goooboooobgon
0 17790 20120 11-19

Stable and unstable solutions to Laplace equations
with nonlinear boundary conditions

Junichi Harada (Waseda University)

1 Introduction

We consider the Laplace equation with a nonlinear boundary condition.

Au=0 inR}, OJu=u? ondR} (u>0), (1)

where R} = {z € R%z, > 0} and 8, = —9/0x,. The existence and the nonex-
istence of positive solutions of (1) depends on a exponent ¢ > 1. It is known that
if ¢ € (1,n/(n — 2)), there are no positive solutions of (1) ([6]). On the other
hand, there exists a family of positive solutions for ¢ = n/(n — 2) ([2], [9]) and for
q > n/(n—2) ([3]). These existence and nonexistence theorems for positive solutions
of (1) are completely corresponding to those for positive solutions of

—Ay =P in R™ (2)

It is known that (2) has no positive solutions if p € (1,(n + 2)/(n — 2)) and has a
family of positive radially symmetric solutions for p > (n + 2)/(n — 2). Moreover
there exists another critical exponent p;;, > pg defined by

o0 if n <10,
piL = n—2vyn-—1
n—4—2vyn—-1

This critical exponent p;;, is known to be critical for asymptotic expansions and
intersection properties of positive radially symmetric solutions of (2) ([8],[12]). A
goal of this note is to introduce a new critical exponent corresponding to p;; and
to study the properties of positive solutions of (1) for ¢ > n/(n — 2).

if n > 11.

Definition 1.1. A function f(z) € C(R%) is called z,,-azial symmetric if f(z) can
be expressed by f(z) = f(|2'|, zn)-

In this note, we often use a polar coordinate:
r=lz|, tané=|z'|/z,.

We introduce a singular solution of (1).
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Lemma 1.1 ([11]). Let ¢ > (n—1)/(n—2). Then there exists a singular solution
Yeo(Z) = V(0)r=1@=1) of (1), where V() > 0 is a unique solution of
)

eV + (n — 2)(cot 8)8V = BV in (0,7/2), 8,V =V? on {n/2},
where B = my((n — 2) — m,) and my =1/(q —1).
A new critical exponent is defined as follows.

Definition 1.2 (JL-critical exponent). We set

( |Vul?dz - (qsog;l)u?dx’)
_ R? OR?
g)= inf .

ue H1(R% -
(R%) |£BI| 1,2de’
61R1

We call q¢ JL-supercritical if u(q) > 0, JL-critical if u(q) = 0 and JL-subcritical if
u(g) <O0.

Remark 1.1. From the trace Hardy inequality ([4]):

/ |z’ widz’ < cy [ |Vul’dz, (3)
oR? R?

1(q) is expressed by u(q) = cg — qV (mw/2)?"t. By using this expression, we can show
that

(i) for n > 3 there ezists gy > n/(n — 2) such that p(q) < 0 if ¢ € (n/(n — 2), ),
(ii) there exists ng € N such that for n > ng there exists g1 > qo such that p(g) > 0

if
qQ>q.

To state our results, we prepare notations. Let e;(6) be the ¢’th eigenfunction of

{—Age = )e in ST, @

d,e = qV(m/2)% 'e on 8STH,

where Ag is the Laplace Beltrami operator on S”~! and set Bg = {z € R%;|z| < R}.
For simplicity of notations, we set

my = 1/(q - 1).

Theorem 1.1 (JL-supercritical, JL-critical). There ezists a family of z,-azial
symmetric solutions {us(x)}a>0 Satisfying the following properties.

(a) ua(z) = quy (@9 Vz), ua(0) = a,
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(b) ua(z) < poo(), O}_i_r)goua(x) = Poo(2),
(C) Ug, () < uaz(x) if a1 < o,

(d) there exist vo > y1 > my, co # 0 and ¢, € R such that

V(0)r—™a + cher(0)r™ + O(r—) if JL-supercritical,
Ue(Z) =
V(0)r—™a + (cologr + ¢ )er(8)r= + O(r™2) if JL-critical.

Moreover if u(z), v(z) are positive x,-azial symmetric solutions satisfying u(0) =
v(0) and u(z),v(z) < Yoo (z), then it holds that u(x) = v(x).

Theorem 1.2 (JL-subcritical). There exists a family of x,-azial symmetric solu-
tions {uq(z)}aso satisfying

Ua(z) < call + le)_l/(q_l)- (5)

Moreover one of the following asymptotic expansions holds.

(i) there exist v, > v1 > my, A,cu # 0 and B, € R such that
Ua(x) = V(0)r™™ + coe1(0)r ™" sin(Alogr + By) + O(r™™),
(ii) there exist v4 > v3 > my and ¢y # 0 such that
Ua(z) = V(0)r™™ + coea(0)r™ + O(r™™).

Moreover if u(x), v(z) are positive z,-azial symmetric solutions satisfying (5) and
u(z) > v(z) for || > R with some R > 0, then it holds that u(z) = v(z).

