Stable and unstable solutions to Laplace equations with nonlinear boundary conditions

Junichi Harada (Waseda University)

1 Introduction

We consider the Laplace equation with a nonlinear boundary condition.

$$\Delta u = 0 \text{ in } \mathbb{R}^n_+, \quad \partial_{\nu} u = u^q \text{ on } \partial \mathbb{R}^n_+ \quad (u > 0),$$
 (1)

where $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n; x_n > 0\}$ and $\partial_{\nu} = -\partial/\partial x_n$. The existence and the nonexistence of positive solutions of (1) depends on a exponent q > 1. It is known that if $q \in (1, n/(n-2))$, there are no positive solutions of (1) ([6]). On the other hand, there exists a family of positive solutions for q = n/(n-2) ([2], [9]) and for q > n/(n-2) ([3]). These existence and nonexistence theorems for positive solutions of (1) are completely corresponding to those for positive solutions of

$$-\Delta u = u^p \quad \text{in } \mathbb{R}^n. \tag{2}$$

It is known that (2) has no positive solutions if $p \in (1, (n+2)/(n-2))$ and has a family of positive radially symmetric solutions for $p \ge (n+2)/(n-2)$. Moreover there exists another critical exponent $p_{JL} > p_S$ defined by

$$p_{JL} = \begin{cases} \infty & \text{if } n \le 10, \\ \frac{n - 2\sqrt{n - 1}}{n - 4 - 2\sqrt{n - 1}} & \text{if } n \ge 11. \end{cases}$$

This critical exponent p_{JL} is known to be critical for asymptotic expansions and intersection properties of positive radially symmetric solutions of (2) ([8],[12]). A goal of this note is to introduce a new critical exponent corresponding to p_{JL} and to study the properties of positive solutions of (1) for q > n/(n-2).

Definition 1.1. A function $f(x) \in C(\mathbb{R}^n_+)$ is called x_n -axial symmetric if f(x) can be expressed by $f(x) = f(|x'|, x_n)$.

In this note, we often use a polar coordinate:

$$r = |x|, \quad \tan \theta = |x'|/x_n.$$

We introduce a singular solution of (1).

Lemma 1.1 ([11]). Let q > (n-1)/(n-2). Then there exists a singular solution $\varphi_{\infty}(x) = V(\theta)r^{-1/(q-1)}$ of (1), where $V(\theta) > 0$ is a unique solution of

$$\partial_{\theta\theta}V + (n-2)(\cot\theta)\partial_{\theta}V = \beta V$$
 in $(0,\pi/2)$, $\partial_{\nu}V = V^q$ on $\{\pi/2\}$,

where
$$\beta = m_q((n-2) - m_q)$$
 and $m_q = 1/(q-1)$.

A new critical exponent is defined as follows.

Definition 1.2 (JL-critical exponent). We set

$$\mu(q) = \inf_{u \in H^1(\mathbb{R}^n_+)} \frac{\left(\int_{\mathbb{R}^n_+} |\nabla u|^2 dx - \int_{\partial \mathbb{R}^n_+} (q\varphi_\infty^{q-1}) u^2 dx' \right)}{\int_{\partial \mathbb{R}^n_+} |x'|^{-1} u^2 dx'}$$

We call q JL-supercritical if $\mu(q) > 0$, JL-critical if $\mu(q) = 0$ and JL-subcritical if $\mu(q) < 0$.

Remark 1.1. From the trace Hardy inequality ([4]):

$$\int_{\partial \mathbb{R}^n_+} |x'|^{-1} u^2 dx' \le c_H \int_{\mathbb{R}^n_+} |\nabla u|^2 dx, \tag{3}$$

 $\mu(q)$ is expressed by $\mu(q) = c_H - qV(\pi/2)^{q-1}$. By using this expression, we can show that

- (i) for $n \geq 3$ there exists $q_0 > n/(n-2)$ such that $\mu(q) < 0$ if $q \in (n/(n-2), q_0)$,
- (ii) there exists $n_0 \in \mathbb{N}$ such that for $n > n_0$ there exists $q_1 > q_0$ such that $\mu(q) > 0$ if

 $q > q_1$.

