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Numerical range of a matrix associated with
the graph of a trigonometric polynomial

Hiroshi Nakazato ( Hirosaki University )

Abstract

We present a determinantal representation of a hyperbolic ternary
form associated with a trigonometric polynomial. The result is obtained
by a joint work with Professor Mao-Ting Chien.
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1. Lax-Fiedler conjecture

Suppose that A is an n x n complex matrix. The numerical range W(A) of
A is defined as
W(A)={{A¢:£eC g =1} (1.1)

In 1918 Toeplitz introduced this set W(A). He characterized W (A) by
max{R(e~z): 2z € W(A)} = maxa(H (0 : A)), (1.2)

where 1
H:A)= E(e_wA + et 4%),
o(H)={) € R:det(\] — H) =0}, (1.3)

for H = H*. In 1919 Hausdorff proved the simply connectedness of the range
W(A). The simply connectedness of the numerical range is also valid for a
linear matrix pencil A\ + B with 0 ¢ W(A) ([20]). To compute the eigenvalues
of H(# : A) we introduce a ternary form

Fa(t,z,y) = det(tl, + z/2(A + A*) —yi/2(A — A")). (1.4)
By the equation
det(tl, — H(6 : A)) = Fa(t,— cosf, —sin§),

this ternary form determines the eigenvalues of H(6) for every angle 6.



In 1951, Kippenhahn [15] showed that

W(A) = Conv({X +iY : (X,Y) € R%, Xz + Yy + 1 = Oisatangent of
F(1,z,y) = 0}.

By this result, the boundary of the numerical range W (A) lies on the dual
curve of the algebraic curve F(1,z,y) = 0 when W(A) is strictly convex.

The form F4(t,z,y) satisfies (i) F4(1,0,0) > 0 and (ii) For every (zo, ) €
R?2, the equation Fy (¢,0,y0) = 0 in ¢ has n real solutions couting the multi-
plicities of the solutions. In 1981, Fiedler [11] conjectured : If F(t,z,y) is a real
ternary form of degree n and satisfies (i) F(1,0,0) = ¢ > 0 and (ii) For every
(z0,y0) € R?, the equation F(¢,zo,y0) = 0 in ¢ has n real solutions couting the
multiplicities of the solutions, then there exists an n x n complex matrix A with

F(t,xz,y) = cdet(tl, + z/2(A+ A*) — yi/2(A - A*)). (1.5)

If a ternary form F(t,z,y) satisfies the above conditions (i) and (ii), then the
form is said to be hyperbolic with respect to (1,0,0) ([1]). Before Fiedler’s for-
mulation, Lax [16] conjectured more strong result in 1958: the above conditions
(i), (ii) for F implies the existence of a pair of real symmetric matrices H, K
satisfying

F(t,z,y) = cdet(tl, + zH + yK). (1.6)

In 2007, Helton and Vinnikov [13] showed thar the Lax conjecture is true
(cf. [17]). Hence the Filedler conjecture is true.

We shall consider the determinantal representations of a homogeneous poly-

nomial. Whether a complex homogeneous polynomial F(z1,22,...,Zm) (mMm >
2) with Degree n in m indeterminates z1, ...,z can be represented as

F(21,22,...,2,) = det(z1 41 + 2245 + - -+ + 2, 4), (1.7)
for some n x n complex matrices A;, Az, ..., Ap or not ?

In the case m = 2, the form F is expressed as
n
H(aja:l + Bjxa).
=1

Hence the diagonal matrices A; = diag(oa,...,an), A2 = diag(B1,...,Bn)
satisfy (1.7). The following results are known.
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Theorem | A. C. Dixon, 1901, [9]] For every (non-zero) complex ternary
form F(t,z,y) of degree n, there are nxn complex symmetric matrices A;, Az, A3
satisfying

F(t,z,y) = det(t A1 + zA2 + yAs).

Theorem [L. E. Dickson, 1920, [10]] A generic homogeneous polynomials
in m variables of degree n has a representation

det(z1A; + 2242+ ...+ TmAm) =0
by n x n matrices Ay, As,..., A, if and only if
1. m = 3 (curves),

2. m =4 and n = 2,3 (surfaces),

3. m =4 and n = 2 (threefolds).

Theorem [V. Vinnikov, 1993. [21]] An irreducible real algebraic curve
F(t,z,y) = 0 has a representation

det(tH, + zH; + yH3) =0, (1.8)
by Hermitian matrices Hy, Hp, Hs.

We remark that if Hy in (1.8) is positive definite, then the real ternary form
det(tH; + xH> + yH3) has the property (i) and (ii) mentioned in the above. In
such a case, we have the equation

det(tHy +zHa +yHs) = det(Hy)det(t] + zH] Y2 HyH Y2 + yHT Y2 Ha HY?).

An analogous object of W(A) for a linear operator in an indefinite space
satisfies some convexity property (cf. (2], [3], [19]).

