty parameter $\hat{u}_{l}$ is very small in general, this approximation is reasonable. Now,
let

$\triangle t_{l}(y)=-\frac{\nu a_{l}b_{l}(M_{l}x)^{\nu}}{c_{l}^{\nu+1}}$ .

Then, (3.18) and (3.19) correspond to (3.5) and (3.7), respectively. Thus, we can reformulate the
robust TAP as an SOCCP by using the results of Subsection 3.1.2.

Uncertainty in the free-flow travel time We consider the situation that the free-flow travel time
$a_{l}$ is uncertain. Specifically we suppose that $a_{l}$ is expressed as $a_{l}=\overline{a}_{l}+\hat{u}_{l}$ with nominal value $\overline{a}_{l}$ and
uncertainty parameter $\hat{u}_{l}\in \mathbb{R}$ . Then, the link and route cost functions can be expressed as

$t_{l}^{\hat{u}_{l}}(y)= \overline{a}_{l}(1+b_{l}(\frac{y_{l}}{c_{l}})^{v})+\hat{u}_{l}(1+b_{l}(\frac{y_{l}}{c_{l}})^{\nu})$ , (3.20)

$f_{r}^{\hat{u}^{r}}(x)= \sum_{l\in \mathcal{L}_{r}}\overline{a}_{l}(1+b_{l}(\frac{M_{l}x}{c_{l}})^{\nu})+\sum_{l\in \mathcal{L}_{r}}\hat{u}_{l}(1+(\frac{M_{l^{X}}}{c_{l}})^{v})$ , (3.21)

respectively. Let
$\triangle t_{l}(y):=1+(\frac{M_{l^{X}}}{c_{l}})^{\nu}$

Then (3.20) and (3.21) correspond to (3.5) and (3.7), respectively. Thus, we can reformulate the
robust TAP as an SOCCP by using the results in Subsection 3.2.1.
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4 Numerical experiments
In this section, we introduce two specific traffic models with uncertainty set of various sizes in the
cost functions defined by (3.14) and (3.15). We try to compute robust Wardrop equilibria by using
the SOCCP reformulation approach studied in Section 3.2 and observe their properties. Throughout
this section, we let the uncertainty set $U_{r}(r\in R_{w})$ be given by

$U_{r}:=\{\hat{u}^{r}\in \mathbb{R}^{|E|}|\Vert\hat{u}^{r}\Vert\leq\rho_{w}\}$ , (4.1)

where $\rho_{w}$ is a positive constant for each $w\in W$ . Notice that OD pair is identified for each $r\in R$ .
Also, we consider the case with $\nu=4$ in the cost functions defined by (3.14) and (3.15).

For solving the SOCCPs, we apply the Newton-type method that uses a smoothing technique [12].
All programs are coded in MATLAB $2010a$ and run on a machine with Intel\copyright Core i5 $430M2.27GHz$
CPU and 4.$00GB$ memories.

Relationship between size of uncertainty sets and robust Wardrop equilibria

We consider the traffic model illustrated in Figure 1. Each node denotes an origin, a destination,
and an intersection, and each link denotes a road connecting the nodes. The set of OD pairs is given
by $W$ $:=\{w_{1}, w_{2}\}$ , where $w_{1}=(1arrow 5)$ and $w_{2}=(2arrow 6)$ . The demands for $w_{1}$ and $w_{2}$ are
given by $d_{w_{1}}=d_{w2}=10$ . We suppose that the demands do not depend on $\lambda$ . We give the routes
$r\in R=R_{w_{1}}\cup R_{w2}$ , and the coefficients $a_{l},$ $b_{l}$ , and $c_{l}$ of the link functions (3.14) as shown in Table
1 and 2, respectively. Now we consider the case where only $a_{l}$ is uncertain with uncertainty set $U_{r}$

expressed by (4.1). Therefore, we use (3.20) and (3.21) as the link cost function and the route cost
function with uncertainty, respectively. In this experiment, we vary $\rho_{w_{1}}$ from 0.001 to 5, and fix $\rho_{w_{2}}$

at 0.001, and compute a robust Wardrop equilibrium for each $\rho_{w_{1}}$ . Then, we observe the route flow
$\{x_{r}\}_{r\in R}$ and the minimum cost $\lambda_{w}$ at the obtained equilibria of the robust TAPs.

Table 3 shows the obtained values of $\{x_{r}\}_{r\in R}$ and $\{\lambda_{w}\}_{w\in W}$ at the equilibrium for each $\rho_{w_{1}}$ . From
the table, we can observe that, as $\rho_{w_{1}}$ increases, $x_{r_{1}}$ and $\lambda_{w_{1}}$ get larger, but $x_{r_{2}}$ gets smaller. On the
other hand, as to $w_{2}$ , as $\rho_{w_{1}}$ increases, $x_{r_{4}}$ and $\lambda_{w_{2}}$ get smaller, but $x_{r_{3}}$ gets larger. We can interpret
these results as follows: Let us consider the drivers who belong to the OD pair $w_{1}\in W$ . In Figure 1,
$r_{1}$ has only one link 1, while $r_{2}$ has three links 2, 3 and 4, that is, route $r_{2}$ is more complicated than
$r_{1}$ . In such a situation, drivers may think that more complicated routes involve more uncertainty and
require higher costs than simple routes, and therefore avoid using route $r_{2}$ . Thus the result of this
experiment well reflect such driver $s$ estimation for uncertainty.