To state our results, we prepare notations. Let $e_i(\theta)$ be the i'th eigenfunction of

$$\begin{cases}
-\Delta_S e = \lambda e & \text{in } S_+^{n-1}, \\
\partial_\nu e = qV(\pi/2)^{q-1} e & \text{on } \partial S_+^{n-1},
\end{cases}$$
(4)

where Δ_S is the Laplace Beltrami operator on S^{n-1} and set $B_R = \{x \in \mathbb{R}^n_+; |x| < R\}$. For simplicity of notations, we set

$$m_q = 1/(q-1).$$

Theorem 1.1 (JL-supercritical, JL-critical). There exists a family of x_n -axial symmetric solutions $\{u_{\alpha}(x)\}_{\alpha>0}$ satisfying the following properties.

(a)
$$u_{\alpha}(x) = \alpha u_1(\alpha^{(q-1)}x), \quad u_{\alpha}(0) = \alpha,$$

- (b) $u_{\alpha}(x) < \varphi_{\infty}(x)$, $\lim_{\alpha \to \infty} u_{\alpha}(x) = \varphi_{\infty}(x)$,
- (c) $u_{\alpha_1}(x) < u_{\alpha_2}(x)$ if $\alpha_1 < \alpha_2$,
- (d) there exist $\gamma_2 > \gamma_1 > m_q$, $c_{\alpha} \neq 0$ and $c'_{\alpha} \in \mathbb{R}$ such that

$$u_{\alpha}(x) = \begin{cases} V(\theta)r^{-m_q} + c_{\alpha}e_1(\theta)r^{-\gamma_1} + O(r^{-\gamma_2}) & \text{if JL-supercritical,} \\ V(\theta)r^{-m_q} + (c_{\alpha}\log r + c_{\alpha}')e_1(\theta)r^{-\gamma_1} + O(r^{-\gamma_2}) & \text{if JL-critical.} \end{cases}$$

Moreover if u(x), v(x) are positive x_n -axial symmetric solutions satisfying u(0) = v(0) and $u(x), v(x) < \varphi_{\infty}(x)$, then it holds that $u(x) \equiv v(x)$.

Theorem 1.2 (JL-subcritical). There exists a family of x_n -axial symmetric solutions $\{u_{\alpha}(x)\}_{\alpha>0}$ satisfying

$$u_{\alpha}(x) \le c_{\alpha}(1+|x|)^{-1/(q-1)}.$$
 (5)

Moreover one of the following asymptotic expansions holds.

(i) there exist $\gamma_2 > \gamma_1 > m_q$, $A, c_\alpha \neq 0$ and $B_\alpha \in \mathbb{R}$ such that

$$u_{\alpha}(x) = V(\theta)r^{-m_q} + c_{\alpha}e_1(\theta)r^{-\gamma_1}\sin(A\log r + B_{\alpha}) + O(r^{-\gamma_2}),$$

(ii) there exist $\gamma_4 > \gamma_3 > m_q$ and $c_{\alpha} \neq 0$ such that

$$u_{\alpha}(x) = V(\theta)r^{-m_q} + c_{\alpha}e_2(\theta)r^{-\gamma_3} + O(r^{-\gamma_4}).$$

Moreover if u(x), v(x) are positive x_n -axial symmetric solutions satisfying (5) and $u(x) \ge v(x)$ for |x| > R with some R > 0, then it holds that $u(x) \equiv v(x)$.

Remark 1.2. A solution $u_{\alpha}(x)$ ($\alpha > 0$) constructed in Theorem 1.1 and the singular solution $\varphi_{\infty}(x)$ do not intersect each other for JL-supercritical case and JL-critical case. On the other hand, $u_{\alpha}(x)$ ($\alpha > 0$) constructed in Theorem 1.2 and the singular solution $\varphi_{\infty}(x)$ must intersect each other for JL-subcritical case. Set

$$Z_{\alpha} = \{ x \in \mathbb{R}^n_+; u_{\alpha}(x) = \varphi_{\infty}(x) \}.$$

For the case (i) in Theorem 1.2, it holds that for large R > 0

$$Z_{\alpha} \setminus B_R \sim \{x \in \mathbb{R}^n_+ : A \log |x| + B_{\alpha} = k\pi, \ k \in \mathbb{N}\}.$$

For the case (ii) in Theorem 1.2, it holds that for large R > 0

$$Z_{\alpha} \setminus B_R \sim \{x \in \mathbb{R}^n_+ : e_2(\theta) = 0\}.$$

Unfortunately, we do not know which case (i) or (ii) actually occurs.

2 Proof

Step 1-(i) Existence. (JL-supercritical case, JL-critical case)

For JL-supercritical case and JL-critical case, we construct solutions of (1) satisfying (b) by a different way from [3]. For simplicity, we set

$$D_R = \{ x \in \partial \mathbb{R}^n_+; |x| < R \}, \quad S_R = \{ x \in \mathbb{R}^n_+; |x| = R \}.$$

First we construct suitable super-solutions.

