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1 Introduction

In this paper, we consider the existence of (o, 8) € R? for which the following
quasilinear elliptic equation has a non-trivial solution:

—div A(z, Vu) = au ' — BuP™! in Q,
(F)(a,ﬁ) { g% =0 on 89,

where v denotes the outward unit normal vector on 89, 1 < p < o0, Q C
R¥ is a bounded domain with C2 boundary 8. Here, A: O x RY — RNV is
a map which is strictly monotone in the second variable and satisfies certain
regularity conditions (see the following assumption (A)). The equation (F) (,8)
contains the corresponding p-Laplacian problem as a special case, and in this
case, (o, 8) admitting a non-trivial solution to (F)(,,s) is said to belong to
the Fucik spectrum of the p-Laplacian. Although the p-Laplace operator is
(p — 1)-homogeneous, the operator A4 is not supposed generally to be (p — 1)-
homogeneous in the second variable.
Here, we say that u € W'(Q) is a (weak) solution of (F)(q,g) if

/A(x, Vu)Vgon::/auﬁ_"lgodm—/Bu’flgodx
Q Q Q

for all ¢ € WiP(Q).
Throughout this paper, we assume that the operator A satisfies the following
assumption (A):

(A) A(z,y) = a(z, |y|)y, where a(z,t) > 0 for all (z,t) € Q x (0, +00) and
(i) A€ COG xRY,R¥) N CH(G x (RN \ {0}),RV);
(ii) there exists a C; > 0 such that

|Dy Az, y)| < C1ly|P~2 for every z € Q, and y € RN \ {0};

(iii) there exists a Cy > 0 such that

Dy A(z,y)€-€ > Coly|P~2|¢|*> for every z € Q, y € R¥\ {0} and ¢ € RV.



(iv) there exists a Cy > 0 such that

|D; Alz,y)| < Co(1+[ylP™) for every z € @, y € RN \ {0}.

Throughout this paper, we assume Cy < p — 1 < C; because we can take such
desired Cy and C; anew if necessary.

The hypothesis (A) has been considered in the study of the quasilinear el-
liptic problems (cf. [6], [12], [13]). For example, we can treat the operators like
the p-Laplacian with the positive weight and

div <(|Vu|p—2 + |Vul?2)(1 + |Vu|?) 5 Vu) forl<p<g<oo.

Let us recall the known results in the special case of A(z,y) = |y|P~2y that
is, p-Laplace problem and Cy = C; = p — 1. The set of all points (a,3) € R?
for which the equation :

—Apu=auf"! — BuP " in Q, g-"s =0 on 89 (1)
has a non-trivial solution is called the Fuéik spectrum of the p-Laplacian under
the Neumann boundary condition. In this paper, we denote the Fué¢ik spectrum
of p-Laplacian by ©,. It is well known that the first eigenvalue p; = 0 of —A, is
simple and every eigenfunction corresponding to u; = 0 is a constant function.
Therefore, ©, contains the lines {0} x R and R x {0} (we call these lines as
“the trivial lines”). Furthermore, by the same argument as in [5], it can be
proved that there exists a Lipschitz continuous curve contained in ©, which is
called “the first nontrivial curve” & (see Section 2). In the p-Laplacian case,
many authors have treated the Fuéik spectrum (see [5], (7], [8], [10] under the
Dirichlet boundary condition and [2], [3] for Neumann boundary condition).

Let us return to the general case. In [14], D. Motreanu and the present
author treated the equation

—~div A(z, Vu) = f(z,u) inQ, g—g =0 on 09 (2)

with the following nonlinearity:

-1 p— 1
_ [ aouf —ﬁ w7t 4 o(julP1) at 0,
flau) = { ouf ' — BuPT! + ojulP) at 0o
for (aw, Bo), (a, B) € R2. Roughly speaking, by constructing two curves € and
% related to the map A (see section 3), it was shown that the equation (2) has a
sign-changing solution in the case where (o, () is below the curve € and (v, 5o)
is above the curve €. In the p-Laplacian case, we see that two curves ¥ and €
coincide with the first nontrivial curve €. Moreover, if the first nontrivial curve
lies between (ap, Bp) and (e, B), then equation —Ayu = f(z,u) in Q (under the
Dirichlet boundary condition) has a non-trivial solution. Therefore, even for the
general case of A, it seems reasonable to expect the existence of uncountably
many Fuéik type spectrum between % and €.
Mainly, this paper consists of results in [14] and [15]. In the final section,
we see further results and several questions concerning our problem.



