Matrix inequalities including Furuta inequality via Riemannian mean of *n*-matrices

前橋工科大学 伊藤 公智 (Masatoshi Ito) Maebashi Institute of Technology

Abstract

In this report, we shall obtain a generalization of Furuta inequality via weighted Riemannian mean, a kind of geometric mean, of *n*-matrices. This result is related to Yamazaki's recent results which is a kind of generalizations of Ando-Hiai inequality and Furuta inequality for chaotic order.

1 Introduction

The weighted geometric mean of two positive definite matrices A and B defined by $A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} A^{\frac{1}{2}}$ for $\alpha \in [0,1]$. In particular, we call $A \sharp_{\frac{1}{2}} B$ (denoted by $A \sharp B$ simply) the geometric mean of A and B. The weighted geometric mean sometimes appears in famous matrix inequalities, for example, Furuta inequality [10] (see also [6, 11, 13, 17, 20]) and Ando-Hiai inequality [1]. We remark that these inequalities hold even in the case of bounded linear operators on a complex Hilbert space. In what follows, we denote $A \geq 0$ if A is a positive semidefinite matrix (or operator), and we denote A > 0 if A is a positive definite matrix (or operator).

Theorem 1.A (Satellite form of Furuta inequality [10, 17]).

$$A \geq B \geq 0$$
 with $A > 0$ implies $A^{-r} \sharp_{\frac{1+r}{n+r}} B^p \leq B \leq A$ for $p \geq 1$ and $r \geq 0$.

Theorem 1.B (Ando-Hiai inequality [1]). For A, B > 0,

$$A \sharp_{\alpha} B \leq I \text{ for } \alpha \in (0,1) \text{ implies } A^r \sharp_{\alpha} B^r \leq I \text{ for } r \geq 1.$$

For A, B > 0, it is well known that chaotic order $\log A \ge \log B$ is weaker than usual order $A \ge B$ since $\log t$ is a matrix (or operator) monotone function. The following result is known as the Furuta inequality for chaotic order.

Theorem 1.C (Furuta inequality for chaotic order [7, 12]). Let A, B > 0. Then the following assertions are mutually equivalent;

- (i) $\log A \ge \log B$,
- (ii) $A^{-p} \sharp B^p \leq I$ for all $p \geq 0$,
- (iii) $A^{-r} \sharp_{\frac{r}{p+r}} B^p \leq I$ for all $p \geq 0$ and $r \geq 0$.

It has been a longstanding problem to extend the (weighted) geometric mean for three or more positive definite matrices. Many authors attempt to find a natural extension, for example, Ando-Li-Mathias' mean and its refinement [2, 5, 15, 16] and Riemannian mean (or the least squares mean) [4, 18, 19]. We remark that Ando-Li-Mathias [2] originally proposed the following ten properties (P1)–(P10) which should be required for a reasonable geometric mean \mathfrak{G} of positive definite matrices. We note that, in [2], they require continuity from above as (P5).

Let $P_m(\mathbb{C})$ be the set of $m \times m$ positive definite matrices on \mathbb{C} . Let $A_i, A_i', B_i \in P_m(\mathbb{C})$ for $i = 1, \ldots, n$ and let $\omega = (w_1, \ldots, w_n)$ be a probability vector. Then

(P1) Consistency with scalars. If A_1, \ldots, A_n commute with each other, then

$$\mathfrak{G}(\omega; A_1, \ldots, A_n) = A_1^{w_1} \ldots A_n^{w_n}.$$

(P2) Joint homogeneity. For positive numbers $a_i > 0$ (i = 1, ... n),

$$\mathfrak{G}(\omega; a_1 A_1, \ldots, a_n A_n) = a_1^{w_1} \ldots a_n^{w_n} \mathfrak{G}(\omega; A_1, \ldots, A_n).$$

(P3) Permutation invariance. For any permutation π on $\{1, \ldots n\}$,

$$\mathfrak{G}(\omega; A_1, \ldots, A_n) = \mathfrak{G}(\pi(\omega); A_{\pi(1)}, \ldots, A_{\pi(n)}),$$

where $\pi(\omega) = (w_{\pi(1)}, \dots, w_{\pi(n)}).$

(P4) Monotonicity. If $B_i \leq A_i$ for each i = 1, ... n, then

$$\mathfrak{G}(\omega; B_1, \ldots, B_n) \leq \mathfrak{G}(\omega; A_1, \ldots, A_n).$$

(P5) Continuity. For each $i=1,\ldots n,$ let $\{A_i^{(k)}\}_{k=1}^{\infty}$ be positive definite matrix sequences such that $A_i^{(k)}\to A_i$ as $k\to\infty$. Then

$$\mathfrak{G}(\omega; A_1^{(k)}, \dots, A_n^{(k)}) \to \mathfrak{G}(\omega; A_1, \dots, A_n)$$
 as $k \to \infty$.