Remark 1.2. A solution u,(z) (o > 0) constructed in Theorem 1.1 and the sin-
gular solution . (z) do not intersect each other for JL-supercritical case and JL-
critical case. On the other hand, us(z) (o > 0) constructed in Theorem 1.2 and the
singular solution Y. (z) must intersect each other for JL-subcritcal case. Set

Zo = {z € R};ua(z) = po(2)}.
For the case (i) in Theorem 1.2, it holds that for large R > 0
Zo\ Br ~ {z € R} : Alog|z| + B, = km, k € N}.
For the case (ii) in Theorem 1.2, it holds that for large R > 0
Zo \ B ~ {z € R" : e5(6) = 0}.

Unfortunately, we do not know which case (i) or (ii) actually occurs.
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2 Proof

Step 1-(i) Existence. (JL-supercritical case, JL-critical case)
For JL-supercritical case and JL-critical case, we construct solutions of (1) satisfying
(b) by a different way from [3]. For simplicity, we set

Dgp={z € dR%;|z| < R}, Sg={z€R};|z|=R}
First we construct suitable super-solutions.

Lenlma 2.1. There exists g > 0 and a positive xn—agi_al symmetric function 4 €
C?(B141s,) such that @ = @ in By, @ < Yoo 0 Biys, \ B1 and

—-Au > 0 in Bl+5o’ 6,,17 =u? on D1+50.
We fix § € (0, dp). Here we consider approximation problems.
Au=0 in By.s, Ou=u? onDyys, u=1u on Sy, (6)

where 1 is a function given in Lemma 2.1. Here we call u(z) a weak solution of (6)
if u € {u € H(Bi4s);u — @ =0 on Sy44} satisfies

/ Vu - Vi = ude)
Bits Di4ts

for any ¢ € C°(B145\S1+6). To construct solutions of (6), we construct a monotone
sequence {u;(z)}ien. We set up(z) = @(z) and define u;41(x) inductively by

-0 . e
Auip1 =0 in Biys, O =ui on Diys,  uip1 =4 on Siys.

Then us(z) = lim;_,o u;(x) gives a solution of (6). More precisely, we obtain the
following lemma.

Lemma 2.2. Let q be JL-supercritical or JL-critical and 6o > 0 be give in Lemma
2.1. Then for § € (0,80) there exits a positive z,-azial symmetric weak solution
us € HY(By45) of (6) such that us(z) < a(x).

Next we show a boundedness of us(z) near the origin.

Lemma 2.3. Let g be JL-supercritical or JL-critical and us(x) be a weak solution
of (6) constructed in Lemma 2.2. Then it holds that us € L*®(B4s).

To show Lemma 2.3, we use a technique similar to [10] with local L*-estimates.
The following local L*-estimates are easily derived from the argument of Theorem
8.17 in [5] with Lemma 2.1 in [7].
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Lemma 2.4. Letu € H'(B,) be a weak solution of
—Au+b(z) - Vu+ce(z)u=0 in By, Ju=K(z')u on D,

with K € LY(D;) for some v > n — 1. Then there ezists ¢ > 0 depending on
1K | z2(D1)s 1blloe(8y) and llcllzeo(zy) such that

[ell o (B, 2) < cllullzz(zy)-

Proof of existence of solutions of (1). Let us(z) be a function given in Lemma
2.2 and set Ms = supp, , us(z). Then Lemma 2.3 implies that Ms < co. First we
claim that lims_,o M5 = co. On the contrary, suppose that there exist M, > 0 and
a sequence {4; };en such that §; — 0 and M;, < M. Then there exits a subsequence
{0:}ien, which is denoted by the same symbol such that wus,(z) converges to some
function ue(z) in H'(B;) satisfying uw(z) < Yoo(z) < @(z). It is easily verified
that the function us(z) is a positive bounded solution of

Aus =0 in By, Oyt =ul on Dj, usw =@ on 9.

Hence from %o (2) < 0oo(Z) (Uoo #Z ¢0), We Obtain
V(o = )l < aVE [ 17 = )
By 1

By the trace Hardy inequality (3) and qV& ' < cy (see Remark 1.1), it holds
that ue = . However this contradicts to u, € L*®(B;). Hence the claim
lims_,o M5 = 0o is proved. We set

5(z) = My tus(M; @ V).
Then 4s(z) is a solution of Atz = 0 in B and 9,85 = @ on Dye-1. Since
M_lgow(M—(q_l)x) = Poo(Z)

for any M > 0, it is verified that %5(z) < ¢ (z) in By3-1. Hence by limyy),o poo(z) =
0, there exists R > 0 such that maxp, @s(z) = 1 for small § > 0. Thus taking
6 — 0, we can obtain a positive z,-axial symmetric solution u(z) of (1) satisfying
maxgerr U(T) = 1 and u(z) < poo(z). Finally we put

Ua(z) = au(a®tz) (a > 0).

Then u,(z) is a solution of (1) and satisfies u,(z) < Yoo (z), Which completes the
proof. O
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Step 1-(ii) Existence. (JL-subcritical case) Since the singular solution ¢ () is
not stable in a sense of Definition 1.2, arguments in Step 1-(i) can not be applicable.
To show the existence of solutions of (1) satisfying (5), we need another technique.
Here we omit the detail.