2 The first nontrivial curve contained in ©,

Here, we recall the result for the special case of A(z,y) = |y|P~2y, that is, p-
Laplacian problems (note that we can take Cp = C; = p — 1 in (A)). The
construction of the curve € contained in the Fuéik spectrum is carried out by
the same argument as in [5]: For s > 0, we define

Js(u) :=/ |VulP dz — s/ uf dz foru € WHP(Q), Js:=Js|s
Q Q

S = {u e WhP(Q); / |lu|Pdz =1 },
o
Y= {y e C(0,1],5); v(0) = 91, ¥(1) = —41 },

where 11 = 1/|Q|/? (so |11, = 1). Here, the set C([0, 1], S) denotes the set of
continuous functions from [0, 1] to S with the topology induced by the WP ()
norm. Finally, we set

o(s) = inf, e Js(7(2))- (3)
Then, it can be proved that c(s) is a positive critical value of J, with ¢(0) =
t2, where us is the second eigenvalue of the p-Laplacian under the Neumann
boundary condition. Moreover, we can see that c(s) is continuous, strictly
decreasing in s > 0 and ¢(s) + s is strictly increasing in s > 0 (refer to [1,
Lemma2.2] and [5, Proposition 4.1]). Then, € is defined as follows:

€ = {(c(s) +s,¢(s)); s > 0}U{(c(s),c(s) +8); s >0}.

Finally, we remark that in the case of N > p, it is shown in [3] that ¢(s) — 0 as
8 — 00, whence the asymptotic lines of the first nontrivial curve are the trivial
lines R x {0} and {0} x R. However, if N < p, then c(s) — A as s — oo, where
) is a positive constant defined by

A= i%f/ |VulP dz, where B := {u € S; u(zo) = 0 for some zo € Q}.
Q 4

This yields that the trivial lines are not the asymptotic lines of the first nontrivial
curve.

3 Existence and non-existence results
To state the results for (F')(4,g), we define curves € and € by

€ = 20 = {(aCo/(p - 1,5Co/(p-1)) s (@) € ¥},
7= g = ((aCi/r- 1,00/~ 1)) s (@) €9,

where Cp and C; are positive constants satisfying (A). First, we state the
elementary results for the equation (F')(,,5) which is shown in [14].

Proposition 1 ([14, Proposition 2]) The following assertions hold:



(i) if aB < 0 or max{a, 8} < 0 holds, then (F),p) has no non-trivial solu-
tions;

(ii) ifu is a non-trivial solution of (F)(a,p) with min{a, B} > 0, then u changes
sign;

(iii) if u is a non-trivial solution of (F)(q,3) with o3 =0, then u is a constant
function;

(iv) f0<a<a and0< B < f for some (o/,3) € €, then (F)(a,p) has no
non-trivial solutions.

Define fBo(s) and B1(s) for s > 0 by

. Co p—1 . 1 p—1
ﬁo(s)‘_l’—lc( Co s)’ ﬂl(s)'—ip—lc( C1 3)’

where ¢(-) is a function defined by (3) (see the following figure):

A

B

Bi(s)

c(s) .
,30(3) ... .............

Now, we state existence results.
Theorem 2 ([15]) For every s > 0 and R > 0, there exists a B € [Bo(s), B1(8)]
such that (F)g4s,8) and (F)s,p+s) have at least one sign-changing solution
u € CY(Q) with [, |ulPdx < RP.