(P6) Congruence invariance. For any invertible matrix S,

$$\mathfrak{G}(\omega; S^*A_1S, \dots, S^*A_nS) = S^*\mathfrak{G}(\omega; A_1, \dots, A_n)S.$$

(P7) Joint concavity.

$$\mathfrak{G}(\omega; \lambda A_1 + (1 - \lambda) A_1', \dots, \lambda A_n + (1 - \lambda) A_n')$$

$$\geq \lambda \mathfrak{G}(\omega; A_1, \dots, A_n) + (1 - \lambda) \mathfrak{G}(\omega; A_1', \dots, A_n') \quad \text{for } 0 \leq \lambda \leq 1.$$

- (P8) Self-duality. $\mathfrak{G}(\omega; A_1^{-1}, \dots, A_n^{-1})^{-1} = \mathfrak{G}(\omega; A_1, \dots, A_n).$
- (P9) Determinant identity. $\det \mathfrak{G}(\omega; A_1, \ldots, A_n) = \prod_{i=1}^n (\det A_i)^{w_i}$.
- (P10) The arithmetic-geometric-harmonic mean inequality.

$$\left(\sum_{i=1}^n w_i A_i^{-1}\right)^{-1} \leq \mathfrak{G}(\omega; A_1, \dots, A_n) \leq \sum_{i=1}^n w_i A_i.$$

For $A, B \in P_m(\mathbb{C})$, Riemannian metric between A and B is defined as $\delta_2(A, B) = \|\log A^{\frac{-1}{2}}BA^{\frac{-1}{2}}\|_2$, where $\|X\|_2 = (\operatorname{tr} X^*X)^{\frac{1}{2}}$ (details are in [3]). By using Riemannian metric, Riemannian mean is defined as follows:

Definition 1 ([3, 4, 18, 19]). Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. Then weighted Riemannian mean $\mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n) \in P_m(\mathbb{C})$ is defined by

$$\mathfrak{G}_{\delta}(\omega; A_1, \dots, A_n) = \underset{X \in P_m(\mathbf{C})}{\operatorname{arg min}} \sum_{i=1}^n w_i \delta_2^2(A_i, X),$$

where arg min f(X) means the point X_0 which attains minimum value of the function f(X). In particular, we call $\mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n)$ (denoted by $\mathfrak{G}_{\delta}(A_1, \ldots, A_n)$ simply) Riemannian mean if $\omega = (\frac{1}{n}, \ldots, \frac{1}{n})$.

We remark that $\mathfrak{G}_{\delta}(\omega; A, B) = A \sharp_{\alpha} B$ for $\alpha \in [0, 1]$ and $\omega = (1 - \alpha, \alpha)$ since the property $\delta_2(A, A \sharp_{\alpha} B) = \alpha \delta_2(A, B)$ holds.

It is shown in [3, 4, 18, 19] that weighted Riemannian mean satisfies (P1)-(P10) (see also [21]). We remark that Riemannian mean has a stronger property (P5') than (P5).

(P5') Non-expansive.

$$\delta_2(\mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n), \mathfrak{G}_{\delta}(\omega; B_1, \ldots, B_n)) \leq \sum_{i=1}^n w_i \delta_2(A_i, B_i).$$

Very recently, Yamazaki [21] has obtained an excellent generalization of Theorems 1.B and 1.C via weighted Riemannian mean \mathfrak{G}_{δ} of *n*-matrices. We recall that $\omega = (w_1, \ldots, w_n)$ is a probability vector if the components satisfy $\sum_i w_i = 1$ and $w_i > 0$ for $i = 1, \ldots, n$.

Theorem 1.D ([21]). Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. Then

$$\mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n) \leq I$$
 implies $\mathfrak{G}_{\delta}(\omega; A_1^p, \ldots, A_n^p) \leq I$ for $p \geq 1$.

