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1 Introduction
In this paper, we consider the existence of $(\alpha, \beta)\in \mathbb{R}^{2}$ for which the following
quasilinear elliptic equation has a non-trivial solution:

$(F)_{(\alpha,\beta)}$ $\{\begin{array}{ll}-divA(x, \nabla u)=\alpha u_{+}^{p-1}-\beta u_{-}^{p-1} in \Omega,\frac{\partial u}{\partial\nu}=0 on \partial\Omega,\end{array}$

where $\nu$ denotes the outward unit normal vector on $\partial\Omega,$ $1<p<\infty,$ $\Omega\subset$

$\mathbb{R}^{N}$ is a bounded domain with $C^{2}$ boundary $\partial\Omega$ . Here, $A:\overline{\Omega}\cross \mathbb{R}^{N}arrow \mathbb{R}^{N}$ is
a map which is strictly monotone in the second variable and satisfies certain
regularity conditions (see the following assumption $(A)$ ). The equation $(F)_{(\alpha,\beta)}$

contains the corresponding p-Laplacian problem as a special case, and in this
case, $(\alpha, \beta)$ admitting a non-trivial solution to $(F)_{(\alpha,\beta)}$ is said to belong to
the Fu\v{c}lk $spectr^{v}um$ of the p-Laplacian. Although the p-Laplace operator is
$(p-1)$-homogeneous, the operator $A$ is not supposed generally to be $(p-1)-$
homogeneous in the second variable.

Here, we say that $u\in W^{1,p}(\Omega)$ is a (weak) solution of $(F)_{(\alpha,\beta)}$ if

$\int_{\Omega}A(x, \nabla u)\nabla\varphi dx=\int_{\Omega}\alpha u_{+}^{p-1}\varphi dx-\int_{\Omega}\beta u_{-}^{p-1}\varphi dx$

for all $\varphi\in W^{1,p}(\Omega)$ .
Throughout this paper, we assume that the opemtor $A$ satisfies the following

assumption $(A)$ :

$(A)A(x, y)=a(x, |y|)y$ , where $a(x, t)>0$ for all $(x, t)\in\overline{\Omega}\cross(0, +\infty)$ and

(i) $A\in C^{0}(\overline{\Omega}\cross \mathbb{R}^{N}, \mathbb{R}^{N})\cap C^{1}(\overline{\Omega}\cross(\mathbb{R}^{N}\backslash \{0\}), \mathbb{R}^{N})$ ;

(ii) there exists a $C_{1}>0$ such that

$|D_{y}A(x, y)|\leq C_{1}|y|^{p-2}$ for every $x\in\overline{\Omega}$ , and $y\in \mathbb{R}^{N}\backslash \{0\}$ ;

(iii) there exists a $C_{0}>0$ such that

$D_{y}A(x, y)\xi\cdot\xi\geq C_{0}|y|^{p-2}|\xi|^{2}$ for every $x\in\overline{\Omega},$ $y\in \mathbb{R}^{N}\backslash \{0\}$ and $\xi\in \mathbb{R}^{N}$ .
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(iv) there exists a $C_{2}>0$ such that

$|D_{x}A(x, y)|\leq C_{2}(1+|y|^{p-1})$ for every $x\in\overline{\Omega},$ $y\in \mathbb{R}^{N}\backslash \{0\}$ .

Throughout this paper, we assume $C_{0}\leq p-1\leq C_{1}$ because we can take such
desired $C_{0}$ and $C_{1}$ anew if necessary.

The hypothesis $(A)$ has been considered in the study of the quasilinear el-
liptic problems (cf. [6], [12], [13]). For example, we can treat the operators like
the p-Laplacian with the positive weight and

$div((|\nabla u|^{p-2}+|\nabla u|^{q-2})(1+|\nabla u|^{q})^{R=_{q}Z}\nabla u)$ for $1<p\leq q<\infty$ .

Let us recall the known results in the special case of $A(x, y)=|y|^{p-2}y$ that
is, $p$-Laplace problem and $C_{0}=C_{1}=p-1$ . The set of all points $(\alpha, \beta)\in \mathbb{R}^{2}$

for which the equation

$-\triangle_{P}u=\alpha u_{+}^{p-1}-\beta u_{-}^{p-1}$ in $\Omega$ , $\frac{\partial u}{\partial\nu}=0$ on $\partial\Omega$ (1)

has a non-trivial solution is called the Fu\v{c}lk spectrum of the p-Laplacian under
the Neumann boundary condition. In this paper, we denote the Fu\v{c}\’ik spectrum
of p-Laplacian by $\Theta_{p}$ . It is well known that the first eigenvalue $\mu_{1}=0of-\triangle_{p}$ is
simple and every eigenfunction corresponding to $\mu_{1}=0$ is a constant function.
Therefore, $\Theta_{p}$ contains the lines $\{0\}\cross \mathbb{R}$ and $\mathbb{R}\cross\{0\}$ (we call these lines as
“the trivial lines“). Furthermore, by the same argument as in [5], it can be
proved that there exists a Lipschitz continuous curve contained in $\Theta_{p}$ which is
called “the first nontrivial curve” $\mathscr{C}$ (see Section 2). In the p-Laplacian case,
many authors have treated the Fu\v{c}\’ik spectrum (see [5], [7], [8], [10] under the
Dirichlet boundary condition and [2], [3] for Neumann boundary condition).