Theorem 3 ([15]) Let s >0, € > 0 and Ry > Ry > 0 be constants satisfying

Bi(s)+s+¢e Ci(Bi(s) +s+¢)2 s(C,—Co) }l/p
min{Bo(s),e}’  Co(Bi(s) +€)2 ' Co(Bi(s) +¢) 1

Then, there exists a B € [Bo(s), B1(8) + €] such that (F)g4s,8) and (F)(g,6+s)
have at least one sign-changing solution u € C'(Q) with R} < [, [u|P dz < Rj.

R2>max{



3.1 Variational setting and notations

In what follows, we define the norm of W := W#(Q) by ||u||? := || Vu||B+||u]]2,
where ||ull, denotes the norm of LI(Q) for u € LI(Q) (1 < ¢ < o). Define

G(z,y) = Olyl a(z,t)t dt, then we can easily see that

V,G(z,y) = A(z,y) and G(z,0)=0
for every z € Q.
Remark 4 The following assertions hold:

(i) for allz € Q, A(z,y) is mazimal monotone and strictly monotone in y;

(i) |A(z,9)| < S lylP~? for every (z,y) € O x R,

(i) A(z,y)y > 2 |ylP for every (z,y) € A x RV;

(iv) G(z,y) is convez in y for all  and satisfies the following inequalities:

Alz,y)y 2 G(z,y) 2 and G(z,y) < P (4

[yl <
p(p—1) p(p—1)
for every (z,y) € 2 x RV,
where Co and Cy are the positive constants described in (A).

For parameters s > 0 and B € R, we define the C? functionals I ; and I 3‘ s
on W1P(Q) by

B+s

Ip s(u) :=/QG(m,Vu)dx———p——/Qu”+dx—g/ﬂup_da:

with
(Ié,s(u),v)=/A(x,Vu)V'ud:c—(/J’-I-s)/uﬂ_lvd:c+ﬂ/u’flvdx,
Q Q Q

I7 (u) :=/G(x,Vu)dz—ﬁ—_!_—S/uida:
Q P Ja

for u, v € WHP(Q). In this paper, we use the following notations:

B(r):={ueW; |ul| <r}, Bp(r) :=={ue W |ul, <r},
D) i={ueW;r<|ul<r'}, Dp(r,r):={ueW;r<|ul,<r}
r§:={ueW;|lull, =r}, rSy={ueW;|lutl, =7}

for ' > r > 0. Here, we note that the topology of all subsets above are induced
by the W1P(Q) norm. We set

K(lps) i ={ueW; Iz (u)=0} and I§,:={ueW;Ig,(u)<c}

for c € R.



Remark 5 Let u € W1P(Q) be a critical point of Ig s, namely, u satisfies the
equality

/ Az, Vu)Vedz = (B + s)/ w2 dr — ﬂ/ WP 2pda
Q Q Q

for every o € WHP(Q). Then, because of u € L°(2) (see Appendiz in [14]), we
seeu € CL7(Q) (0 < v < 1) by the regularity result (cf. [11]).

By Theorem 3 in [4], u satisfies (F) (g, 5) i the distribution sense and the
boundary condition

Ou _ A(,Vu =af. |Vu|)-gg' in W~Y/29(90)

for every 1 < q < oo (see [4] for the definition of W-1/99(6Q)). Since u €
CY7(Q) and a(z,y) > 0 for every y # 0, u satisfies the Neumann boundary
condition, that is, g%(x) =0 for every x € 00N.

By Proposition 1 and the remark above (note also that A(z,y) is odd in y), it
is sufficient to prove the following theorems for the proofs of Theorem 2 and 3.

Theorem 6 ([15]) For every s > 0 and R > 0, there exists a 8 € [Bo(s), B1(s)]
such that K(Igs) N By(R) \ {0} # 0.

Theorem 7 ([15]) Let s > 0, € > 0 and Ry > Ry, > 0 be constants satisfying
(3) as in Theorem 3. Then, there exists a B € [Bo(s),Bi(s) + €] such that
K(Ig,s) N Dp(Ry, Rp) # 0.