Theorem 1.E ([21]). Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$. Then the following assertions are mutually equivalent;

- (i) $\log A_1 + \cdots + \log A_n \leq 0$,
- (ii) $\mathfrak{G}_{\delta}(A_1^p,\ldots,A_n^p) \leq I$ for all p > 0,
- (iii) $\mathfrak{G}_{\delta}(\omega; A_1^{p_1}, \dots, A_n^{p_n}) \leq I$ for all $p_1, \dots, p_n > 0$, where $p_{\neq i} = \prod_{j \neq i} p_j$ and $\omega = \left(\frac{p_{\neq 1}}{\sum_i p_{\neq i}}, \dots, \frac{p_{\neq n}}{\sum_i p_{\neq i}}\right)$.

Theorems 1.D and 1.E imply Theorems 1.B and 1.C, respectively, since $\mathfrak{G}_{\delta}(\omega; A, B) = A \sharp_{\alpha} B$ for $\omega = (1 - \alpha, \alpha)$. Moreover, it has been shown in [21] that Theorem 1.D does not hold for other geometric means satisfying (P1)–(P10).

In this report, corresponding to Theorem 1.E, we shall obtain a generalization of Furuta inequality (Theorem 1.A) via weighted Riemannian mean of n-matrices. Moreover we shall show an extension of Theorem 1.D.

2 Results

Firstly, we show an extension of Theorem 1.D. Theorem 1.D follows from Theorem 2.1 by putting $p_1 = \cdots = p_n = p$.

Theorem 2.1. Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. If $\mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n) \leq I$, then

$$\mathfrak{G}_{\delta}(\omega'; A_1^{p_1}, \ldots, A_n^{p_n}) \leq \mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n) \leq I \quad \text{for } p_1, \ldots, p_n \geq 1,$$

where
$$\widehat{\omega'} = (\frac{w_1}{p_1}, \dots, \frac{w_n}{p_n})$$
 and $\omega' = \frac{\widehat{\omega'}}{\|\widehat{\omega'}\|_1}$.

We remark that $\|\cdot\|_1$ means 1-norm, that is, $\|x\|_1 = \sum_i |x_i|$ for $x = (x_1, \dots, x_n)$. In order to prove Theorem 2.1, we use the following results.

Theorem 2.A ([18, 19]). Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. Then $X = \mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n)$ is the unique positive solution of the following matrix equation:

$$w_1 \log X^{\frac{-1}{2}} A_1 X^{\frac{-1}{2}} + \dots + w_n \log X^{\frac{-1}{2}} A_n X^{\frac{-1}{2}} = 0.$$

Theorem 2.B ([21]). Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. Then

$$w_1 \log A_1 + \dots + w_n \log A_n \leq 0$$
 implies $\mathfrak{G}_{\delta}(\omega; A_1, \dots, A_n) \leq I$.

Proof of Theorem 2.1. Let $X = \mathfrak{G}_{\delta}(\omega; A_1, \ldots, A_n) \leq I$. Then for each $p_1, \ldots, p_n \in [1, 2]$, by Theorem 2.A and Hansen's inequality [14],

$$0 = \frac{1}{\|\widehat{\omega}'\|_{1}} \sum w_{i} \log X^{\frac{1}{2}} A_{i}^{-1} X^{\frac{1}{2}} = \frac{1}{\|\widehat{\omega}'\|_{1}} \sum \frac{w_{i}}{p_{i}} \log (X^{\frac{1}{2}} A_{i}^{-1} X^{\frac{1}{2}})^{p_{i}}$$

$$\leq \frac{1}{\|\widehat{\omega}'\|_{1}} \sum \frac{w_{i}}{p_{i}} \log X^{\frac{1}{2}} A_{i}^{-p_{i}} X^{\frac{1}{2}},$$

that is, $\sum \frac{\frac{w_i}{p_i}}{\|\widehat{\omega}'\|_1} \log X^{\frac{-1}{2}} A_i^{p_i} X^{\frac{-1}{2}} \leq 0$. By applying Theorem 2.B,

$$\mathfrak{G}_{\delta}(\omega'; X^{\frac{-1}{2}} A_1^{p_1} X^{\frac{-1}{2}}, \dots, X^{\frac{-1}{2}} A_n^{p_n} X^{\frac{-1}{2}}) \leq I$$

where $\widehat{\omega'} = (\frac{w_1}{p_1}, \dots, \frac{w_n}{p_n})$ and $\omega' = \frac{\widehat{\omega'}}{\|\widehat{\omega'}\|_1}$. Therefore we have that

$$X \le I$$
 implies $\mathfrak{G}_{\delta}(\omega'; A_1^{p_1}, \dots, A_n^{p_n}) \le X \le I$ for $p_1, \dots, p_n \in [1, 2]$. (2.1)