We shall consider the joint numerical range of Hermitian matrices. Suupose
that {Hy, Ha,...,Hp} is an ordered m-ple of n x n Hermitian matrices. The
joint numerical range W (H1, Ha, ..., Hp,) is defined as

W(H1,Hs,...,Hpy) = {(§"H1€,6*He¢, ..., HRpE) : £ € C, ¢ =1} (1.9)

If m = 3, n > 3, the set W(H:, Hp, H3) C R? is convex. In the case Hz =
H? + H? +i(H,Hy — Ho Hy), the joint numerical range W (Hy, Ha, H3) is known
as the Davis-Wielandt shell of a matrix A = H; + iH>. By using the convexity



of the joint numerical range W (H;, Hy, (H; + iHo)*(H: + iHy)) for n > 3, we
can prove the convexity of the generalized numerical range

We(A) ={n"A¢: Ene Ch ¢ =1 n"n=1,1"¢ = q}

for an n x n matrix A and a real number 0 < g < 1 (cf. [18], [5], [6]). In the
case ¢ = 1, the range W, (A) coincides with the numerical range W (A). The set
W (Hy, Hy, H3, Hy) is not necessarily convex.

Example Let

1 00 1 0 O
H=101 0],H=10 -1 0]},
0 0O 0 0 O
010 0 2 0
H3=11 0 0|,Hs=|—-i 0 0
0 00 ' 0 0 0

and let
I={(1,z,y,2):(z,y,2) € R3}.

Then we have
W(HlaHQaH3a H4) = {(lvl‘,ya Z) : 1"2 + y2 + 22 = 1}
Suppose that A = Conv(W(H1, Hs, ..., Hy)) contains (0,0,...,0) as an
interior point. Then the set
A ={(X1,X2,...,Xm) € R™ X121 + Xozs + ...+ Xm@m + 1 > 0, for

(:Elij" "axm) € W(H11H2,‘ . 7Hm)}

is a compact convex set. Its boundary point (Xi, X2, ..., Xy, ) satisfies

det(In+X1 Hi+XoHot+ - +XmHm) =0,  det(In-+t[X1 Hi+XoHot - -+ Xm Hp]) > 0

for 0 < ¢ < 1. The coonnected compotent of the set
{(1,Yz,...,Yn) € R™ : det(I;, + YiHy + YoHz + ... + Yo Hy) # 0}, (1.10)
containing (0,0, ...,0) corresponds to the cross section of the positive cone
{K = (a;;) € Mp(C) : K = K*,£*K¢ > Oforé € C™, ¢ # 0}, (1.11)
with the affine plane

{In+YiH; +YoHy + ...+ Yy Hp : (Y1, Y2, ..., Yim) € R™L (1.12)
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Are there an m-ple of Hermitian matrices Hy, Ha, ..., Hn and a constant ¢
satisfying

F(zg,x1,23,...,%m) = cdet(zol, + z1Hy +22Ho + ... + z;mHp), (1.13)
if F' is a form of degree n hyperbolic with respect to (1,0,...,0) ?
Example 1 Suppose that
F(t,z1, T, 23, 24) = t2 — (2 + 23 + 23 + 23).

Then the form F is hyperbolic with respect to (1,0,0,0,0). There is no ordered
set (Ha, Ha, H3, Hy) of 2 x 2 Hermian matrices satifying

2 — (x? + x% + :z:§ + xﬁ) =det(tly + z1H1 + v2Ha + 23Hs + x4 Hy).

In fact we asume that there exist such Hermitian matrices H,, Ha, H3, Hy. For
every point (z1,x2,3,z4), we have

23—(23+ad+ai+ad) = (wot+y[ad + 2 + of + 23 (wo—y/xd + 2f + 23 +23) =0

and hence tr(xyHy + 22 Ha + z3Hs + x4 Hy) = 0. Thus the Hermitian matrix
x1H, + 2o Hy + z3Hs + x4 Hy is expressed as

1 0 01 0
L1($1,$2,$3,$4)(0 _1)+L2($1,$2,$3,r4)(1 0)+L3(331,$2,$3,-’B4)<_2- 6>,

where L;(x1,2,23,24) (j = 1,2, 3) are linear functionals. We should have
22 + 22+ 2% +a3 = L1 (21, %2, 23, 24) + La(21, T2, 73, 74)° + La(21, 22, T3, 24)°.

However this equation is impossible since the rank of the quadratic form in the
right-hand side is less than or equal to 3 and the rank of the quadratic form in
the lect-hand side is 4. Thus the expression as (1.9) is impossible.

Example 2 Suppose that
F(t,z1,22,33,24,75) = £ — (2] + 23 + o + 2 + 5).

Then the form F is hyperbolic with respect to (1,0,0, 0, 0,0). The form F(¢,z1, z2, z3,24,0)
is realized as

¢ Ty +ixe 3+ ix4
det(| =1 —ixe t 0
r3 — ’i934 0 t

Probably the form F itself can not be realized as det(tIs+z1H1 +z2Hy+x3H3+
z4Hy + x5 Hs) by 3 x 3 Hermitian matrices Hy, Hp, H3, Hy, Hs. I can not so far
prove such a non existence.