Roughly speaking, to show the existence of a non-trivial critical point near
zero of Ig s, we see the variation of the critical groups at 0 for Igs when a
parameter 8 changes from (Gy(s) to (51(s). Moreover, it is necessary to construct
a flow for which B,(R) (or Dp(R1,Rz)) is invariant. Furthermore, we shall
produce suitable paths to see that 0-th reduced homology group is trivial. For
this purpose, we need to consider the constrained variational problems. The
key point of our proof is to introduce a Finsler manifold rS,.

Finally, we state the result characterizing ¢(s) by Morse theory.

Corollary 8 ([15]) Let Co = Cy =p — 1 (that is, the case of p-Laplace opera-
tor). Then, for every s >0

c(s) = min{ﬂ >0; Ho (I3, \ {0}) =O}
holds, where ¢(s) is a function defined by (3) and H, denotes the reduced ho-

mology groups.

This corollary means that the mountain pass value c(s) is attained by some
continuous path v, € ¥ for each s > 0.



4 The constrained variational problems

Throughout this section, we fix any s > 0. Thus, set Igs(-) = Ig(+) for B € R
to simplify the notation. First, we define C! functionals ® and ®, on W by
®(u) = IHUHP and @4 (u) := 1||u+}|p for u € W. Because r?/p is a regular
value of <I’ and @.,_ for each r > O it is Well known that the norm of the derivative
at u € (rS) or u € (rS,) of the restriction of Iz or I3 ¥ to rS or rS, is defined
as follows:

~ / .
s (w)ll« = min { || I5(u) — t®'(u)||w-; t € R}
= sup { (I3(u),v); v € T,(rS), |lv|| =1}, (5)
I8 Y @)l = min { (75) () — 19, () - s t € R},
where T, (rS) denotes the tangent space of rS at u, that is, T, (rS) = {v €
W [o|ulP~2uvdz = 0} (cf. section 5.3 in [17] for (5)). It is known that 7S
and 7S, are C! Finsler manifolds (cf. section 27.4 and 27.5 in [9]). Hence, rS

and rS. are locally path connected. Concerning 7S, the following result is
proved.

Corollary 9 ([15]) 7Sy ¢s path connected for each v > 0.

To state our results for constrained variational problems, we set the following
open subsets of S or S, as follows:

O(Ip,,b) == {u€rS; Ip(u) <b}, OF(IF,nb):={uerss;f(u)<b}
for » > 0 and f,b € R. Then, we have the following existence result.

Lemma 10 ([15]) Let B € R, r > 0 and b € R. Then, any nonempty mazimal
open connected subset of O(Ig,r,b) or (9*(];, r,b) contains at least one critical

point of Ig|rs or I;|,~S+, respectively.

The above lemma plays an important role for the proof of constructing a suitable
path. It is the developed result from one as in [5] for the manifold S.

5 Further results and remaining questions

Finally, the present author would like to take up two questions. First one is “Is
the set © 4 closed?” where © 4 denotes the set of all (a, 8) such that (F)(a,) has
a non-trivial solution. Of course, in the case where A is (p — 1)-homogeneous in
the second variable, we know that the above question is true. Second is “When
dose ©4 contain a similar curve to the first nontrivial curve €7’ We state the
following result related to the first question.

Proposition 11 For Ry > R; > 0, we set

@A(Rl,Rz := {(0, B) € R?; (F)(q,5) has a solution in D(Ry,Rs) },
©4(R1, R2)p { a,f) € R%; (F)(,3) has a solution in D,(R;, Ry) } .

Then, © A(R1, Ry) and © s(Ry, Ry), are closed for any Ry > Ry > 0.



Proof. Let {(an,0n)} C ©a(R1, R2)p (resp. ©4(R1, Rz)) be a sequence satisfy-
ing o, — ap and B, — Bo as n — 0o. Because of (an, Bn) € ©4(R1, R2)p (resp.
© 4(Ri, R2)), there exists a up, € Dp(Ry, R2) (resp D(Rl, R5)) being a solution
of (F)(an,g,) that is, —div A(z, Vuy,) = anub] !~ B,uP in Q, Buy, /8v =0 on
0. Then, we can see that {u,} is bounded in L°°(Q) Indeed, by taking u, as
test function, we have

by Remark 4 (iii). This implies the boundedness of ||u,||. Moreover, it is known
that there exists a positive constant C independ of n such that lunlloo < Cllunl|
because uy, is a solution of (F)(, 3,) and

lanth ™! = Bat?”"| < max{jaol + 1, |Gl + 1}t[P~ (6)

for every t € R and sufficiently large n (see Appendix in [14]). Thus, our claim
is shown.