Lemma 2.1. There exists $\delta_0 > 0$ and a positive x_n -axial symmetric function $\bar{u} \in C^2(\overline{B}_{1+\delta_0})$ such that $\bar{u} \equiv \varphi_{\infty}$ in B_1 , $\bar{u} < \varphi_{\infty}$ in $B_{1+\delta_0} \setminus \overline{B}_1$ and

$$-\Delta \bar{u} \ge 0$$
 in $B_{1+\delta_0}$, $\partial_{\nu} \bar{u} = \bar{u}^q$ on $D_{1+\delta_0}$.

We fix $\delta \in (0, \delta_0)$. Here we consider approximation problems.

$$\Delta u = 0 \text{ in } B_{1+\delta}, \quad \partial_{\nu} u = u^q \text{ on } D_{1+\delta}, \quad u = \bar{u} \text{ on } S_{1+\delta},$$
 (6)

where \bar{u} is a function given in Lemma 2.1. Here we call u(x) a weak solution of (6) if $u \in \{u \in H^1(B_{1+\delta}); u - \bar{u} = 0 \text{ on } S_{1+\delta}\}$ satisfies

$$\int_{B_{1+\delta}} \nabla u \cdot \nabla \psi = \int_{D_{1+\delta}} u^q \psi$$

for any $\psi \in C_c^{\infty}(\overline{B}_{1+\delta} \setminus \overline{S}_{1+\delta})$. To construct solutions of (6), we construct a monotone sequence $\{u_i(x)\}_{i \in \mathbb{N}}$. We set $u_0(x) = \bar{u}(x)$ and define $u_{i+1}(x)$ inductively by

$$\Delta u_{i+1} = 0$$
 in $B_{1+\delta}$, $\partial_{\nu} u_{i+1} = u_i^q$ on $D_{1+\delta}$, $u_{i+1} = \bar{u}$ on $S_{1+\delta}$.

Then $u_{\delta}(x) = \lim_{i \to \infty} u_i(x)$ gives a solution of (6). More precisely, we obtain the following lemma.

Lemma 2.2. Let q be JL-supercritical or JL-critical and $\delta_0 > 0$ be give in Lemma 2.1. Then for $\delta \in (0, \delta_0)$ there exits a positive x_n -axial symmetric weak solution $u_{\delta} \in H^1(B_{1+\delta})$ of (6) such that $u_{\delta}(x) \leq \bar{u}(x)$.

Next we show a boundedness of $u_{\delta}(x)$ near the origin.

Lemma 2.3. Let q be JL-supercritical or JL-critical and $u_{\delta}(x)$ be a weak solution of (6) constructed in Lemma 2.2. Then it holds that $u_{\delta} \in L^{\infty}(B_{1+\delta})$.

To show Lemma 2.3, we use a technique similar to [10] with local L^{∞} -estimates. The following local L^{∞} -estimates are easily derived from the argument of Theorem 8.17 in [5] with Lemma 2.1 in [7].

Lemma 2.4. Let $u \in H^1(B_1)$ be a weak solution of

$$-\Delta u + b(x) \cdot \nabla u + c(x)u = 0$$
 in B_1 , $\partial_{\nu} u = K(x')u$ on D_1

with $K \in L^{\gamma}(D_1)$ for some $\gamma > n-1$. Then there exists c > 0 depending on $||K||_{L^{\gamma}(D_1)}$, $||b||_{L^{\infty}(B_1)}$ and $||c||_{L^{\infty}(B_1)}$ such that

$$||u||_{L^{\infty}(B_{1/2})} \le c||u||_{L^{2}(B_{1})}.$$

Proof of existence of solutions of (1). Let $u_{\delta}(x)$ be a function given in Lemma 2.2 and set $M_{\delta} = \sup_{B_{1+\delta}} u_{\delta}(x)$. Then Lemma 2.3 implies that $M_{\delta} < \infty$. First we claim that $\lim_{\delta \to 0} M_{\delta} = \infty$. On the contrary, suppose that there exist $M_0 > 0$ and a sequence $\{\delta_i\}_{i \in \mathbb{N}}$ such that $\delta_i \to 0$ and $M_{\delta_i} \leq M_0$. Then there exits a subsequence $\{\delta_i\}_{i \in \mathbb{N}}$, which is denoted by the same symbol such that $u_{\delta_i}(x)$ converges to some function $u_{\infty}(x)$ in $H^1(B_1)$ satisfying $u_{\infty}(x) \leq \varphi_{\infty}(x) \leq \bar{u}(x)$. It is easily verified that the function $u_{\infty}(x)$ is a positive bounded solution of

$$\Delta u_{\infty} = 0$$
 in B_1 , $\partial_{\nu} u_{\infty} = u_{\infty}^q$ on D_1 , $u_{\infty} = \varphi_{\infty}$ on S_1 .