Let us return to the general case. In [14], D. Motreanu and the present
author treated the equation

$\partial u$

$-divA(x, \nabla u)=f(x, u)$ in $\Omega$ , $–=0$ on $\partial\Omega$ (2)
$\partial\nu$

with the following nonlinearity:

$f(x, u)=\{\begin{array}{ll}\alpha_{0}u_{+}^{p-1}-\beta_{0}u_{-}^{p-1}+o(|u|^{p-1}) at 0,\alpha u_{+}^{p-1}-\beta u_{-}^{p-1}+o(|u|^{p-1}) at \infty\end{array}$

for $(\alpha_{0}, \beta_{0}),$ $(\alpha, \beta)\in \mathbb{R}^{2}$ . Roughly speaking, by constructing two curves $\tilde{\mathscr{C}}$ and
$\underline{\mathscr{C}}$ related to the map $A$ (see section 3), it was shown that the equation (2) has a
sign-changing solution in the case where $(\alpha, \beta)$ is below the curve $\underline{\mathscr{C}}$ and $(\alpha_{0}, \beta_{0})$

is above the curve $\tilde{\mathscr{C}}$. In the p-Laplacian case, we see that two curves $\tilde{\mathscr{C}}$ and $\underline{\mathscr{C}}$

coincide with the first nontrivial curve $\mathscr{C}$ . Moreover, if the first nontrivial curve
lies between $(\alpha_{0}, \beta_{0})$ and $(\alpha, \beta)$ , then $equation-\triangle_{p}u=f(x, u)$ in $\Omega$ (under the
Dirichlet boundary condition) has a non-trivial solution. Therefore, even for the
general case of $A$ , it seems reasonable to expect the existence of uncountably
many Fu\v{c}\’ik type spectrum between $\tilde{\mathscr{C}}$ and $\underline{\mathscr{C}}$.

Mainly, this paper consists of results in [14] and [15]. In the final section,
we see further results and several questions concerning our problem.
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2The first nontrivial curve contained in $\Theta_{p}$

Here, we recall the result for the special case of $A(x, y)=|y|^{p-2}y$ , that is, p-
Laplacian problems (note that we can take $C_{0}=C_{1}=p-1$ in $(A)$ ). The
construction of the curve $\mathscr{C}$ contained in the Fu\v{c}\’ik spectrum is carried out by
the same argument as in [5]: For $s\geq 0$ , we define

$J_{s}(u);= \int_{\Omega}|\nabla u|^{p}$ dx–s $\int_{\Omega}u_{+}^{p}dx$ for $u\in W^{1,p}(\Omega)$ , $\tilde{J}_{s}:=J_{s}|s$

$S$ $:= \{u\in W^{1,p}(\Omega);\int_{\Omega}|u|^{p}dx=1\}$ ,

$\Sigma$ $:=\{\gamma\in C([0,1], S);\gamma(0)=\psi_{1}, \gamma(1)=-\psi_{1}\}$ ,

where $\psi_{1}=1/|\Omega|^{1/P}$ $(so \Vert\psi_{1}\Vert_{p}=1)$ . Here, the set $C([0,1], S)$ denotes the set of
continuous functions $hom[0,1]$ to $S$ with the topology induced by the $W^{1,p}(\Omega)$

norm. Finally, we set
$c(s):= \inf_{\gamma\in}\max_{t\in[0,1]}\tilde{J}_{s}(\gamma(t))$ . (3)

Then, it can be proved that $c(s)$ is a positive critical value of $J_{s}$ with $c(O)=$
$\mu_{2}$ , where $\mu_{2}$ is the second eigenvalue of the p-Laplacian under the Neumann
boundary condition. Moreover, we can see that $c(s)$ is continuous, strictly
decreasing in $s\geq 0$ and $c(s)+s$ is strictly increasing in $s\geq 0$ (refer to [1,
Lemma2.2] and [5, Proposition 4.1] $)$ . Then, $\mathscr{C}$ is defined as follows:

$\mathscr{C}:=\{(c(s)+s, c(s));s\geq 0\}\cup\{(c(s), c(s)+s);s\geq 0\}$ .