Figure 1: The network in section 4

References
[1] Aashtiani, H. Z. and Magnanti, T. L.: Equilibria on a Congested Thransportation Network, SIAM

Joumal on Algebmic and Discrete Methods, Vol. 2 (1981), 213-226.

10



Table 1: Relation of OD pairs, routes and links in Figure 1

Table 2: Coefficients of link cost functions

Table 3: Uncertainty size, obtained route flow and minimum cost $(\rho_{w_{2}}=0.001)$

$\overline{|\rho_{w_{1}}\Vert x_{r_{1}}|x_{r_{2}}|x_{r_{3}}|x_{r_{4}}\Vert\lambda_{w_{1}}|\lambda_{w_{2}}|}$

11



[2] Agdeppa, R. P., Yamashita, N. and Fukushima, M.: The traffic equilibrium problem with non-
additive costs and its monotone mixed complementarity problem formulation, Transportation
Research $B$, Vol. 41 (2007), 862-874.

[3] Averbakh, I. and Zhao, Y. B.: Explicit reformulations for robust optimization problems with
general uncertainty sets, SIAM Joumal on optimization, Vol. lS (2007), 1436-1466.

[4] Beckmann, M., McGuire, C. and Winsten, C.: Studies in the Economics of Tmnsportation, Yale
University Press, 1956.

[5] Ben-Tal, A., Ghaoui, L. E. and Nemirovski, A.: Robust optimization, Princeton Univ Press, 2009.
[6] Ben-Tal, A. and Nemirovski, A.: Robust convex optimization, Mathematics of Opemtions Re-

search, Vol. 23 (1998), 769-805.

[7] Bureau of Public Roads, : Traffic Assignment Manual, U.S. Department of Commerce, Urban
Planning Division, Washington, DC, 1964.

[S] Chen, J. S., Chen, X. and Tseng, P.: Analysis of nonsmooth vector-valued functions associated
with second-order cones, Mathematical Progmmming, Vol. 101 (2004), 95-117.

[9] Facchinei, F. and Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity
Problems, I and II, Springer, 2003.

[10] Fukushima, M., Luo, Z. Q. and Tseng, P.: Smoothing functions for second-order-cone comple-
mentarity problems, SIAM Journal on optimization, Vol. 12 (2002), 436-460.

[11] Gabriel, S. A. and Bernstein, D.: The traffic equilibrium problem with nonadditive path costs,
Tmnsportation Science, Vol. 31 (1997), 337-348.

[12] Hayashi, S., Yamashita, N. and Fukushima, M.: A combined smoothing and regularization method
for monotone second-order cone complementarity problems, SIAM Joumal on optimization,
Vol. 15 (2005), 593-615.

[13] Nishimura, R., Hayashi, S. and Fukushima, M.: SDP reformulation for robust optimization prob-
lems based on nonconvex QP duality, Technical report 2009-014, Department of Applied Mathe-
matics and Physics, Graduate School of Informatics, Kyoto University, 2009.

[14] $Ord6\tilde{n}ez$ , F. and Stier-Moses, N. E.: Robust wardrop equilibrium, Network Control and Opti-
mization, Vol. 4465 (2007), 247-256.

[15] Ord$6\tilde{n}ez$ , F. and Stier-Moses, N. E.: Wardrop Equilibria with Risk-Averse Users, Transportation
Science, Vol. 44 (2010), 63-86.

[16] Pan, S. and Chen, J. S.: A damped Gauss-Newton method for the second-order cone complemen-
tarity problem, Applied Mathematics and optimization, Vol. 59 (2009), 293-318.

[17] Patriksson, M.: Traffic Assignment Pmblems: Models and Methods, V.S.P. Intl Science, 1994.

[18] Sheffi, Y.: Urban Transportation Networks: Equilibnum Analysis with Mathematical Progmm-
ming Methods, Prentice Hall, 1985.

[19] Takahashi, H.: Robust Wardrop equilibria for traffic model with uncertainty, Bachelor Thesis (in
Japanese), Applied Mathematics and Physics Course in the School of Informatics and Mathemat-
ical Science, Faculty of Engineering, Kyoto University, 2010.

[20] Wardrop, J. G.: Some theoretical aspects of road traffic research, Proceedings of Institute of Civil
Engineers Part II, Vol. 1 (1952), 325-378.

[21] Zhang, C., Chen, X. and Sumalee, A.: Robust Wardrop‘s user equilibrium assignment under
stochastic demand and supply: Expected residual minimization approach, Transportation Re-
search $B$, Vol. doi: 10. $1016/j$ .trb.2010.09.008.

12