Put $Y = \mathfrak{G}_{\delta}(\omega'; A_1^{p_1}, \dots, A_n^{p_n}) \leq I$. Then by (2.1), we get

$$\mathfrak{G}_{\delta}(\omega''; A_1^{p_1 p_1'}, \dots, A_n^{p_n p_n'}) \le Y \le X \le I$$

for $p'_1, \ldots, p'_n \in [1, 2]$, where $\widehat{\omega''} = (\frac{w_1}{p_1 p'_1}, \ldots, \frac{w_n}{p_n p'_n})$ and $\omega'' = \frac{\widehat{\omega''}}{\|\widehat{\omega''}\|_1}$. Therefore, by putting $q_i = p_i p'_i$ for $i = 1, \ldots, n$, we have that

$$X \leq I$$
 implies $\mathfrak{G}_{\delta}(\omega''; A_1^{q_1}, \dots, A_n^{q_n}) \leq X \leq I$ for $q_1, \dots, q_n \in [1, 4],$ (2.2)

where $\widehat{\omega''} = (\frac{w_1}{q_1}, \dots, \frac{w_n}{q_n})$ and $\omega'' = \frac{\widehat{\omega''}}{\|\widehat{\omega''}\|_1}$.

By repeating the same way from (2.1) to (2.2), we have the conclusion.

Theorem 2.1 also implies generalized Ando-Hiai inequality [9] since $\mathfrak{G}_{\delta}(\omega; A, B) = A \sharp_{\alpha} B$ for $\omega = (1 - \alpha, \alpha)$ and $\omega' = \left(\frac{\frac{1 - \alpha}{r}}{\frac{1 - \alpha}{r} + \frac{\alpha}{s}}, \frac{\frac{\alpha}{s}}{\frac{1 - \alpha}{r} + \frac{\alpha}{s}}\right) = \left(\frac{(1 - \alpha)s}{(1 - \alpha)s + \alpha r}, \frac{\alpha r}{(1 - \alpha)s + \alpha r}\right)$.

Theorem 2.C (Generalized Ando-Hiai inequality [9]). Let A, B > 0. If $A \sharp_{\alpha} B \leq I$ for $\alpha \in (0,1)$, then

$$A^r \sharp_{\frac{\alpha r}{(1-\alpha)s+\alpha r}} B^s \leq A \sharp_{\alpha} B \leq I \text{ for } s \geq 1 \text{ and } r \geq 1.$$

The following Theorem 2.2 is a variant from Theorem 2.1.

Theorem 2.2. Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $\omega = (w_1, \ldots, w_n)$ be a probability vector. For each $i = 1, \ldots, n$ and $q \in \mathbb{R}$, if

$$\mathfrak{G}_{\delta}(\omega; A_1^{p_1}, \ldots, A_i^{p_i}, \ldots, A_n^{p_n}) \leq A_i^q \quad \text{for } p_1, \ldots, p_n \in \mathbb{R} \text{ with } p_i > q$$

then

$$egin{aligned} \mathfrak{G}_{\delta}(\omega';A_{1}^{p_{1}},\ldots,A_{i-1}^{p_{i-1}},A_{i}^{p_{i}},A_{i+1}^{p_{i+1}},\ldots,A_{n}^{p_{n}}) \ &\leq \mathfrak{G}_{\delta}(\omega;A_{1}^{p_{1}},\ldots,A_{i-1}^{p_{i-1}},A_{i}^{p_{i}},A_{i+1}^{p_{i+1}},\ldots,A_{n}^{p_{n}}) \ &\leq A_{i}^{q} \end{aligned}$$

for $p_i' \geq p_i$, where $\widehat{\omega}' = (w_1, \dots, w_{i-1}, \frac{p_i - q}{p_i' - q} w_i, w_{i+1}, \dots, w_n)$ and $\omega' = \frac{\widehat{\omega}'}{\|\widehat{\omega}'\|_1}$.

