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Quarter of a Century in the Furuta Inequality

ABREAEKRE - BEZE  BH  EE (Masatoshi Fujii )
Departments of Mathematics

Osaka Kyoiku University

In 1987, the Furuta Inequality was established in the paper:
T.Furuta, A > B > 0 assures (B"APB")Y/2 > BWw+2)/4 forr >0, p > 0, g > 1 with
(14 2r)g > p+ 2r, Proc. Amer. Math. Soc., 101 (1987), 85-88.

We would like to mention that 2011 is just the year as
”The 25th anniversary of the Furuta Inequality.”

1. Road to Furuta Inequality

An operator means a bounded linear operator acting on a Hilbert space. The usual
order A > B among selfadjoint operators on H is defined by (Az,z) > (Bz,z) for
z € H. In particular, A is said to be positive and denoted by A > 0 if (Az,z) > 0 for
reH.

The noncommutativity of operators reflects on the order preservation.

The Lowner-Heinz inequality
(LH) A>B>0 = AP > PB?

if and only if p € [0, 1].
See [24], [21], [25] and [19]. The following is a quite familiar counterexample for

which #? is not operator monotone;

21 10
A"(l 1)’ B_(O 0)’
‘This implies that t* is not order-preserving for p > 1 by combining (LH).

The essense of the Lowner-Heinz inequality is the case p = %:

> B1,

[N

A>B>0 = A
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It is rephrased as follows: For A, B > 0,
AB?A<1 = AiBAI < 1.

The assumption AB?A < 1is equivalent to || AB|| < 1. Thus, noting the commutativity
of the spectral radius, r(XY) = r(Y X), we have

|A2 BA%|| = r(A2 BA%) = r(AB) < [|AB|| < 1.

Related to the case p = % in the Lowner-Heinz inequality, Chan-Kwong [3] conjec-

tured that
(CK) A>B>0 = (AB%4)2 < A%
Moreover, if it is true, then the following inequality holds;

A>B>0 = (BA’B)% > B®.

Here we cite a useful lemma on exponent by Furuta.
Lemma 1. For p € R, (X*A2X)? = X*A(AXX*AP~1AX holds for A > 0 and
invertible X .
Proof. 1t is easily checked that
Y*(YY*)'Y =YY(Y'Y)" neN.
This implies that
Y*fYY")Y =Y'Yf(Y'Y) for any polynomials f

and so it holds for continuous functions f on a suitable interval. Hence we have the

conclusion by applying it to f(z) = zP~! and Y = AX. O

Using this trick, Chan-Kwong conjecture is modified in the sense that: If it is true,

then
A>B>0 = (AB%A)i < A%,



123

As a matter of fact, we have
(AB®A): = AB(BA*B)"iBA by Lemma 1

= AB((BA’B)"%):BA < ABB™'BA = ABA < A5.

Under such consideration, the Furuta inequality was established in [16] cited in the

prologue as follows:

Furuta inequality (FI) IfA > B >0, then for each r > 0,

(i) (A5 APAB)7 > (ABBPAB)s
and
(i) (B5APB%)< > (B:BPB%)s

hold for p > 0 and g > 1 with

() 1+rjg=p+r.

Remark. As a matter of fact, the above modification of (CK) is a critical point for
r=2(p=2and qg=4/3),1ie, (1+r)g=p+r holds. For the Furuta inequality, we
refer [16], [17], [4], [22], [26] and [19]. In paticular, the best possibility of the domain
determined by (*) is proved by Tanahashi [26].

The figure (*) is understood as the origin of the idea of Furuta inequality. As a
matter of fact, Professor Berberian said that the figure determined by (x) is

”Rosetta Stone”
in (FI). The figure (x) is drawed in the next page. By virtue of (LH), it is easily seen
that the case where the equality holds in (%), i.e., (1 + r)g = p+r, is essential in the
Furuta inequality. It is reflected in the discussion of Section 3. Precisely it appears as

L7 ' the index of # in (FI).

pt+r?
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1+r)g=p+r

2. Chaotic order

We first remark that log z is operator monotone, i.e., A > B > 0 implies log A >
log B by (LH) and 5%:1 — log X for X > 0. By this fact, we can introduce the chaotic
order as log A > log B among positive invertible operators, which is weaker than the
usual order A > B. We say it the chaotic order. In this section, we consider Furuta

inequality under the chaotic order. We refer [1], [5], [7], [8], and [28] for an elegant

proof.