Hence from $u_{\infty}(x) \leq \varphi_{\infty}(x)$ $(u_{\infty} \not\equiv \varphi_{\infty})$, we obtain

$$\int_{B_1} |\nabla (u_{\infty} - \varphi_{\infty})|^2 < qV_B^{q-1} \int_{D_1} r^{-1} (u_{\infty} - \varphi_{\infty})^2.$$

By the trace Hardy inequality (3) and $qV_B^{q-1} \leq c_H$ (see Remark 1.1), it holds that $u_{\infty} \equiv \varphi_{\infty}$. However this contradicts to $u_{\infty} \in L^{\infty}(B_1)$. Hence the claim $\lim_{\delta \to 0} M_{\delta} = \infty$ is proved. We set

$$\bar{u}_{\delta}(x) = M_{\delta}^{-1} u_{\delta}(M_{\delta}^{-(q-1)}x).$$

Then $\bar{u}_{\delta}(x)$ is a solution of $\Delta \bar{u}_{\delta} = 0$ in $B_{M_{\delta}^{q-1}}$ and $\partial_{\nu} \bar{u}_{\delta} = \bar{u}_{\delta}^{q}$ on $D_{M^{q-1}}$. Since

$$M^{-1}\varphi_{\infty}(M^{-(q-1)}x) = \varphi_{\infty}(x)$$

for any M>0, it is verified that $\bar{u}_{\delta}(x) \leq \varphi_{\infty}(x)$ in $B_{M_{\delta}^{q-1}}$. Hence by $\lim_{|x|\to\infty}\varphi_{\infty}(x)=0$, there exists R>0 such that $\max_{B_R}\bar{u}_{\delta}(x)=1$ for small $\delta>0$. Thus taking $\delta\to 0$, we can obtain a positive x_n -axial symmetric solution u(x) of (1) satisfying $\max_{x\in\mathbb{R}^n_+}u(x)=1$ and $u(x)<\varphi_{\infty}(x)$. Finally we put

$$u_{\alpha}(x) = \alpha u(\alpha^{q-1}x) \quad (\alpha > 0).$$

Then $u_{\alpha}(x)$ is a solution of (1) and satisfies $u_{\alpha}(x) < \varphi_{\infty}(x)$, which completes the proof.

Step 1-(ii) Existence. (JL-subcritical case) Since the singular solution $\varphi_{\infty}(x)$ is not stable in a sense of Definition 1.2, arguments in Step 1-(i) can not be applicable. To show the existence of solutions of (1) satisfying (5), we need another technique. Here we omit the detail.

Step 2 Asymptotic expansion I.

In this step, we obtain the first asymptotic expansion:

$$\lim_{|x| \to \infty} |x|^{1/(q-1)} u(x) = V(\theta) \quad \text{in } C([0, \pi/2]). \tag{7}$$

Let u(x) be a solution of (1) given in Theorem 1.1 or Theorem 1.2 with u(0) = 1. To investigate the asymptotic expansion of x_n -axial symmetric solutions of (1), we introduce

$$v(t,\theta) = r^{1/(q-1)}u(r,\theta), \quad r = e^t \quad (t \in \mathbb{R}).$$

Then $v(t,\theta)$ is a solution of

$$\begin{cases} v_{tt} + \alpha v_t - \beta v + \Delta_S v = 0 & \text{in } \mathbb{R} \times (0, \pi/2), \\ \partial_{\theta} v = v^q & \text{on } \mathbb{R} \times \{\pi/2\}, \end{cases}$$
(8)

where

$$\alpha = (n-2) - 2m_q, \quad \beta = m_q((n-2) - m_q).$$

It is easily seen that $\alpha, \beta > 0$ if q > n/(n-2). Define the energy function E(t) associated with (8).

$$E(t) = \frac{1}{2} \|\partial_t v(t)\|_2^2 - \frac{\beta}{2} \|v(t)\|_2^2 - \frac{1}{2} \|\partial_\theta v(t)\|_2^2 + \frac{1}{q+1} v(t, \pi/2)^{q+1}.$$