Finally, we remark that in the case of $N\geq p$ , it is shown in [3] that $c(s)arrow 0$ as
$sarrow\infty$ , whence the asymptotic lines of the first nontrivial curve are the trivial
lines $\mathbb{R}\cross\{0\}$ and $\{0\}\cross \mathbb{R}$ . However, if $N<p$ , then $c(s)arrow\overline{\lambda}$ as $sarrow\infty$ , where

$\overline{\lambda}$ is a positive constant defined by

$\overline{\lambda}=\inf_{B}\int_{\Omega}|\nabla u|^{p}dx$ , where $B:=\{u\in S;u(x_{0})=0$ for some $x_{0}\in 7\}$ .

This yields that the trivial lines are not the asymptotic lines of the first nontrivial
curve.

3 Existence and non-existence results
To state the results for $(F)_{(\alpha,\beta)}$ , we define curves $\underline{\mathscr{C}}$ and $\tilde{\mathscr{C}}$ by

$\underline{\mathscr{C}}:=\frac{C_{0}}{p-1}\mathscr{C}:=\{(aC_{0}/(p-1), bC_{0}/(p-1));(a, b)\in \mathscr{C}\}$ ,

$\tilde{\mathscr{C}}:=\frac{C_{1}}{p-1}\mathscr{C}=\{(aC_{1}/(p-1), bC_{1}/(p-1));(a, b)\in \mathscr{C}\}$ ,

where $C_{0}$ and $C_{1}$ are positive constants satisfying $(A)$ . First, we state the
elementary results for the equation $(F)_{(\alpha,\beta)}$ which is shown in [14].

Proposition 1 ([14, Proposition 2]) The following assertions hold:
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(i) if $\alpha\beta<0$ or $\max\{\alpha, \beta\}<0$ holds, then $(F)_{(\alpha,\beta)}$ has no non-trivial solu-
tions;

(ii) $ifu$ is a non-trivial solution of $(F)_{(\alpha,\beta)}$ with $\min\{\alpha, \beta\}>0$ , then $u$ changes
sign;

(iii) if $u$ is a non-trivial solution of $(F)_{(\alpha,\beta)}$ with $\alpha\beta=0$ , then $u$ is a constant
function;

(iv) if $0<\alpha<\alpha’$ and $0<\beta<\beta’$ for some $(\alpha’, \beta^{l})\in\underline{\mathscr{C}}$, then $(F)_{(\alpha,\beta)}$ has no
non-trivial solutions.

Define $\beta_{0}(s)$ and $\beta_{1}(s)$ for $s\geq 0$ by

$\beta_{0}(s):=\frac{C_{0}}{p-1}c(\frac{p-1}{C_{0}}s)$ , $\beta_{1}(s):=\frac{C_{1}}{p-1}c(\frac{p-1}{C_{1}}s)$ ,

where $c(\cdot)$ is a function defined by (3) (see the following figure):

. $\cdot$

Now, we state existence results.

Theorem 2 ([15]) For every $s\geq 0$ and $R>0$ , there exists a $\beta\in[\beta_{0}(s), \beta_{1}(s)]$

such that $(F)_{(\beta+s,\beta)}$ and $(F)_{(\beta,\beta+s)}$ have at least one sign-changing solution
$u\in C^{1}(\overline{\Omega})$ with $\int_{\Omega}|u|^{P}dx\leq R^{p}$ .

Theorem 3 ([15]) Let $s\geq 0,$ $\epsilon>0$ and $R_{2}>R_{1}>0$ be constants satisfying

$R_{2}> \max\{\frac{\beta_{1}(s)+s+\epsilon}{\min\{\beta_{0}(s),\epsilon\}},$ $\frac{C_{1}(\beta_{1}(s)+s+\epsilon)^{2}}{C_{0}(\beta_{1}(s)+\epsilon)^{2}},$ $\frac{s(C_{1}-C_{0})}{C_{0}(\beta_{1}(s)+\epsilon)}\}^{1/p}R_{1}$ .

Then, there $e$ vists a $\beta\in[\beta_{0}(s), \beta_{1}(s)+\epsilon]$ such that $(F)_{(\beta+s,\beta)}$ and $(F)_{(\beta,\beta+s)}$

have at least one sign-changing solution $u\in C^{1}(\overline{\Omega})$ with $R_{1}^{p} \leq\int_{\Omega}|u|^{p}dx\leq R_{2}^{p}$ .
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3.1 Variational setting and notations
In what follows, we define the norm of $W$ $:=W^{1,p}(\Omega)$ by $\Vert u\Vert^{p}$ $:=\Vert\nabla u\Vert_{p}^{p}+\Vert u\Vert_{p}^{p}$ ,
where $\Vert u\Vert_{q}$ denotes the norm of $L^{q}(\Omega)$ for $u\in L^{q}(\Omega)(1\leq q\leq\infty)$ . Define
$G(x, y):= \int_{0}^{|y|}a(x, t)tdt$ , then we can easily see that

$\nabla_{y}G(x, y)=A(x, y)$ and $G(x, 0)=0$

for every $x\in\overline{\Omega}$ .