Because of the boundedness of ||u,|lec and (6), the regularity result in [11]
guarantees that there exist v € (0,1) and M > 0 independ of n such that
un € C7(Q) and [Junl|crvq) < M. Since the inclusion of C*7(Q) to C*(Q)
is compact, we may assume that u, converges some ug in C!(Q) by choosing
a subsequence. As a result, uo is a solution of (F)(q,,g,) and uo € Dp(R1, R3)
(resp. D(R1,R3)). Thus, (ag,B0) € ©a(R1,R2)p (resp. ©4(R1, R2)) holds,
whence our conclusion is shown. i

For any s > 0 and Ry > R; > 0 such that K(Igs) N Dy(R1, R2) # 0 for some
B > 0, we can define ca(s, R1, R2) by

ca(s, Ry, Rg) :=inf {8 > Bo(s); K(Ig,s) n Dp(Rl, Ry) # 0} .
It follows from Proposition 11 that the above infimum is attained, that is,
ca(s, Ry, Ry) = min {8 > Bo(s); K(Is,s) N Dyp(R1,R2) #0}.
Then, the present author would like to consider the problem “What properties
does ca(s, R1, R2) have?” to answer to the second question.

5.1 Asymptotically (p — 1) homogeneous case

In this subsection, we deal with the special case where the map A(z, y) is asymp-
totically (p — 1) homogeneous in the following sense:

(AH) there exist a positive function a, € C!(Q,R) and a function d(z,t) on
Q x R such that

A(z,y) = aco(@)lylPy + d(z, ly))y for every z € Q, y € RY,
a(z,t)

=0 uniformly in z € Q.



For this weight a, We can define the following mountain pass value c,__ (s)
by the same argument as in ¢(s), namely

o )= S R e e OO g

Jao.,s () :=/aoo(x)jVu|pd:c—s/ uf’,_ dz, jaoo,s = Jaw,sls.
Q Q

It can be proved that the interval (0, c, (s)) has no critical values of J,_ ;.
Under the hypothesis (AH), we have the following result.

Proposition 12 Assume (AH). Let s > 0, 3 > 0 and {u,} be a sequence of
a solution for (F)s+p,). If llun]p — o0 as n — oo, then B > c,_(s) holds,
where cq, (s) is the constant defined by (7).

Proof. Here, we give the sketch of the proof. Set v, := u,/||us||p- Then, by
the same argument as in [16, Proposition 36], we can prove that {v,} has a
subsequence strongly convergent to a solution v of

@=O on 012,

—div (@0 ()| Vu|P2Vu) = (s + B)ul ' — BuP™! in Q, £

where ao_is the positive function as in (AH). This means that v is a critical
point of J,, s with 8 = J,__ s(v). Because 3 > 0 and (0,c,__(s)) contains no
critical values of J,_ 5, we obtain 8 > Ca, (8)- |

Corollary 13 Assume (AH) and s > 0. Then, we have

liminfca(s, R,00) > cq_ (s),
R—oo

where ca(s, R, 00) :=inf {8 > Bo(s); K(Igs) N Dp(R,00) #0}.

Proof. By way of contradiction, we prove our assertion. So, we assume that
there exists s > 0 such that (0 < SBy(s) <)B := liminfr_ ca(s, R,0) <
Cao (). Then, by choosing a subsequence, we can take a sequence {u,} of a
solution for (F)(g, +s,8,) With ||un |, — 0o and 8, — 3. By the same argument
as in [16, Proposition 36], we can show that 3 is a critical value of jax,s.
Therefore, we have a contradiction because of 0 < 3 < Cay, (8)-

The present author expect that in Theorem 3, we can choose 3 close to ¢,_ (s)
under the additional hypothesis (AH).
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