Then it is easily verified that

$$\partial_t E(t) = -\alpha ||v_t(t)||^2 \le 0.$$

For JL-supercritical case and JL-critical case, since $\varphi_{\infty}(x) \leq |V|_{\infty} r^{-1/(q-1)}$, from (b) in Theorem 1.1, $v(t,\theta)$ is uniformly bounded on $\mathbb{R} \times (0,\pi/2)$. For JL-subcritical case, from (5), $v(t,\theta)$ is also uniformly bounded on $\mathbb{R} \times (0,\pi/2)$. Hence by a elliptic regularity theory, $v_t(t,\theta)$, $v_{\theta}(t,\theta)$ are uniformly bounded on $\mathbb{R} \times (0,\pi/2)$. Therefore it follows that

$$\alpha \int_{-\infty}^{\infty} \int_{0}^{\pi/2} |v_{t}|^{2} d\sigma dt = \lim_{t \to -\infty} E(t) - \lim_{t \to \infty} E(t) < \infty.$$

We set

$$v_{\infty}(\theta) = \lim_{t \to \infty} v(t, \theta).$$

Since $\lim_{t\to-\infty} E(t) = 0$ and $\partial_t E(t) < 0$, $v_{\infty}(\theta)$ is a nontrivial nonnegative solution of

$$\Delta_S v = \beta v$$
 in $(0, \pi/2)$, $\partial_\theta v = v^q$ on $\{\pi/2\}$.

From Lemma 1.1, it follows that $v_{\infty}(\theta) \equiv V(\theta)$. Thus (7) is derived.

Step 3 Asymptotic expansion II.

Finally we derive more precise asymptotic behavior than Step 2 and obtain (d) in Theorem 1.1 and (i), (ii) in Theorem 1.2. To obtain a higher expansion of $v(t, \theta)$, we study the asymptotic behavior of

$$w(t, \theta) = V(\theta) - v(t, \theta).$$

Then $w(t, \theta)$ is a solution of

$$\begin{cases} w_{tt} + \alpha w_t - \beta w + \Delta_S w = 0 & \text{in } \mathbb{R} \times (0, \pi/2), \\ \partial_{\theta} w = q V_B^{q-1} w + f(w) & \text{on } \mathbb{R} \times \{\pi/2\}, \end{cases}$$

where $f(w) = (V_B^q - (V_B - w)^q - qV_B^{q-1}w) = O(w^2)$ and $V_B = V(\pi/2)$. From Step 2, it follows that

$$\lim_{t \to \infty} w(t, \theta) = 0 \quad \text{in } C([0, \pi/2]).$$

By using eigenfunctions of (4), we expand $w(t, \theta)$ by

$$w(t, \theta) = \sum_{i=1}^{\infty} y_i(t)e_i(\theta).$$

The coefficient $y_i(t)$ satisfies

$$y_i'' + \alpha y_i' - (\beta + \lambda_i) y_i = x_i, \tag{9}$$

where

$$x_i(t) = f(w(t, \pi/2))e_i(\pi/2).$$

The characteristic equation of (9) is given by

$$\gamma_i^2 + \alpha \gamma_i - (\beta + \lambda_i) \gamma_i = 0. \tag{10}$$

Then it is verified that

- (A) for the case $i \geq 2$, (10) admits two real roots satisfying $\gamma_i^- < 0, \, \gamma_i^+ > 0$,
- (B) for the case i=1 (JL-supercritcal), (10) admits two real roots satisfying $\gamma_1^- < \gamma_1^+ < 0$,
- (C) for the case i = 1 (JL-critcal), (10) admits one real root satisfying $\gamma_1 < 0$,
- (D) for the case i = 1 (JL-subcritcal), (10) does not admit real roots.

Then it is verified that for the case (A)

$$y_{i}(t) = y_{i}(0)e^{\gamma_{i}^{-}t} - \frac{e^{\gamma_{i}^{-}t}}{\sqrt{\alpha^{2} + 4(\beta + \lambda_{i})}} \int_{0}^{t} \left(e^{-\gamma_{i}^{-}s} - e^{-\gamma_{i}^{+}s}\right) x_{i}(s)ds - \frac{e^{\gamma_{i}^{+}t} - e^{\gamma_{i}^{-}t}}{\sqrt{\alpha^{2} + 4(\beta + \lambda_{i})}} \int_{t}^{\infty} e^{-\gamma_{i}^{+}s} x_{i}(s)ds,$$

