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Matrix inequalities including Furuta inequality
via Riemannian mean of n-matrices
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Abstract

In this report, we shall obtain a generalization of Furuta inequality via weighted
Riemannian mean, a kind of geometric mean, of n-matrices. This result is related to
Yamazaki’s recent results which is a kind of generalizations of Ando-Hiai inequality
and Furuta inequality for chaotic order.

1 Introduction

The weighted geometric mean of two positive definite matrices A and B defined by
Afy B = A3(A7 BA7)*A% for o € [0,1]. In particular, we call A t1 B (denoted by
At B simply) the geometric mean of A and B. The weighted geometric mean sometimes
appears in famous matrix inequalities, for example, Furuta inequality [10] (see also [6,
11, 13, 17, 20]) and Ando-Hiai inequality [1]. We remark that these inequalities hold even
in the case of bounded linear operators on a complex Hilbert space. In what follows, we
denote A > 0 if A is a positive semidefinite matrix (or operator), and we denote A > 0
if A is a positive definite matrix (or operator).

Theorem 1.A (Satellite form of Furuta inequality {10, 17]).

A>B>0 with A>0 implies A”’"tt%rB”SBSA forp>1andr > 0.
p+r

Theorem 1.B (Ando-Hiai inequality [1]). For A, B > 0,
At B<I forae(0,1) implies A"H,B" <1 forr>1.
For A, B > 0, it is well known that chaotic order log A > log B is weaker than usual

order A > B since logt is a matrix (or operator) monotone function. The following
result is known as the Furuta inequality for chaotic order.

Theorem 1.C (Furuta inequality for chaotic order [7, 12]). Let A,B > 0. Then the
following assertions are mutually equivalent;
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(i) log A > log B,
(ii) AP$BP < I forallp>0,
(iii) A" ﬁ# BP<I forallp>0andr>0.

It has been a longstanding problem to extend the (weighted) geometric mean for three
or more positive definite matrices. Many authors attempt to find a natural extension,
for example, Ando-Li-Mathias’ mean and its refinement [2, 5, 15, 16] and Riemannian
mean (or the least squares mean) [4, 18, 19]. We remark that Ando-Li-Mathias [2]
originally proposed the following ten properties (P1)—(P10) which should be required for
a reasonable geometric mean & of positive definite matrices. We note that, in [2], they
require continuity from above as (P5).

Let P, (C) be the set of m x m positive definite matrices on C. Let A;, A, B; € P,(C)
fori=1,...,n and let w = (wy,...,w,) be a probability vector. Then

(P1) Consistency with scalars. If A,,..., A, commute with each other, then

S(w; Ay, ..., A,) = AT .. AP,

(P2) Joint homogeneity. For positive numbers a; >0 (i = 1,...n),

B(w;a14;,...,anAn) =} ... a2 G(w; Ay, . .., Ap).

(P3) Permutation invariance. For any permutation 7 on {1,...n},
B(w; Ay, ..., An) = &(1(w); Arq)s - - - Ar(n))s
where 7(w) = (Wr(1), "+ » Wa(n))-
(P4) Monotonicity. If B; < A; for each i = 1,...n, then

S(w; By, ..., By) < B(w; Ay, ..., Ap).

(P5) Continuity. For eachi = 1,...n, let {4}, be positive definite matrix sequences
such that Agk) — A; as k — oo. Then

B (w; Agk),...,Ag”)) — &(w; Ag, ..., An) as k— oo.

(P6) Congruence invariance. For any invertible matrix 5,

B(w; S*A1S, ..., 5" AnS) = S*B(w; Ay, ..., An)S.



(P7) Joint concavity.
B(w; A + (1 - NAL, .., M, + (1= N)4)
> AB(w; Ay, Ar) + (1= N)B(w; A, ..., AL) for0< A< 1.

(P8) Self-duality. &(w;A7,...,A-D1 = B(w; Ay,...,A,).
1 n

(P9) Determinant identity. det ®(w; Ay, ..., 4,) = H(det A

i=1

(P10) The arithmetic-geometric-harmonic mean inequality.
n -1 n
(Z wiAi‘l) < B(w;Ay,... A, < ZwiA,
i=1 i=1

For A B € P,.(C), Riemannian metric between A and B is defined as §5(A, B) =
| log A% BA?T ||, where |X|l2 = (tr X*X)2 (details are in [3]). By using Riemannian
metric, Riemannian mean is defined as follows:

Definition 1 ([3, 4, 18, 19]). Let Ai,..., A, € Py(C) and w = (wy, ... ,Wy) be a prob-
ability vector. Then weighted Riemannian mean &s(w; Ay, ..., A,) € P,.(C) is defined
by

Gs(w; Ay, ..., A,) = arg manwlé2 A, X),
XePm(C)

where arg min f(X) means the point X, which attazns minimum value of the function
f(X). In particular, we call &5(w; Ay, ..., A,) (denoted by &s(A1,. .., Ayn) simply) Rie-

mannian mean if w = (,...,1).