Remark 4 The following assertions hold:

(i) for all $x\in\overline{\Omega},$ $A(x, y)$ is maximal monotone and strictly monotone in $y$ ;

(ii) $|A(x, y)| \leq\frac{C_{1}}{p-1}|y|^{p-1}$ for every $(x, y)\in\overline{\Omega}\cross \mathbb{R}^{N}$ ;

(iii) $A(x, y)y\geq\overline{p}-\overline{1}C_{\Delta}|y|^{p}$ for every $(x, y)\in\overline{\Omega}\cross \mathbb{R}^{N}$ ;

(iv) $G(x, y)$ is convex in $y$ for all $x$ and satisfies the following inequalities:

$A(x, y)y \geq G(x, y)\geq\frac{C_{0}}{p(p-1)}|y|^{p}$ and $G(x, y) \leq\frac{C_{1}}{p(p-1)}|y|^{p}$ (4)

for every $(x, y)\in\overline{\Omega}\cross \mathbb{R}^{N}$ ,

where $C_{0}$ and $C_{1}$ are the positive constants described in $(A)$ .

For parameters $s\geq 0$ and $\beta\in \mathbb{R}$ , we define the $C^{1}$ functionals $I_{\beta,s}$ and $I_{\beta,s}^{+}$

on $W^{1,p}(\Omega)$ by

$I_{\beta,s}(u)$ $:= \int_{\Omega}G(x, \nabla u)dx-\frac{\beta+s}{p}\int_{\Omega}u_{+}^{p}dx-\frac{\beta}{p}\int_{\Omega}u_{-}^{p}dx$

with

$\langle I_{\beta,s}^{l}(u),$ $v \}=\int_{\Omega}A(x, \nabla u)\nabla vdx-(\beta+s)\int_{\Omega}u_{+}^{p-1}vdx+\beta\int_{\Omega}u_{-}^{p-1}vdx$,

$I_{\beta,s}^{+}(u)$ $:= \int_{\Omega}G(x, \nabla u)dx-\frac{\beta+s}{p}\int_{\Omega}u_{+}^{p}dx$

for $u,$ $v\in W^{1,p}(\Omega)$ . In this paper, we use the following notations:

$B(r):=\{u\in W;\Vert u\Vert\leq r\}$ ,
$D(r, r’):=\{u\in W;r\leq\Vert u\Vert\leq r^{l}\}$ ,
$rS:=\{u\in W;\Vert u\Vert_{p}=r\}$ ,

$B_{p}(r):=\{u\in W;\Vert u\Vert_{p}\leq r\}$ ,
$D_{p}(r, r’)$ $:=\{u\in W;r\leq\Vert u\Vert_{p}\leq r’\}$

$rS_{+}:=\{u\in W;\Vert u_{+}\Vert_{p}=r\}$

for $r’\geq r>0$ . Here, we note that the topology of all subsets above are induced
by the $W^{1,p}(\Omega)$ norm. We set

$K(I_{\beta,s}):=\{u\in W;I_{\beta,s}’(u)=0\}$ and $I_{\beta,s}^{c}:=\{u\in W;I_{\beta,s}(u)\leq c\}$

for $c\in \mathbb{R}$ .
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Remark 5 Let $u\in W^{1,p}(\Omega)$ be a critical point of $I_{\beta,s}$ , namely, $u$ satisfies the
equality

$\int_{\Omega}A(x, \nabla u)\nabla\varphi dx=(\beta+s)\int_{\Omega}u_{+}^{p-1}\varphi dx-\beta\int_{\Omega}u_{-}^{p-2}\varphi dx$

for every $\varphi\in W^{1,p}(\Omega)$ . Then, because of $u\in L^{\infty}(\Omega)$ (see Appendix in [14]), $we$

see $u\in C^{1,\gamma}(\overline{\Omega})(0<\gamma<1)$ by the regularity result (cf. [1 $1J)$ .
By Theorem 3 in $l41,$ $u$ satisfies $(F)_{(\beta+s,\beta)}$ in the distribution sense and the

boundary condition

$0= \frac{\partial u}{\partial\nu_{A}}$
$:=A( \cdot, \nabla u)\nu=a(\cdot, |\nabla u|)\frac{\partial u}{\partial\nu}$ in $W^{-1/q,q}(\partial\Omega)$

for every $1<q<\infty$ (see $l41$ for the definition of $W^{-1/q,q}(\partial\Omega)$). Since $u\in$

$C^{1,\gamma}(\overline{\Omega})$ and $a(x, y)>0$ for every $y\neq 0,$ $u$ satisfies the Neumann boundaw
condition, that is, $\frac{\partial u}{\partial\nu}(x)=0$ for every $x\in\partial\Omega$ .

