Problem session

Masaaki Wada

1 Cone deformation

This is just a remark. Here is one way of understanding cone deformation. Consider the elliptic transformation T of the upper half plane with center λi and angle 2θ . (Fig. 1) We investigate the hyperbolic cone of angle 4θ whose monodromy is given by T^2 .

Figure 1: Rotation T of angle 2θ around λi

The Möbius transformation T is represented by

$$T = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta & \lambda \sin \theta \\ -\lambda^{-1} \sin \theta & \cos \theta \end{pmatrix}.$$

We impose the following assumption.

$$T(0) = \lambda \tan \theta = 1$$

Thus, λ and θ are functions of each other. We then obtain

$$T = \begin{pmatrix} \cos \theta & \cos \theta \\ -\frac{\sin \theta}{\cos^2 \theta} & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \cos \theta \\ \cos \theta - \frac{1}{\cos \theta} & \cos \theta \end{pmatrix},$$

and

$$T^2 = \left(\begin{array}{ccc} 2\cos^2\theta - 1 & 2\cos^2\theta \\ 2\cos^2\theta - 2 & 2\cos^2\theta - 1 \end{array}\right) = \left(\begin{array}{ccc} \cos 2\theta & \cos 2\theta + 1 \\ \cos 2\theta - 1 & \cos 2\theta \end{array}\right).$$

The following table illustrates the various limiting situations. Here, we denote $c = \cos \theta$ and $c' = \cos 2\theta$.

θ	$\cos \theta$	T	T^2	
0	1	$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$	T ² -1 1
θ	С	$\left(\begin{array}{cc} c & c \\ c - \frac{1}{c} & c \end{array}\right)$	$\left(\begin{array}{ccc}c'&c'+1\\c'-1&c'\end{array}\right)$	-101
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right)$	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	
$\frac{\pi}{2}$	0	-	$\left(\begin{array}{cc} -1 & 0 \\ -2 & -1 \end{array}\right)$	-1 0 1