We remark that &s(w; A, B) = Afl, B for a € [0,1] and w = (1 — o, a) since the
property 83(A, A §, B) = ads(A, B) holds.

It is shown in [3, 4, 18, 19] that weighted Riemannian mean satisfies (P1)~(P10) (see
also [21]). We remark that Riemannian mean has a stronger property (P5’) than (P5).

(P5’) Non-expansive.

62(8s(w; As, ..., Ap), B5(w; By,. .., By)) < Zwiéz(Au B;).

Very recently, Yamazaki [21] has obtained an excellent generalization of Theorems
1.B and 1.C via weighted Riemannian mean ®; of n-matrices. We recall that w =
(w1, ..., wy) is a probability vector if the components satisfy Yo, w; =1and w; > 0 for
t=1,...,n
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Theorem 1.D ([21]). Let Ay,...,An € Pn(C) and w = (wy,...,w,) be a probability
vector. Then

Bs(w; Ar, ..., A) < T implies Gs(w; AY,...,AP) < T forp>1.

Theorem 1.E ([21]). Let A;,..., A, € P,(C). Then the following assertions are mu-
tually equivalent;

(i) logA; +---+1log A, <0,
(i) B5(A7,...,AR) < I forallp >0,

(i) Bs(w; AL, ..., AP) < I for allpy,...,p, >0, where py; = Hj#ipj and
W= ( D#1 DP#n )
Db DD

Theorems 1.D and 1.E imply Theorems 1.B and 1.C, respectively, since &5(w; A, B) =
Al B for w = (1 — o, ). Moreover, it has been shown in [21] that Theorem 1.D does
not hold for other geometric means satisfying (P1)-(P10).

In this report, corresponding to Theorem 1.E, we shall obtain a generalization of Fu-
ruta inequality (Theorem 1.A) via weighted Riemannian mean of n-matrices. Moreover
we shall show an extension of Theorem 1.D.

2 Results

Firstly, we show an extension of Theorem 1.D. Theorem 1.D follows from Theorem
2.1 by putting py =--- =pp, =p.

Theorem 2.1. Let A, ..., A, € Bh(C) and w = (wy, ..., wy) be a probability vector. If
Bs(w; Ay, ..., A,) <1, then

66((‘),; Azl’l,' . 7Afzn) < Qj5((");-’41, o ,An) < I forpla' «+sDn > 1;

where ' = (33,...,%2) and W’ = !IE’le
We remark that || - ||; means 1-norm, that is, ||z|j; = 3, |z:] for z = (z1,...,%,). In

order to prove Theorem 2.1, we use the following results.



Theorem 2.A ([18, 19]). Let Ai,..., An € Pp(C) and w = (wy, ..., w,) be a probability
vector. Then X = Bs(w;Ay,...,A,) is the unique positive solution of the following
matriz equation:

wilog X7 A X7 4+t w,log X7 A, XT =0.

Theorem 2.B ([21]). Let Ai,..., A, € P,(C) and w = (wy,...,w,) be a probability
vector. Then

wilog Ay +---+wplogA, <0 implies  Gs(w; A4y,...,A,) < I

Proof of Theorem 2.1. Let X = B;(w; Ai,...,A,) < I. Then for each py,...,p, € [1,2],
by Theorem 2.A and Hansen’s inequality [14],

1 1 1 1 Wy 1 1
0= — w; logXiAi‘lXE = — =2 log(XEA."lXi)pi
R o :
S Yog XA xE,
flw']|1 i

that is, Z “ 2 log X_TlAf"X;?l' < 0. By applying Theorem 2.B,

Wl1
@(d;XﬁlAmX%l,. XTARXT)< ]
where o' = (%, .y 22) and W' = e ,“ . Therefore we have that
X <1 implies &s(w';AY,...,AP") < X < T forpy,...,pn €[1,2). (2.1)