We now recall the Chan-Kwong conjecture (CK):

(CK) A>B>0 = (AB2A)i < A2,

A direct progress of (CK) was done by Ando [1]. In our situation, it is expressed as

follows:

Theorem 2. The following assertions are equivalent for A, B > 0:
(i) A> B, ie.,logA>logB,
(i) AP > (AEBPA%): forp > 0.

We added it to 2-variables version in [5] as follows:

Theorem 3. The following assertions are mutually equivalent for A, B > 0:

(i) A> B, ie,logA>logB,
(i) AP > (A%BPA%): forp >0,
(iii) A" > (ASBPAE)5™ forp, r > 0.
Proof. We prove the implications: (i) = (iii) = (ii) = (i).
(i) = (ili): First we note that (1 + 6%y — X for X > 0. Since

log B

>B,=1+ >0

A, =1+

log A
n

for sufficiently large n, Furuta inequality ensures that for given p, r > 0
i1+nr

An1+nr > (An%tBnnpAn%>”Ep"'rj ’

or equivalently
A"GH) > (A5 B, A, )R TR

Taking n — oo, we have the desired inequality (iii).

(iif) = (ii) is trivial by setting r = p.

(ii) = (i): Note that )—(%“—1 — log X for X > 0. The assumption (ii) implies that

A -1 (ABBrA%): —1  ABBrPAR -1 AB(BP—1)Af 4+ AP —1

p - p p((A3BrA%)s +1)  p((ABBrA%)E +1)
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Taking p — 40, we have

> log B +log A

log A
og 5

, that is, log A > log B.

So the proof is complete. O

Remark 1. The order preserving operator inequality (i) = (iii) in above is called
chaotic Furuta inequality, simply (CFI). We here note that (iii) = (i) is directly proved
as follows:

Take the logarithm on both side of (iii), that is,

T
p+r

rlog A > log A2 BPA?

for p, r > 0. Therefore we have

1
+r

log A > » log AZ BPA?.

So we put r = 0 in above. Namely it implies that

logA > %log B? =logB.

3. Mean theoretic expression
We cite the weighted geometric mean #, for a € [0,1], see [23] for the theory of

operator means, and a related binary operation f for s ¢ [0, 1]:
A#,B=A3(A"tBA"#)*A7 and A, B=A3(A"3BAT1)°A%.
We cite a useful lemma which we will use frequently in the below.

Lemma 4. For X, Y >0 anda, b€ [0,1],
(i) monotonicity:

X<X) and YY) = X #.Y < X; #. Y71,
(ii) transformer equality:

T*XT #,T*YT =T(X #, Y)T for invertible T,
(iii) transposition: X #, Y =Y #;1_4 X,
(iv) multiplicativity: X #ap Y =X #. (X #: Y).
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Proof. First of all, (iii) follows from Lemma 1.2, and (iv) does from a direct computa-

tion.
To prove (i), we may assume that X, Y > 0. If Y < Y;, then X #, Y < X #., Y] is

assured by (LH) (and the formula of #,). We prove (ii). We put Z = X3T = U|Z|,

the polar decomposition of Z, where U is unitary. Then it follows that
T*XT #, T*YT = Z*Z 4, T*YT
=12((1Z]7' 7Y T|Z| ) 2|
=2(217 2" (X "4y X~4)7)12|7)| 2|
= |Z|(U"(X "2 YX"9)U)* 2|
= |Z|U(X~iY X~3)°U|Z|
=7 (X YX"1)2Z
=T"X3(X 1Y X 3)2XiT
= T*(X #, Y)T.

In this context, the Furuta inequality has the following expression:
The Furuta inequality (FI). If A> B >0, t € [0,1], then
A"'#ﬁ BP<A forr>0andp>1.
We recall Theorem 3 (iii); a chaotic version of (FI)
logA>1logB & A" > (ASBPA%)#+ for p, r > 0.

It leads us a weaker form than Theorem 3. (The assumption is stronger, but conclusion

is the same as Theorem 3 (iii).)