Step 2 Asymptotic expansion I.

In this step, we obtain the first asymptotic expansion:
lim |z|Y9 Yu(z) = V() in C([0,7/2]). (7
|z|—o0

Let u(x) be a solution of (1) given in Theorem 1.1 or Theorem 1.2 with »(0) = 1.

To investigate the asymptotic expansion of z,-axial symmetric solutions of (1), we

introduce
v(t,0) =@ Vy(r,0), r=ec" (teR).

Then v(t,0) is a solution of

(8)

vy +ov; — P+ Agv=0 in R x (0,7/2),
Ogv = v? on R x {m/2},

where
a=(n-2)—2m,;, B=my((n—2)—my).

It is easily seen that a,8 > 0 if ¢ > n/(n — 2). Define the energy function E(t)
associated with (8).

v(t,m/2)7.

B(H) = 21001} - 51013 - 3101 + —

Then it is easily verified that
O,E(t) = —allv(t)]|® < 0.

For JL-supercritical case and JL-critical case, since puo(z) < |Vl]eor—@ Y, from
(b) in Theorem 1.1, v(t, #) is uniformly bounded on R x (0,7/2). For JL-subcritical
case, from (5), v(t, ) is also uniformly bounded on R x (0,7/2). Hence by a elliptic
regularity theory, v;(t, 8), vg(t,8) are uniformly bounded on R x (0,7/2). Therefore
it follows that

0 /2
a/ / |vg|*°dodt = lim E(t) — lim E(t) < .
—00 JO t——00 t—o00
We set
Vo (f) = lim v(t, 6).

t—00 )
Since lim;_,_o E(t) = 0 and 8,E(t) < 0, v(#) is a nontrivial nonnegative solution
of
Asv = Bv in (0,7/2), 08 =127 on {7m/2}.
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From Lemma 1.1, it follows that ve(6) = V(#). Thus (7) is derived.

Step 3 Asymptotic expansion II.

Finally we derive more precise asymptotic behavior than Step 2 and obtain (d) in
Theorem 1.1 and (i), (i) in Theorem 1.2. To obtain a higher expansion of v(t, ),
we study the asymptotic behavior of

w(t, 0) =V (6) —v(t,0).
Then w(t, ) is a solution of

Wy +ow; — Pw+ Asgw =0 in R x (0,7/2),
Oow = gV w + f(w) on R x {m/2},

where f(w) = (V£ — (Vs — w)? — ¢VE 'w) = O(w?) and Vp = V(n/2). From Step
2, it follows that
lim w(t,0) =0 in C([0,7/2]).

t—o00
By using eigenfunctions of (4), we expand w(t, 8) by

o)

w(t,0) = wi(t)ei().
i=1
The coefficient y;(t) satisfies
Yy + oy — (B + Xy = zi, (9)

where
zi(t) = flw(t, 7/2))ei(m/2).

The characteristic equation of (9) is given by
% +ayi— (B+N)yi =0. (10)

Then it is verified that

(A) for the case i > 2, (10) admits two real roots satisfying v <0,vF >0,

(B) for the case i = 1 (JL-supercritcal), (10) admits two real roots satisfying 7; <
+ .

N < O,

(C) for the case ¢ = 1 (JL-critcal), (10) admits one real root satisfying v; < 0,

(D) for the case ¢ = 1 (JL-subcritcal), (10) does not admit real roots.

Then it is verified that for the case (A)

_ vt t, .
WO = O = s [ (e ) s

el _ et oo

- —‘Yjsxi d )
VET N ) s
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for the case (B)

y1(0) — 71 %1(0) (e'yl t_ i t)
Vva?+4(6 + ,\1

(271 +a)(t—s) e
1

yi(t) = y1(0)e* +

for the case (C)
t
v1(t) = 11(0)e™* + (31(0) — 11y1(0))te™ + / (t — s)em =9z, (s)ds
0
and for the case (D)
l (o / : —(at)/2 —(at)/2
) = (§y1(0) + y1(0)) (sin At)e +41(0)(cos At)e

t
+%/ ((sin At)(cos As) — (sin As)(cos At)) e=*(=)/2g, (s)ds,
0

where A = \/|a? + 4(8 + A1)|/2. Since

<A <0, <7 (6>1), 9 >0 (i>2) if JL-supercritical,
7 <0, <y (E=1), ~F>0(E>2) if JL-critical,

Yol <Y <—af2 (i>2), >0 (2>2) if JL-subcritical,
we obtain
ce" e (6) + o (e"fr t) if JL-supercritical,
w(t, 0) ~ yi(t)er(8) = q (ct + )e"ies(8) + o (e™?) if JL-critical,

csin(At + B)e™*/2 + 0 (e7*%/2)  if JL-subcritical

for some ¢,c/, B € R. For JL-supercritical and JL-critical case, by using the same
technique as [1], we can assure ¢ # 0. Hence these asymptotic formula give (d) in
Theorem 1.1. However for JL-subcritical case, we do not know ¢ # 0. Hence (i) in
Theorem 1.2 holds if ¢ # 0, on the other hand, (ii) in Theorem 1.2 holds if ¢ = 0.
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