Put Y = &,(w’; AT",..., AP2») < I. Then by (2.1), we get
Bs(w"; ATP AP <Y <X <

. Therefore, by putting

for pi,...,p,, € [1,2], where w” = (p’f;,l,...,pp )} and " =

¢ = pip, for i = 1,...,n, we have that

[z ”||

X <1 implies &s(w";A,...,A?) <X < forqy,...,qn € [1,4], (2.2)
where W = (%, ..., %2) and " = Tllaj?flllx
By repeating the same way from (2.1) to (2.2), we have the conclusion. O

Theorem 2.1 also implies generalized Ando-Hiai inequality [9] since &;(w; A, B) =
l-a a o)s
A ﬁa B for w = (1 -G, Oz) and o' = ('1_:—;:_,17 E_ai—g) ((1(1a)s—)+~ar7 1- a)s+ar) :




24

Theorem 2.C (Generalized Ando-Hiai inequality [9]). Let A,B > 0. If A}, B< I for
a € (0,1), then

ArﬂﬁmesgAﬁaBSI fors>1andr > 1.

The following Theorem 2.2 is a variant from Theorem 2.1.

Theorem 2.2. Let Ay,...,An € Pyn(C) and w = (wy,...,w,) be a probability vector.
Foreachi=1,...,n and g € R, if

Bs(w; AT, .. AP AR < A] forpy,...,pn € R with p; > g,

then
1. AD1 Pi-1 A Pi+1 p
65((«0,.’41,..., ’i—l’Aiz’Ai-Fl’""A’n")
. AP1 Pi-1 pi Pi+1 p
S 66(w,A1 ger ey it—l’A'i"Aill""7Ann)
< A7
-~ - "
for p; > p;, where ' = (ws,...,w;—1, %,:_ﬁwi,wﬂl, ceWy) and W' = ”5’,”1.

Proof. We may assume 7 = 1 by permutation invariance of &;.
For pi,...,pn € R with p; > q, Bs(w; AP, AD?, ..., AP~) < A? if and only if

Bs(w; AP AF ARAZ . AT A AT Y < I.
By applying Theorem 2.1,
Bs(w; AT AT AP AT AZ AP AT)
< By(w; AU AT ADAZ AR AP AT)
<I,

holds for %’i:—g > 1, where &' = (g,i—:%wl, Wa, ..., W,). Therefore
pl n . n
Bs(w' AT AR, .. AP < Bs(w; AT, A2, L., APR) < A

holds for p} > p;. O

Next, we show our main result. The following Theorem 2.3 is a generalization of
Theorem 1.A, and also a parallel result to (i) = (iii) in Theorem 1.E.



Theorem 2.3. Let A;,...,A, € P(C) and wy, ..., w, > 0. If

Al > A > 0 (2.3)
and w o o
L _logA,? APLALE 4 ...
Tl log Ant APt A 4 - log Abr=in < ()
Prn-1—Qn-1 Pn —dn

hold for g; e R, p; > q; andi =1,...,n, then

Bs(ws AT, .. AP) < Bs(w; AP, ..., AP < AT forallp, > p; andi=1,...,n,

-~ ~ >
here o = ( -, ..., -¥n W= . ¥ w= 2 and W' = 44—,
wnere w pi—q1’® ' Pn—gn )’ P—q1’ ' ol —qn )’ @] o |[1

Proof. Applying Theorem 2.B to (2.4), we have
ﬁa(C’J;AigﬂA’l’lA%,...,A;gﬂAfL"_‘llA;_gﬂ,Aﬁn—qn) <1,

so that by (2.3),

Xo = Gs(w; AT, .. AP AP) < AT < AR, (2.5)

By applying Theorem 2.2 to (2.5) and by (2.3),
Xy = Bs(wn; AT AR, AP) < Xo < AT < AP (2.6)
for p§ > p1, where ©; = (p’:ilql’ pzw_zqz ey p:d_"qn> and w; = ”gf”l. By applying Theorem