The chaotic Furuta inequality (CFI)

A>B>0 = A“’"#ﬁB”SI for p>0andr >0.
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Closely related to (FI), we here note a satellite of it due to Kamei [22]:
Satellite of Furuta inequality (SF).

AzB>O=>A‘T#% BP<B(<A) forr>0,p>1.

The meaning of (SF) looks like SF in the following sense: If A >> B, then

A #14, BP< B forr>0andp>1.

p+r

That is, (SF) holds under the chaotic order. As a matter of fact, since BP#F%A“T =
A"’##;B” < 1, we have

AT # BY = BPfpn AT = B*#o-1(BP# 2. A7) < BP#p11 = 1411 B” = B.
p+r p+r P T P P

On the other hand, Ando-Hiai [2] established a log-majorization inequality, whose

principal part is the following;

Ando-Hiai inequality (AH).

(AH) X#taY <1 = X'#,Y"<1 forr>1,

Theorem 5. (FI), (CFI) and (AH) are mutually equivalent:
Proof. Suppose that (CFI) holds. To prove (FI), we assume A > B > 0. Then
A_T #_1_'?1 BP = Bp #m A—T = Bp #p_—_l (Bp #_E_. A—r)
p+r p+r P ptr
—BP o (A #2 BP) < BP #on I=B< 4
P prr 3

which means that (FI) is shown.

Next we suppose that (FI) holds. Then we prove (AH), so that we assume A #, B <

1

I and r > 0. Then, putting C = A"2BA~2 and p = 1> 1, we have
Bi=(A""BA3)*=Cr < Al=A,.
Applying (FI) to A; > B, it follows that

A;T##Bfgf for r > 0.
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Moreover it follows that for p > 1,

A" # e BY =Bl #o1 A7" = B} #p (BY #.2. A7)

=Bl #ex (A" #2. BY) < Bl #o I=B1 < Av.

Summing up the above discussion, for each p>1,
A#:s BT = A #1p A"IBA": < A71 or A™H #1: B< I forr >0.
p p+T p+r
. _ Pt
Note that, putting q = %:% >1,

B#l Ar+1=B#p_—1 A’r+1=Ar+1 #M BSI
q p+r

p+r

holds. Hence, applying the above

A#: B<I = A" #,.. B<I
P

p+r

for ¢ = % >1and B #% AT < 1, it implies that

I 2 B7‘+1 #_l_ﬂ A’r-!—l.

q+r

i — i 1
Since 1 otr = 2

I > Brt+1 #1_11 Ar+1 — A’r-{—l #l BT-H.
qTr p
Namely we obtain (AH).
Finally we prove (AH) = (CFI). So we assume that A > B > 0 and p,r > 1 because
it holds for 0 < p,r < 1 by (LH). For given p,r > 1, we put o = 77 and ry = 7. Then

we have
A #ﬁL— B<A™ # rn A=1.

1+7

We here apply (AH) to this and so we have
- ™ p— -r p r p P -7 ™ p
IzA”p#ﬁBp IzA‘##%B A #EFB’

as desired. O
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4. Generalization of Ando-Hiai inequality

Recall the Ando-Hiai inequality:

IfA#, B<IforA,B>0, then A" #, B"<1I forr > 1.

Based on an idea of Furuta inequality, we propose two variables version of Ando-Hiai
inequality, see [6], [11], [12], [13] and [14]:
Theorem 6 (Generalized Ando-Hiai inequality (GAH)). For A, B >0 and a € [0,1],
if A#, B<I, then

AT #a—rﬂ“fzz)? B*<I for r,s>1.

It is obvious that the case r = s in Theorem 6 is just Ando-Hiai inequality.

Now we consider two one-sided versions of Theorem 6:

Proposition 7. For A, B>0anda € (0, 1], if A #, B <1, then

A"#_ o B<I for r>1.

ar+l-a

Proposition 8. For A, B>0anda €0, 1], if A #, B <1, then

A#mla__QSBSSI fO'I‘ 821.

We investigate relations among them and Theorem 6.

Theorem 9. (1) Propositions 7 and 8 are equivalent.

(2) Theorem 6 follows from Propositions 7 and 8.