2. Henrion’s method using Bezoutians

Consider the two polynomials in s, there are coefficients aj, 3; so that

#1(s) = iajsj, (2.1)
=0

d2(s) = iﬁjsj. (2.2)
=0

The Bezoutian matrix of (2.1) and (2.2) is the m x m matrix

where

Bez = (gi,;), 1 <i,5 <m),

gij = Z (Citj1-k8k — O&Bitj-1-k)- (2.3)

0<k<min(i—1,j—1)

The entries g; ; are characterized as

m

¢1(s)2(t) — da(s)n(t) _ 3 gigsHi

s—1

4,j=1

For example, when m = 4, the 4 x 4 Bezoutian matrix

Bez = {(g5), 1 <i,j <4} (2.4)

is symmetric with entries

g11
913
g22
924
934

a1fo — @B, g12 = caflo — cpfe,

a3fo — cof3, g4 = asafy — aofa,

a3fo + az2B1 — 182 — aofs, g23 = 0ufo + asBi — 13 — o fa,
s — a1Ba, g3z = P + asfBe — axfs — a1 by

asf — 024, Gas = a4f3 — a3fs

The two polynomials ¢1(s), ¢2(s) have a non-constant common divisor 3(s) if
and only if det(Bez) = 0.

Henrion [12] provided a more elementary method in the case F,z,y)=0
is a rational curve. Henrion started from a parametrized form

z=4¢(s), y=1(s), (2.1)

of the rational curve F(1,z,y) = 0 by real rational functions in s.

We express the rational functions ¢(s),1(s)

o(s) = {g—; $(s) = % (2.2)
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by real polynomials f(s), g(s), h(s)
We have
Li(s) = h(s)z - f(s) =0, (2.3)
La(s) = h(s)y — g(s) = 0. (2.4)

By these equations, he constructed real symmetric matrices Hy, Hy, H3 satisfy-

ing
F(t,z,y) = det(tH; + zHz + yHs)

by using Bezoutians.

We shall treat the rational curve F(1,z,y) = 0 given as the graph of a
trigonometric polynomial

2(0) = c_pexp(—ind)+...+co+: - -+cn exp(ind) = Z c; exp(v/—156), (2.5)

j=-n .

n=1,2,...)

Then we can obtain a real ternary form F(t,z,y) of degree 2n satisfying
F(1,R(2(9)),3(2(0))) =0

(0 < 6 < 27). One method to obtain the non-homogeneous f(z,y) = F(1,z,y)
is given as the following. We set z = z + iy and w = z — iy and u = exp(ih).
We have

Mi(u) = —zu™ + cqmu®™ + -+ cou™ + -+ - + c_m =0,

My(u) = —wu™ +omu?™ + -+ U™ + -+ + T = 0,

By using Sylvester determinant, we can eliminate u from these equations and
obtain the polynomial f(z,y). However this method does not provide us a
method to construct Hermitian matrices Hy, Hy, Hj satisfying (1.6).

We have another problem. When the form F(t,z,y) assocated with the
trigonometric polynomial (2.5) is hyperbolic with respect to (1,0,0) 7 By the
condition F(1,0,0) > 0, the graph of the trigonometric polynomial does not
pass through the origin 0 in the Gausian plane. In an early step, the author

supposed the condition
n—1
len| > Z le;]

j=—n

for the form F(t,z,y) to be hyperbolic with respect to (1,0,0).

In a letter to the author, Prof. T. Nakazi provided a general condition for
the form F(t,z,y) to be hyperbolic
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under the condition
cn > 0, (2'6),

dArg(z(0))

a0 >0

(0<6<2n).

Nakazi’s condition: The equation

2n
an2n+"‘+cozn+"'+c—n=an(z_'aj)7 (27)
j=1

holds for |a;| < 1 (j = 1,2,...,2n). His condition is deduced from Rouché’s

theorem.

Theorem|8] If a trigonometric polynomial

n

z(0) = Z c; exp(v/—156)

j=-n
satisfies the condition
2n
cnz2"+---+coz"+---+c_n=an(z—aj), (2.7)
i=1

for laj| < 1, then the rational curve obtained as the graph of z(6) = x(6) +1y(6)
is realized as
det(H1 + .’Z?H2 -+ yH3) =0

for some 2n x 2n real symmetric matrices Hs, Hs and a positive definite real
symmetric matrix H;.

To prove the positivity of the Hermitian matrix H;, Hermite’s classical the-
orem on zeros of a polynomial plays an important role. Let

n
p(z) =) ;2
3=0

be a polynomial in z with the leading coefficient ~, # 0. We define two poly-
nomials ¢;(z) and ¢2(2) by

n

61(z) = D R0, da(2) =Y S(m)7.
J=0

=0

The Bezout matrix of ¢2(2) and ¢;(z) is positive definite if and only if the roots
of p(z) are contained in the upper half plane $(z) > 0 (cf. [14], [22]). The graph
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of a special trigonometric polynomial is treated in [7]. A special rational curve
associated with a nilpotent Toeplitz matrix is treated in [4].

Example We give an example to illustrate Hermite’s theorem. Let p(z) =
(z-2i)(z—i) =22 —3iz =2, ¢2(2) =022 - 3240, ¢1(2) =22 +0-2 - 2.
Then the corresponding Bezoutian matrix is given by

(3)
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