2.2 to (2.6) and by (2.3),

X = ®j(wp; AT, AT2 AP APY) < X < X < AT < AT

/ ’ ~ wy wo w3 Wn, = W2
for py 2 p1 and p; > p,, where & = (p’l—ql’ Ph—g2’ p3—gs’ """’ pn—qn) and wp = i By

repeating this argument, we can get

Xo = @5 A, AP < Xy < Xo < AT

for p, > p; fori=1,...,n, where o/ =&, = (p,lufql,...,p,;”_"qn). O

Remark. (i) in Theorem 1.E, that is, log A; + - - - 4+ log A, < 0 holds if and only if

pilogA{’1+---+ilogAﬁ" <0 foreveryp;>0andi=1,...,n.
1

n
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Therefore we recognize that Theorem 2.3 implies (i) = (iii) in Theorem 1.E by putting
G=-=¢q,=0and w; =---=w, =1 since

1
P _ pi = P fori=1,...,n
oh ~ I+ + &~ T,ra C

o~ 1 1
_ v p1 Pn _ ( D#1 D+#n )
ensures W = - = TR >~ = .
&1y (leh ’ llel) YiPr X

It is well known that we have a variant from Theorem 1.A by replacing A, B with
A? B? and p,r with %,(—’; in Theorem 1.A respectively.

Theorem 2.D ([8]). Let A>0, B>0 and q > 0. Then
A?> B? implies A7 !ig? BP<B?<A? forp>qandr>0.
p+r
Here we show that Theorem 2.3 is a generalization of Furuta inequality via weighted

Riemannian mean of n-matrices. Precisely, we show that Theorem 2.3 ensures the fol-
lowing Theorem 2.4 and Theorem 2.4 is a generalization of Theorem 2.D.

Theorem 2.4. Let A;,...,A, € P,(C) and ¢ > 0. Then A} > A% > 0 fori =
1,...,n— 1 implies '

Bs(w; AP, ..., AP, APn) < AT < Al (2.7)
forallp; >0,i=1,...,n—1 and p, > q, where & = (ml_*_q,...,m,%> and
w= 2

&l *

Proof. Assume that A7 > A2 > 0forg>0and¢=1,...,n— 1. Then A7 > A2 >

0 implies log A; > log A,. By (i) = (iii) in Theorem 1.C, log A; > log A, implies

AP ﬁ—i“ A < I for all p; > 0. This is equivalent to A9 ﬁ;f,,— AP > I, that is,
qTP; ]

(A2 AP A3)%% > A4. By taking logarith have —L_log A2 AP A3 > —L_1log APn—9
A A AR)P+e > Al By taking logarithm, we have ———log Az 4" Ar > = log A7"7¢,
that is,
1 = =g 1
log A2 (A;YHPiAZ +
pitq A (A Pn—4q

forallp; >0,i=1,...,n—1 and p, > ¢. Summing up (2.8) fori=1,...,n—1, we
have

log AP~ < 0 (2.8)

log A7 (AT A7 + -

— (2.9)

Ptq
+ logAy?q(A,ﬂl)p""lA;zg +

_— log AP»~9 < Q.
Pr-1+4¢ Pn—4q €



By applying Theorem 2.3 to (A;!)~9 > A2 > 0 and (2.9), we can obtain
®s(w; AT™, ..., AT, AB) < AL < AS

forallp, >0> —¢q,i=1,...,n—1and p, > q. O

Proof of Theorem 2.D. Put n = 2, p; = r and p; = p in Theorem 2.4. Then & =

S — [P=9 g+r . .
(r vt q) and w = (p T +r). Therefore we obtain the desired result. O

3 3-matrices case
In this section, for the sake of readers’ convenience, we state 3-matrices case of
Theorems 2.3 and 2.4.
Corollary 3.1. Let A, B,C € P,(C) and wy, wy, w3 > 0. If
AN 2 B > 07 B% 2 B > 0’

and

Wo W3

! 10g C;;&Aplc%i + log C’:'zi;'%'Bp?C*7_2’.1:i + IOgC’_—;}CZBC%ﬂ <0

Pr—q P2 —q P3—@qs
hold for g; e R, p; > ¢; andi=1,2,3, then

®s(w'; AP, BP2, CP5) < B(w; AP, B2, OF?) < C%

/ . . ~ __ wy wa ws o wy wo w3
for allpz- 2 p; andi=1,2,3, where & = (m—qx’ p2~q2’p3~qa)’ W= (p’l—ql’P’z—qz’Pé—qs)’

/

Corollary 3.2, Let A,B,C € P,(C) and ¢ > 0. Then A7 >C?>0and B> C?>0
tmplies
Gs(w; A7, B7%,CP) < C? < A? (or BY)

~_ (1 1 2 _ @
fo'rr20,320andp>q,wherew-—(m,m,pfq)andw—”all.
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