Proof. (1) We first note the transposition formula X #, Y =Y #3 X for 3=1-a.

Therefore Proposition 7 (for 3) is rephrased as follows:

B#gASI = Bs#_a_s__ASI for s> 1.

Bs+a
Using the transposition formula again, it coincides with Proposition 8 because

1_ Bs a o
Bs+a PBs+a (1—oa)s+a’




(2) Suppose that A #, B < I and ,s > 1 are given. Then it follows from Proposi-
tion 7 that A" #,, B < I for o = 1= We next apply Proposition 8 to it, so that

ar+1
we have
T s __ T ar S
1 Z A #al-‘}-ic;—al)s B - A #m B ’
as desired. O

We now point out that Proposition 7 is an equivalent expression of Furuta inequality

of Ando-Hiai type:

Theorem 10. Proposition 7 is equivalent to the Furuta inequality.
Proof. For a given p > 1, we put o = %. Then A > B(> 0) if and only if
AV 4, B <1, for B = A3 BPA}. (1)

If A> B >0, then (2.1) holds for A, B > 0, so that Proposition 7 implies that for

any r >0

12A—-(r+1) # il Bl =A—(r+1) #ﬁ Bl =A—('r+1) #1+r A"%BPA_%.
@);Lr%r p+r p+r

Hence we have (FI);
A7 #14x BP < A

p+r

Conversely suppose that (FI) is assumed. If A~ #, B; < 1, then 4 > (A%BlA%)a =
B, where p = 1. So (FI) implies that for r; =7 —1>0

(%

1

A>A™ i BP=AD & . AR A3

p+7ry pir—1

Since 5 =7 = 17—, we have Proposition 7. O

As in the discussion as above, Theorem 6 can be proved by showing Proposition 7.
Finally we cite its proof. Since it is equivalent to the Furuta inequality, we have an
alternative proof of it. It is done by the usual induction, whose technical point is a

multiplicative property of the index ﬁm of # as appeared below.

131
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Proof of Proposition 7. For convenience, we show that if A~! #, B < I, then

(2.2) B<I for r>1.

A7 S

Now the assumption says that
C* = (A7BA?)* < A.
For any ¢ € (0,1], we have C* < A¢ by (LH) and so

AT #ospe o B o= ATHA #egto AtpAn) AT
< AT3(C7% #aqrg C)AT2
14+ ae

= A"IC*A i =A"'#,B<I.

Hence the conclusion (2.2) is proved for 1 < r < 2. So we next assume that (2.2) holds

for 1 < r < 2". Then the discussion of the first half ensures that

(A™m) 4 U B<I

holds for 1 < r; < 2, where a3 = (—1_—2‘)’;7

Thus the multiplicative property of the index

o171 arri

(1 - al) + oy (1 - a) + arr;

shows that (2.2) holds for all r > 1. O
We here consider an expression of (AH)-type for satellite of (FI): Suppose that
A' #, B < I and put a = 1. It is equivalent to C = (A1BA%)» < A. So (SF)
says that
AT e CP <G,
Multiplying A~2 on both sides,

A~ 4. B< A"3CA™7 = A1 #, B.

P+r

Namely (SF) has an (AH)-type representation as follows:
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Theorem 11. Let A and B be positive invertible operators. Then

A#,B<I = A’"#.M%_E B<A#,B(LI) for r>1.
5. Grand Furuta Inequality
To compare with (AH) and (FI), we arrange (AH) as a Furuta type operator in-
equality. First of all, the assumption of (AH) A #, B < I is equivalent to that

1

Bi=0%=(A"BA"%)* < A7 = A,.

Similarly, the conclusion A” #, B < I is equivalent to that

1

AT > [ATEBTATE]Y = [AT5 (A3 (A3 BATE) Az ) A-Ee,
Replacing p = o', (AH) is reformulated that
A2 Bi>0 = A7 > (AF(4;FBLAT Y Al (1
forr >1and p > 1.

Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added
variables as in the case of (FI). Actually he paid his attention to A% in (1), presicely,
he replaced it to A~% (¢ € [0,1]). Consequently he established so-called grand Furuta
inequality, simply (GFI). It is sometimes said to be generalized Furuta inequality. We
refer (18], [19], [9], [10], [15], [27], [29], [30], and [20] for a generalization.