Proof. We may assume i = 1 by permutation invariance of \mathfrak{G}_{δ} .

For $p_1, \ldots, p_n \in \mathbb{R}$ with $p_1 \geq q$, $\mathfrak{G}_{\delta}(\omega; A_1^{p_1}, A_2^{p_2}, \ldots, A_n^{p_n}) \leq A_1^q$ if and only if

$$\mathfrak{G}_{\delta}(\omega; A_1^{p_1-q}, A_1^{-\frac{q}{2}} A_2^{p_2} A_1^{-\frac{q}{2}}, \dots, A_1^{-\frac{q}{2}} A_n^{p_n} A_1^{-\frac{q}{2}}) \leq I.$$

By applying Theorem 2.1,

$$\begin{split} \mathfrak{G}_{\delta}(\omega'; A_{1}^{p'_{1}-q}, A_{1}^{\frac{-q}{2}} A_{2}^{p_{2}} A_{1}^{\frac{-q}{2}}, \dots, A_{1}^{\frac{-q}{2}} A_{n}^{p_{n}} A_{1}^{\frac{-q}{2}}) \\ &\leq \mathfrak{G}_{\delta}(\omega; A_{1}^{p_{1}-q}, A_{1}^{\frac{-q}{2}} A_{2}^{p_{2}} A_{1}^{\frac{-q}{2}}, \dots, A_{1}^{\frac{-q}{2}} A_{n}^{p_{n}} A_{1}^{\frac{-q}{2}}) \\ &\leq I, \end{split}$$

holds for $\frac{p_1'-q}{p_1-q} \geq 1$, where $\widehat{\omega}' = (\frac{p_1-q}{p_1'-q}w_1, w_2, \dots, w_n)$. Therefore

$$\mathfrak{G}_{\delta}(\omega'; A_1^{p'_1}, A_2^{p_2}, \dots, A_n^{p_n}) \leq \mathfrak{G}_{\delta}(\omega; A_1^{p_1}, A_2^{p_2}, \dots, A_n^{p_n}) \leq A_1^q$$

holds for $p_1' \geq p_1$.

Next, we show our main result. The following Theorem 2.3 is a generalization of Theorem 1.A, and also a parallel result to (i) \Longrightarrow (iii) in Theorem 1.E.

Theorem 2.3. Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and $w_1, \ldots, w_n > 0$. If

$$A_i^{q_i} \ge A_n^{q_n} > 0 \tag{2.3}$$

and

$$\frac{w_1}{p_1 - q_1} \log A_n^{\frac{-q_n}{2}} A_1^{p_1} A_n^{\frac{-q_n}{2}} + \cdots + \frac{w_{n-1}}{p_{n-1} - q_{n-1}} \log A_n^{\frac{-q_n}{2}} A_{n-1}^{p_{n-1}} A_n^{\frac{-q_n}{2}} + \frac{w_n}{p_n - q_n} \log A_n^{p_n - q_n} \le 0$$
(2.4)

hold for $q_i \in \mathbb{R}$, $p_i > q_i$ and i = 1, ..., n, then

$$\mathfrak{G}_{\delta}(\omega'; A_1^{p_1'}, \dots, A_n^{p_n'}) \leq \mathfrak{G}_{\delta}(\omega; A_1^{p_1}, \dots, A_n^{p_n}) \leq A_n^{q_n} \quad \text{for all } p_i' \geq p_i \text{ and } i = 1, \dots, n,$$

$$\text{where } \widehat{\omega} = \left(\frac{w_1}{p_1 - q_1}, \dots, \frac{w_n}{p_n - q_n}\right), \ \widehat{\omega'} = \left(\frac{w_1}{p_1' - q_1}, \dots, \frac{w_n}{p_n' - q_n}\right), \ \omega = \frac{\widehat{\omega}}{\|\widehat{\omega}\|_1} \text{ and } \omega' = \frac{\widehat{\omega'}}{\|\widehat{\omega'}\|_1}.$$