By Proposition 1 and the remark above (note also that $A(x,$ $y)$ is odd in $y$ ), it
is sufficient to prove the following theorems for the proofs of Theorem 2 and 3.

Theorem 6 ([15]) For every $s\geq 0$ and $R>0$ , there exists a $\beta\in[\beta_{0}(s), \beta_{1}(s)]$

such that $K(I_{\beta,s})\cap B_{p}(R)\backslash \{0\}\neq\emptyset$ .

Theorem 7 ([15]) Let $s\geq 0,$ $\epsilon>0$ and $R_{2}>R_{1}>0$ be constants satisfying
(3) as in Theorem 3. Then, there exists a $\beta\in[\beta_{0}(s), \beta_{1}(s)+\epsilon]$ such that
$K(I_{\beta,s})\cap D_{p}(R_{1}, R_{2})\neq\emptyset$.

Roughly speaking, to show the existence of a non-trivial critical point near
zero of $I_{\beta,s}$ , we see the variation of the critical groups at $0$ for $I_{\beta,s}$ when a
parameter $\beta$ changes from $\beta_{0}(s)$ to $\beta_{1}(s)$ . Moreover, it is necessary to construct
a flow for which $B_{p}(R)$ $(or D_{p}(R_{1}, R_{2}))$ is invariant. IFUrthermore, we shall
produce suitable paths to see that 0-th reduced homology group is trivial. For
this purpose, we need to consider the constrained variational problems. The
key point of our proof is to introduce a Finsler manifold $rS+\cdot$

Finally, we state the result characterizing $c(s)$ by Morse theory.

Corollary 8 ([15]) Let $C_{0}=C_{1}=p-1$ (that is, the case of p-Laplace opera-
tor). Then, for every $s\geq 0$

$c(s)= \min\{\beta>0;\tilde{H}_{0}(I_{\beta,s}^{0}\backslash \{0\})=0\}$

holds, where $c(s)$ is a function defined by (3) and $\tilde{H}_{*}$ denotes the reduced ho-
mology groups.

This corollary means that the mountain pass value $c(s)$ is attained by some
continuous path $\gamma_{s}\in\Sigma$ for each $s\geq 0$ .
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4 The constrained variational problems
Throughout this section, we fix any $s\geq 0$ . Thus, set $I_{\beta,s}(\cdot)=I_{\beta}(\cdot)$ for $\beta\in \mathbb{R}$

to simplih the notation. First, we define $C^{1}$ functionals $\Phi$ and $\Phi+$ on $W$ by
$\Phi(u)$ $:= \frac{1}{p}\Vert u\Vert_{p}^{p}$ and $\Phi_{+}(u)$ $:= \frac{1}{p}\Vert u_{+}\Vert_{p}^{p}$ for $u\in W$ . Because $r^{p}/p$ is a regular
value of $\Phi$ and $\Phi+$ for each $r>0$ , it is well known that the norm of the derivative
at $u\in(rS)$ or $u\in(rS_{+})$ of the restriction of $I_{\beta}$ or $I_{\beta}^{+}$ to $rS$ or $rS+$ is defined
as follows:

$\Vert I_{\beta}^{\sim/}(u)\Vert_{*};=\min\{\Vert I_{\beta}’(u)-t\Phi’(u)\Vert_{W^{*}};t\in \mathbb{R}\}$

$= \sup\{\langle I_{\beta}’(u), v\};v\in T_{u}(rS),$ $\Vert v\Vert=1\}$ , (5)

$\Vert(\tilde{I}_{\beta}^{+})’(u)\Vert_{*};=\min\{\Vert(I_{\beta}^{+})’(u)-t\Phi_{+}’(u)\Vert_{W*};t\in \mathbb{R}\}$ ,

where $T_{u}(rS)$ denotes the tangent space of $rS$ at $u$ , that is, $T_{u}(rS)=\{v\in$
$W; \int_{\Omega}|u|^{p-2}uvdx=0\}$ (cf. section 5.3 in [17] for (5)). It is known that $rS$

and $rS+$ are $C^{1}$ Finsler manifolds (cf. section 27.4 and 27.5 in [9]). Hence, $rS$

and $rS+$ are locally path connected. Concerning $rS+$ , the following result is
proved.

Corollary 9 ([15]) $rS+is$ path connected for each $r>0$ .