for the case (B)

$$y_{1}(t) = y_{1}(0)e^{\gamma_{1}^{-}t} + \frac{y_{1}'(0) - \gamma_{1}^{-}y_{1}(0)}{\sqrt{\alpha^{2} + 4(\beta + \lambda_{1})}} \left(e^{\gamma_{1}^{+}t} - e^{\gamma_{1}^{-}t}\right) + \int_{0}^{t} \frac{1 - e^{(2\gamma_{1}^{-} + \alpha)(t-s)}}{\sqrt{\alpha^{2} + 4(\beta + \lambda_{1})}} e^{\gamma_{1}^{+}(t-s)}x_{1}(s)ds,$$

for the case (C)

$$y_1(t) = y_1(0)e^{\gamma_1 t} + (y_1'(0) - \gamma_1 y_1(0))te^{\gamma_1 t} + \int_0^t (t - s)e^{\gamma_1 (t - s)} x_1(s)ds$$

and for the case (D)

$$y_1(t) = \frac{1}{A} \left(\frac{\alpha}{2} y_1(0) + y_1'(0) \right) (\sin At) e^{-(\alpha t)/2} + y_1(0) (\cos At) e^{-(\alpha t)/2}$$
$$+ \frac{1}{A} \int_0^t \left((\sin At) (\cos As) - (\sin As) (\cos At) \right) e^{-\alpha (t-s)/2} x_1(s) ds,$$

where $A = \sqrt{|\alpha^2 + 4(\beta + \lambda_1)|}/2$. Since

$$\begin{split} \gamma_1^- < \gamma_1^+ < 0, \quad \gamma_{i+1}^- < \gamma_i^- \ (i \geq 1), \quad \gamma_i^+ > 0 \ (i \geq 2) \quad \text{if JL-supercritical}, \\ \gamma_1 < 0, \quad \gamma_{i+1}^- < \gamma_i^- \ (i \geq 1), \quad \gamma_i^+ > 0 \ (i \geq 2) \quad \quad \text{if JL-critical}, \\ \gamma_{i+1}^- < \gamma_i^- < -\alpha/2 \ (i \geq 2), \quad \gamma_i^+ > 0 \ (i \geq 2) \quad \quad \text{if JL-subcritical}, \end{split}$$

we obtain

$$w(t,\theta) \sim y_1(t)e_1(\theta) = \begin{cases} ce^{\gamma_1^+ t}e_1(\theta) + o\left(e^{\gamma_1^+ t}\right) & \text{if JL-supercritical,} \\ (ct+c')e^{\gamma_1^t}e_1(\theta) + o\left(e^{\gamma_1 t}\right) & \text{if JL-critical,} \\ c\sin(At+B)e^{-\alpha t/2} + o\left(e^{-\alpha t/2}\right) & \text{if JL-subcritical} \end{cases}$$

for some $c, c', B \in \mathbb{R}$. For JL-supercritical and JL-critical case, by using the same technique as [1], we can assure $c \neq 0$. Hence these asymptotic formula give (d) in Theorem 1.1. However for JL-subcritical case, we do not know $c \neq 0$. Hence (i) in Theorem 1.2 holds if $c \neq 0$, on the other hand, (ii) in Theorem 1.2 holds if c = 0.

References

- [1] S. Bae, J. Differential Equations 194 (2003) 460-499.
- [2] M. Chipot, I. Shafrir, and M. Fila, Adv. Differential Equations 1 (1996) 91-110.
- [3] M. Chipot, M. Chlebík, M. Fila, I. Shafrir, J. Math. Anal. Appl. 223 (1998) 429-471.

- [4] J. Dávila, L. Dupaigne, M. Montenegro, Commun. Pure Appl. Anal. 7 (2008) 795-817.
- [5] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer, Berlin, 1998.
- [6] B. Hu, Differential Integral Equations 7 (1994) 301-313.
- [7] K. Ishige, T. Kawakami, Calc. Var. Partial Differential Equations **39** (2010) 429-457.
- [8] Y. Li, J. Differential Equations **95** (1992) 304-330.
- [9] Y. Y. Li and M. Zhu, Duke Math. J. 80 (1995) 383-417.
- [10] I. Peral, J. L. Vazquez, Arch. Rational Mech. Anal. 129 (1995) 201-224.
- [11] P. Quittner, W. Reichel, Calc. Var. Partial Differential Equations **32** (2008) 429-452.
- [12] X. Wang, Trans. Amer. Math. Soc. 337 (1993) 549-590.