Proof. Applying Theorem 2.B to (2.4), we have

$$\mathfrak{G}_{\delta}(\omega; A_{n}^{\frac{-q_{n}}{2}} A_{1}^{p_{1}} A_{n}^{\frac{-q_{n}}{2}}, \dots, A_{n}^{\frac{-q_{n}}{2}} A_{n-1}^{p_{n-1}} A_{n}^{\frac{-q_{n}}{2}}, A_{n}^{p_{n}-q_{n}}) \leq I,$$

so that by (2.3),

$$X_0 \equiv \mathcal{G}_{\delta}(\omega; A_1^{p_1}, \dots, A_{n-1}^{p_{n-1}}, A_n^{p_n}) \le A_n^{q_n} \le A_1^{q_1}. \tag{2.5}$$

By applying Theorem 2.2 to (2.5) and by (2.3),

$$X_1 \equiv \mathfrak{G}_{\delta}(\omega_1; A_1^{p_1'}, A_2^{p_2}, \dots, A_n^{p_n}) \le X_0 \le A_n^{q_n} \le A_2^{q_2}$$
(2.6)

for $p_1' \geq p_1$, where $\widehat{\omega}_1 = \left(\frac{w_1}{p_1' - q_1}, \frac{w_2}{p_2 - q_2}, \dots, \frac{w_n}{p_n - q_n}\right)$ and $\omega_1 = \frac{\widehat{\omega}_1}{\|\widehat{\omega}_1\|_1}$. By applying Theorem 2.2 to (2.6) and by (2.3),

$$X_2 \equiv \mathfrak{G}_{\delta}(\omega_2; A_1^{p_1'}, A_2^{p_2'}, A_3^{p_3}, \dots, A_n^{p_n}) \leq X_1 \leq X_0 \leq A_n^{q_n} \leq A_3^{q_3}$$

for $p_1' \ge p_1$ and $p_2' \ge p_2$, where $\widehat{\omega}_2 = \left(\frac{w_1}{p_1' - q_1}, \frac{w_2}{p_2' - q_2}, \frac{w_3}{p_3 - q_3}, \dots, \frac{w_n}{p_n - q_n}\right)$ and $\omega_2 = \frac{\widehat{\omega}_2}{\|\widehat{\omega}_2\|_1}$. By repeating this argument, we can get

$$X_n \equiv \mathfrak{G}_{\delta}(\omega'; A_1^{p'_1}, \dots, A_n^{p'_n}) \leq X_{n-1} \leq X_0 \leq A_n^{q_n}$$

for
$$p_i' \ge p_i$$
 for $i = 1, \ldots, n$, where $\widehat{\omega}' = \widehat{\omega}_n = \left(\frac{w_1}{p_1' - q_1}, \ldots, \frac{w_n}{p_n' - q_n}\right)$.

Remark. (i) in Theorem 1.E, that is, $\log A_1 + \cdots + \log A_n \leq 0$ holds if and only if

$$\frac{1}{p_1} \log A_1^{p_1} + \dots + \frac{1}{p_n} \log A_n^{p_n} \le 0$$
 for every $p_i > 0$ and $i = 1, \dots, n$.

Therefore we recognize that Theorem 2.3 implies (i) \Longrightarrow (iii) in Theorem 1.E by putting $q_1 = \cdots = q_n = 0$ and $w_1 = \cdots = w_n = 1$ since

$$\frac{\frac{1}{p_i}}{\|\widehat{\omega}\|_1} = \frac{\frac{1}{p_i}}{\frac{1}{p_1} + \dots + \frac{1}{p_n}} = \frac{p_{\neq i}}{\sum_j p_{\neq j}} \quad \text{for } i = 1, \dots, n$$

ensures
$$\omega = \frac{\widehat{\omega}}{\|\widehat{\omega}\|_1} = \left(\frac{\frac{1}{p_1}}{\|\widehat{\omega}\|_1}, \dots, \frac{\frac{1}{p_n}}{\|\widehat{\omega}\|_1}\right) = \left(\frac{p_{\neq 1}}{\sum_i p_{\neq i}}, \dots, \frac{p_{\neq n}}{\sum_i p_{\neq i}}\right).$$

It is well known that we have a variant from Theorem 1.A by replacing A, B with A^q, B^q and p, r with $\frac{p}{q}, \frac{r}{q}$ in Theorem 1.A respectively.