To state our results for constrained variational problems, we set the following
open subsets of $rS$ or $rS+$ as follows:

$\mathcal{O}(I_{\beta}, r, b):=\{u\in rS;I_{\beta}(u)<b\}$ , $\mathcal{O}^{+}(I_{\beta}^{+}, r, b):=\{u\in rS_{+};I_{\beta}^{+}(u)<b\}$

for $r>0$ and $\beta,$ $b\in \mathbb{R}$ . Then, we have the following existence result.

Lemma 10 ([15]) Let $\beta\in \mathbb{R},$ $r>0$ and $b\in \mathbb{R}$ . Then, any nonempty maximal
open connected subset of $\mathcal{O}(I_{\beta}, r, b)$ or $\mathcal{O}^{+}(I_{\beta}^{+}, r, b)$ contains at least one critical
point of $I_{\beta}|_{rS}$ or $I_{\beta}^{+}|_{rS_{+}}$ , respectively.

The above lemma plays an important role for the proof of constructing a suitable
path. It is the developed result $hom$ one as in [5] for the manifold $S$ .

5 Further results and remaining questions
Finally, the present author would like to take up two questions. First one is “Is
the set $\Theta_{A}$ closed¿‘ where $\Theta_{A}$ denotes the set of all $(\alpha, \beta)$ such that $(F)_{(\alpha,\beta)}$ has
a non-trivial solution. Of course, in the case where $A$ is $(p-1)$-homogeneous in
the second variable, we know that the above question is true. Second is “When
dose $\Theta_{A}$ contain a similar curve to the first nontrivial curve $\mathscr{C}?$ ” We state the
following result related to the first question.

Proposition 11 For $R_{2}\geq R_{1}>0$ , we set

$\Theta_{A}(R_{1}, R_{2});=$ { $(\alpha,$ $\beta)\in \mathbb{R}^{2};(F)_{(\alpha,\beta)}$ has a solution in $D(R_{1},$ $R_{2})$ },
$\Theta_{A}(R_{1}, R_{2})_{p}:=$ { $(\alpha,$ $\beta)\in \mathbb{R}^{2};(F)_{(\alpha,\beta)}$ has a solution in $D_{p}(R_{1},$ $R_{2})$ }.

Then, $\Theta_{A}(R_{1}, R_{2})$ and $\Theta_{A}(R_{1}, R_{2})_{p}$ are closed for any $R_{2}\geq R_{1}>0$ .
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Proof. Let $\{(\alpha_{n},\beta_{n})\}\subset\Theta_{A}(R_{1}, R_{2})_{p}$ (resp. $\Theta_{A}(R_{1},$ $R_{2})$ ) be a sequence satisfy-
ing $\alpha_{n}arrow\alpha_{0}$ and $\beta_{n}arrow\beta_{0}$ as $narrow\infty$ . Because of $(\alpha_{n}, \beta_{n})\in\Theta_{A}(R_{1}, R_{2})_{p}$ (resp.
$\Theta_{A}(R_{1}, R_{2}))$ , there exists a $u_{n}\in D_{p}(R_{1}, R_{2})$ (resp. $D(R_{1},$ $R_{2})$ ) being a solution
of $(F)_{(\alpha_{n},\beta_{n})}$ , that is, $-divA(x, \nabla u_{n})=\alpha_{n}u_{n+}^{p-1}-\beta_{n}u_{n-}^{p-1}$ in $\Omega,$ $\partial u_{n}/\partial\nu=0$ on
$\partial\Omega$ . Then, we can see that $\{u_{n}\}$ is bounded in $L^{\infty}(\Omega)$ . Indeed, by taking $u_{n}$ as
test function, we have

$\frac{C_{0}}{p-1}\Vert\nabla u_{n}\Vert_{p}^{p}\leq\int_{\Omega}A(x, \nabla u_{n})\nabla u_{n}d_{X}\leq\max\{|\alpha_{n}|, |\beta_{n}|\}\Vert u_{n}\Vert_{p}^{p}\leq\max\{|\alpha_{n}|, |\beta_{n}|\}R_{2}^{p}$

by Remark 4 (iii). This implies the boundedness of 1 $u_{n}\Vert$ . Moreover, it is known
that there exists a positive constant $C$ independ of $n$ such that 1 $u_{n}\Vert_{\infty}\leq C\Vert u_{n}\Vert$

because $u_{n}$ is a solution of $(F)_{(\alpha_{n},\beta_{n})}$ and

$| \alpha_{n}t_{+}^{p-1}-\beta_{n}t_{-}^{p-1}|\leq\max\{|\alpha_{0}|+1, |\beta_{0}|+1\}|t|^{p-1}$ (6)

for every $t\in \mathbb{R}$ and sufficiently large $n$ (see Appendix in [14]). Thus, our claim
is shown.