Theorem 12 (Grand Furuta inequality (GFI)). IfA> B >0 andt € [0,1], then
[AZ(A~3BPA=5)° AS]eoherr < Al-t+T
holds for r >t and p,s > 1.

It is easily seen that
(GFI) fort =1, r=5s <= (AH)
(GFI) fort =0, (s=1) < (FI).
Next we point out that (GFI) for ¢ = 1 includes both Ando-Hiai and Furuta inequal-
ities. Since Ando-Hiai inequality is just (GFL ¢ = 1) for r = s, it suffices to check that
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Furuta inequality is contained in (GFI; ¢t = 1). As a matter of fact, it is just (GFI;
t=1)for s=1.
Theorem 13. Furuta inequality (FI) is equivalent to (GFI) fort=s=1.
Proof. We write down (GFI; ¢t =1) for s=1: If A> B > 0, then

[A3 (A3 BPA™3) AS]7 i < AT
for p,r > 1, or equivalently,

AT Dy . BP<A

for p,7 > 1. Replacing r — 1 by r;, (GFI; t = 1) for s = 1 is rephrased as follows: If

A> B >0, then
AT diey, BP< A

p+ry

for p > 1 and r; > 0, which is nothing but Furuta inequality. O

Furthermore Theorem 6, generalized Ando-Hiai inequality, is understood as the case
t=11in (GFI):
Theorem 14. (GFI; t = 1) is equivalent to (GAH).
Proof. (GFI; t = 1) is written as
A>B>0 = [AS(A"2BPA~7) AS|GDe < AT

for p,r,s > 1. We here put

Then we have
A2B>0 & AT #, AIBPAI <1 & A7 #, Bi<1
and for each p,7,s > 1
[AZ(A"2BPA~2)° AS|eDor < A
= AT g (ATEBPATE <1
<~ A" #m+1 - B; <1.

This shows the statement of Theorem 6 (GAH). a
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6. The Lowner-Heinz property

In this section, we discuss the Léwner-Heinz property on (GFI). A family {F(t);t €
[0, 1]} of (operator) inequalities has the Léwner-Heinz property if F(1) implies F(t) for
tel0,1].

Theorem 15. The family (GFI; ¢ € [0,1]) has the Léwner-Heinz property, i.e., (GFI;
t = 1) implies (GFI; t € [0,1]).

To prove this, we recall the following lemmas:

Lemma 16. If A> B >0 and t € [0,1], then
At b, BP < Bttt

holds forp > 1 and 1 < s < 2.

Proof. Since A~* < B~* by (LH), we have

Al by B? = BP(BP#, 1AY)BP < BP(B~P4, B ") BP = B-t)s+t,

More generally, we know the following fact:

Lemma 17. If A> B >0 and t € [0, 1], then
(At b, BP)&9% < B< A

holds for p,s > 1.

Proof. We fix p > 1 and t € [0,1]. By the privious Lemma and (LH), if s € [1, 2],
then

(1) A>B>0 = By =(A't, BP)a %% < B< A.
So assume (}) for some s > 1, and prove that

By = (A" 4, BP)T95% < B; < B.
Actually we apply (1) to B; < A. Then we have

(At §y BP)Gi0 < B, < B, where p; = (p — t)s -+ ¢;
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Aty BP)Brom = [Al t, (A" f, BP)|G0R% = (A' b, B?)T5% = B,
1

Proof of Theorem 18. Suppose that (GFI; ¢t = 1) holds, i.e., if A > B > 0, then

AT (Af, BP) < A

holds for all p,r,s > 1.
Forgiven0<t<1,r>t,p>1and A> B > 0, we put
C= (A4, B”)TPT:W,pl =(p-t)s+t,m=r—t+1
and s; = 1. Then it follows from the preceding lemma that
C<A p>1, r1>1 byr>t.
Hence, A > C > 0 and (GFI; ¢t = 1) imply that

A—r1+l#zp_r1_(A h81 Cpl) < A

1-1)s1+7r

holds. Since —ft—r- = (;:tt)“;j_r and CP! = A? i, BP, we have

A—r+t# 1—t+r (At Bs Bp) < A,

(p—t)s+r

as desired.
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