Theorem 2.D ([8]). Let A > 0, $B \ge 0$ and q > 0. Then

$$A^q \ge B^q \quad implies \quad A^{-r} \sharp_{\frac{q+r}{p+r}} B^p \le B^q \le A^q \quad for \ p \ge q \ \ and \ \ r \ge 0.$$

Here we show that Theorem 2.3 is a generalization of Furuta inequality via weighted Riemannian mean of n-matrices. Precisely, we show that Theorem 2.3 ensures the following Theorem 2.4 and Theorem 2.4 is a generalization of Theorem 2.D.

Theorem 2.4. Let $A_1, \ldots, A_n \in P_m(\mathbb{C})$ and q > 0. Then $A_i^q \geq A_n^q > 0$ for $i = 1, \ldots, n-1$ implies

$$\mathfrak{G}_{\delta}(\omega; A_1^{-p_1}, \dots, A_{n-1}^{-p_{n-1}}, A_n^{p_n}) \le A_n^q \le A_i^q$$
(2.7)

for all $p_i \geq 0$, $i = 1, \ldots, n-1$ and $p_n > q$, where $\widehat{\omega} = \left(\frac{1}{p_1+q}, \ldots, \frac{1}{p_{n-1}+q}, \frac{n-1}{p_n-q}\right)$ and $\omega = \frac{\widehat{\omega}}{\|\widehat{\omega}\|_1}$.

Proof. Assume that $A_i^q \geq A_n^q > 0$ for q > 0 and $i = 1, \ldots, n-1$. Then $A_i^q \geq A_n^q > 0$ implies $\log A_i \geq \log A_n$. By (i) \Longrightarrow (iii) in Theorem 1.C, $\log A_i \geq \log A_n$ implies $A_i^{-p_i} \sharp_{\frac{p_i}{q+p_i}} A_n^q \leq I$ for all $p_i \geq 0$. This is equivalent to $A_n^{-q} \sharp_{\frac{q}{q+p_i}} A_i^{p_i} \geq I$, that is, $(A_n^{\frac{q}{2}} A_i^{p_i} A_n^{\frac{q}{2}})^{\frac{q}{p_i+q}} \geq A_n^q$. By taking logarithm, we have $\frac{1}{p_i+q} \log A_n^{\frac{q}{2}} A_i^{p_i} A_n^{\frac{q}{2}} \geq \frac{1}{p_n-q} \log A_n^{p_n-q}$, that is,

$$\frac{1}{p_i + q} \log A_n^{\frac{-q}{2}} (A_i^{-1})^{p_i} A_n^{\frac{-q}{2}} + \frac{1}{p_n - q} \log A_n^{p_n - q} \le 0$$
 (2.8)

for all $p_i \geq 0$, i = 1, ..., n-1 and $p_n > q$. Summing up (2.8) for i = 1, ..., n-1, we have

$$\frac{1}{p_1+q}\log A_n^{\frac{-q}{2}}(A_1^{-1})^{p_1}A_n^{\frac{-q}{2}}+\cdots + \frac{1}{p_{n-1}+q}\log A_n^{\frac{-q}{2}}(A_{n-1}^{-1})^{p_{n-1}}A_n^{\frac{-q}{2}}+\frac{n-1}{p_n-q}\log A_n^{p_n-q} \le 0.$$
(2.9)

By applying Theorem 2.3 to $(A_i^{-1})^{-q} \ge A_n^q > 0$ and (2.9), we can obtain

$$\mathfrak{G}_{\delta}(\omega; A_1^{-p_1}, \dots, A_{n-1}^{-p_{n-1}}, A_n^{p_n}) \le A_n^q \le A_i^q$$

for all
$$p_i \ge 0 > -q$$
, $i = 1, ..., n - 1$ and $p_n > q$.

Proof of Theorem 2.D. Put
$$n=2$$
, $p_1=r$ and $p_2=p$ in Theorem 2.4. Then $\widehat{\omega}=\left(\frac{1}{r+q},\frac{1}{p-q}\right)$ and $\omega=\left(\frac{p-q}{p+r},\frac{q+r}{p+r}\right)$. Therefore we obtain the desired result.

3 3-matrices case

In this section, for the sake of readers' convenience, we state 3-matrices case of Theorems 2.3 and 2.4.