Because of the boundedness of $\Vert u_{n}\Vert_{\infty}$ and (6), the regularity result in [11]
guarantees that there exist $\gamma\in(0,1)$ and $M>0$ independ of $n$ such that
$u_{n}\in C^{1,\gamma}(\overline{\Omega})$ and $\Vert u_{n}\Vert_{C^{1,\gamma}(\overline{\Omega})}\leq M$ . Since the inclusion of $C^{1,\gamma}(\overline{\Omega})$ to $C^{1}$ (St)
is compact, we may assume that $u_{n}$ converges some $u_{0}$ in $C^{1}$ (St) by choosing
a subsequence. As a result, $u_{0}$ is a solution of $(F)_{(\alpha_{O},\beta_{0})}$ and $u_{0}\in D_{p}(R_{1}, R_{2})$

(resp. $D(R_{1},$ $R_{2})$ ). Thus, $(\alpha_{0}, \beta_{0})\in\Theta_{A}(R_{1}, R_{2})_{p}$ (resp. $\Theta_{A}(R_{1},$ $R_{2})$ ) holds,
whence our conclusion is shown. 1

For any $s\geq 0$ and $R_{2}\geq R_{1}>0$ such that $K(I_{\beta,s})\cap D_{p}(R_{1}, R_{2})\neq 0$ for some
$\beta>0$ , we can define $c_{A}(s, R_{1}, R_{2})$ by

$c_{A}(s, R_{1}, R_{2}):= \inf\{\beta\geq\beta_{0}(s);K(I_{\beta,s})\cap D_{p}(R_{1}, R_{2})\neq\emptyset\}$ .

It follows from Proposition 11 that the above infimum is attained, that is,

$c_{A}(s, R_{1}, R_{2})= \min\{\beta\geq\beta_{0}(s);K(I_{\beta,s})\cap D_{p}(R_{1}, R_{2})\neq\emptyset\}$ .

Then, the present author would like to consider the problem “What properties
does $c_{A}(s, R_{1}, R_{2})$ have¿‘ to answer to the second question.

5.1 Asymptotically $(p-1)$ homogeneous case
In this subsection, we deal with the special case where the map $A(x, y)$ is asymp-
totically $(p-1)$ homogeneous in the following sense:
$(AH)$ there exist a positive function $a_{\infty}\in C^{1}$ (Ki, $\mathbb{R}$) and a function $\tilde{a}(x, t)$ on
St $\cross \mathbb{R}$ such that

$A(x, y)=a_{\infty}(x)|y|^{p-2}y+\tilde{a}(x, |y|)y$ for every $x\in\Omega,$ $y\in \mathbb{R}^{N}$ ,

and $\lim_{tarrow+\infty}\frac{\tilde{a}(x,t)}{t^{p-2}}=0$ uniformly in $x\in\overline{\Omega}$ .
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For this weight $a_{\infty}$ , we can define the following mountain pass value $c_{a_{\infty}}(s)$

by the same argument as in $c(s)$ , namely

$c_{a_{\infty}}(s):= \inf_{\gamma\in\Sigma}\max_{t\in[0,1]}\tilde{J}_{a_{\infty},s}(\gamma(t))$ , (7)

$J_{a_{\infty},s}(u)$ $:= \int_{\Omega}a_{\infty}(x)|\nabla u|^{p}$ $dx$ – $s$ $\int_{\Omega}u_{+}^{p}dx$ , $\tilde{J}_{a_{\infty},s}$ $:=J_{a_{\infty},s}|_{S}$ .

It can be proved that the interval $(0, c_{a_{\infty}}(s))$ has no critical values of $\tilde{J}_{a_{\infty},s}$ .
Under the hypothesis $(AH)$ , we have the following result.

Proposition 12 Assume $(AH)$ . Let $s\geq 0,$ $\beta>0$ and $\{u_{n}\}$ be a sequence of
a solution for $(F)_{(s+\beta,\beta)}$ . If $\Vert u_{\eta}\Vert_{p}arrow$ oo as $narrow\infty$ , then $\beta\geq c_{a_{\infty}}(s)$ holds,
where $c_{a_{\infty}}(s)$ is the constant defined by (7).