Corollary 3.1. Let $A, B, C \in P_m(\mathbb{C})$ and $w_1, w_2, w_3 > 0$. If

$$A^{q_1} \ge C^{q_3} > 0, \quad B^{q_2} \ge C^{q_3} > 0,$$

and

$$\frac{w_1}{p_1 - q_1} \log C^{\frac{-q_3}{2}} A^{p_1} C^{\frac{-q_3}{2}} + \frac{w_2}{p_2 - q_2} \log C^{\frac{-q_3}{2}} B^{p_2} C^{\frac{-q_3}{2}} + \frac{w_3}{p_3 - q_3} \log C^{\frac{-q_3}{2}} C^{p_3} C^{\frac{-q_3}{2}} \le 0$$

hold for $q_i \in \mathbb{R}$, $p_i > q_i$ and i = 1, 2, 3, then

$$\mathfrak{G}_{\delta}(\omega'; A^{p'_1}, B^{p'_2}, C^{p'_3}) \le \mathfrak{G}_{\delta}(\omega; A^{p_1}, B^{p_2}, C^{p_3}) \le C^{q_3}$$

 $\begin{array}{l} \text{for all } p_i' \geq p_i \ \ \text{and } i = 1, 2, 3, \ \ \text{where } \widehat{\omega} = \left(\frac{w_1}{p_1 - q_1}, \frac{w_2}{p_2 - q_2}, \frac{w_3}{p_3 - q_3}\right), \ \widehat{\omega'} = \left(\frac{w_1}{p_1' - q_1}, \frac{w_2}{p_2' - q_2}, \frac{w_3}{p_3' - q_3}\right), \\ \omega = \frac{\widehat{\omega}}{\|\widehat{\omega}\|_1} \ \ \text{and } \omega' = \frac{\widehat{\omega'}}{\|\widehat{\omega'}\|_1}. \end{array}$

Corollary 3.2. Let $A, B, C \in P_m(\mathbb{C})$ and q > 0. Then $A^q \ge C^q > 0$ and $B^q \ge C^q > 0$ implies

$$\mathfrak{G}_{\delta}(\omega; A^{-r}, B^{-s}, C^p) \leq C^q \leq A^q \ (or \ B^q)$$

for $r \geq 0$, $s \geq 0$ and p > q, where $\widehat{\omega} = \left(\frac{1}{r+q}, \frac{1}{s+q}, \frac{2}{p-q}\right)$ and $\omega = \frac{\widehat{\omega}}{\|\widehat{\omega}\|_1}$.

References

- [1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113-131.
- [2] T. Ando, C. K. Li and R. Mathias, Geometric means, Linear Algebra Appl., 385 (2004), 305–334.
- [3] R. Bhatia, *Positive definite matrices*, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2007.
- [4] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra Appl., 413 (2006), 594–618.
- [5] D.A. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satisfying the Ando-Li-Mathias properties, Math. Comp., 79 (2010), 437-452.
- [6] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67–72.
- [7] M. Fujii, T. Furuta and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 179 (1993), 161–169.
- [8] M. Fujii, J. F. Jiang and E. Kamei, A characterization of orders defined by $A^{\delta} \geq B^{\delta}$ via Furuta inequality, Math. Japon., 45 (1997), 519-525.
- [9] M. Fujii and E. Kamei, *Ando-Hiai inequality and Furuta inequality*, Linear Algebra Appl., **416** (2006), 541–545.
- [10] T. Furuta, $A \ge B \ge 0$ assures $(B^rA^pB^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., **101** (1987), 85–88.
- [11] T. Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 126.
- [12] T. Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl., **59** (1992), 180–190.
- [13] T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, 2001.
- [14] F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), 249-250.
- [15] S. Izumino and N. Nakamura, Weighted geometric means of positive operators, Kyungpook Math. J., 50 (2010), 213–228.
- [16] C. Jung, H. Lee, Y. Lim and T. Yamazaki, Weighted geometric mean of n-operators with n-parameters, Linear Algebra Appl. 432 (2010), 1515–1530.

- [17] E. Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883–886.
- [18] J.D. Lawson and Y. Lim, Monotonic properties of the least squares mean, Math. Ann., **351** (2011), 267–279.
- [19] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), 735–747.
- [20] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141–146.
- [21] T. Yamazaki, The Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order, to appear in Oper. Matrices.

(Masatoshi Ito) Maebashi Institute of Technology, 460-1 Kamisadorimachi, Maebashi, Gunma 371-0816, JAPAN

 $E ext{-}mail\ address: m ext{-}ito@maebashi ext{-}it.ac.jp$