Proof. Here, we give the sketch of the proof. Set $v_{n}$ $:=u_{n}/\Vert u_{n}\Vert_{p}$ . Then, by
the same argument as in [16, Proposition 36], we can prove that $\{v_{n}\}$ has a
subsequence strongly convergent to a solution $v$ of

$\partial u$

$-div(a_{\infty}(x)|\nabla u|^{p-2}\nabla u)=(s+\beta)u_{+}^{p-1}-\beta u_{-}^{p-1}$ in $\Omega$ , $–=0$ on $\partial\Omega$ ,
$\partial\nu$

where $a_{\infty}$ is the positive function as in $(AH)$ . This means that $v$ is a critical
point of $\tilde{J}_{a_{\infty},s}$ with $\beta=\tilde{J}_{a_{\infty},s}(v)$ . Because $\beta>0$ and $(0, c_{a_{\infty}}(s))$ contains no
critical values of $\tilde{J}_{a_{\infty},s}$ , we obtain $\beta\geq c_{a_{\infty}}(s)$ . I

Corollary 13 Assume $(AH)$ and $s\geq 0$ . Then, we have

$\lim_{Rarrow}\inf_{\infty}c_{A}(s, R, \infty)\geq c_{a_{\infty}}(s)$ ,

where $c_{A}(s, R, \infty)$ $:= \inf\{\beta\geq\beta_{0}(s);K(I_{\beta,s})\cap D_{f^{l}}(R, \infty)\neq\emptyset\}$ .

Proof. By way of contradiction, we prove our assertion. So, we assume that
there exists $s\geq 0$ such that $(0<\beta_{0}(s)\leq)\beta$ $:= \lim\inf_{Rarrow\infty}c_{A}(s, R, \infty)<$

$c_{a_{\infty}}(s)$ . Then, by choosing a subsequence, we can take a sequence $\{u_{n}\}$ of a
solution for $(F)_{(\beta_{n}+s,\beta_{n})}$ with 1 $u_{n}\Vert_{p}arrow\infty$ and $\beta_{n}arrow\beta$ . By the same argument
as in [16, Proposition 36], we can show that $\beta$ is a critical value of $\tilde{J}_{a_{\infty},s}$ .
Therefore, we have a contradiction because of $0<\beta<c_{a_{\infty}}(s)$ . 1

The present author expect that in Theorem 3, we can choose $\beta$ close to $c_{a_{\infty}}(s)$

under the additional hypothesis $(AH)$ .

References
[1] M. Alif and P. Omari, On a p-Laplace Neumann problem with asymptoti-

cally asymmetric perturbations, Nonlinear Analysis TMA 51 (2002), 369-
389.

[2] M. Arias, J. Campos, M. Cuesta and J.-P. Gossez, An asymmetric Neu-
mann problem with weights, Ann. Inst. Henri Poincar\’e 25 (2008), 267-280.

9



[3] M. Arias, J. Campos and J.-P. Gossez, On the antimaximum principle and
the Fu\v{c}ik spectrum for the Neumann p-Laplacian, Differential Int. Equa-
tions 13(2000), 217-226.

[4] E. Casas and L. A. Fernandez, A Green’s formula for quasilinear elliptic
operators, J. Math. Anal. Appl. 142 (1989), 62-73.

[5] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fu\v{c}ik
spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212-
238.

[6] L. Damascelli, Comparison theorems for some quasilinear degenemte ellip-
tic opemtors and applications to symmetry and monotonicity results, Ann.
Inst. Henri Poincar\’e 15 (1998), 493-516.

[7] E. Dancer, On the Dirichlet problem for weak nonlinear elliptic partial dif-
ferential equations, Proc. Royal Soc. Edinburgh, $76A(1977),$ 283-300.

[8] N. Dancer and K. Perera, Some Remarks on the Fu\v{c}lk Spectreum of the p-
Laplacian and Critical Groups, J. Math. Anal. Appl. 254 (2001), 164-177

[9] K. Deimling, “Nonlinear Functional Analysis”, Springer-Verlag, New York,
1985.

[10] S. Fu\v{c}\’ik, Boundary value problems with jumping nonlinearities, Casopis
Pest. Mat. 101 (1976), 69-87.

[11] G. M. Lieberman, Boundary regularity for solutions-of degenemte elliptic
equations, Nonlinear Anal. 12 (1988), 1203-1219.

[12] M. Montenegro, Strong maximum principles for supersolutions of quasilin-
ear elliptic equations, Nonlinear Anal. 37 (1999), 431-448.

[13] D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neu-
mann problems driven by a nonhomogeneous differential operator, Proc.
Amer. Math. Soc., to appear.

[14] D. Motreanu and M. Tanaka, Existence of solutions for quasilinear elliptic
equations with jumping nonlinearities under the Neumann boundary condi-
tion, to appear in Calc. Var. Partial Differential Equations.

[15] M. Tanaka, Existence of the Fu\v{c}lk type spectrums for the genemlized p-
Laplace opemtors, submitted.

[16] M. Tanaka, The antimaximum principle and the existence of a solution for
the genemlized p-Laplace equations with indefinite weight, submitted.

[17] M. Willem, “Minimax Theorem”, Birkh\"auser, Boston, 1996.

10


