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We are concerned with global existence and finite time blowup of solutions
to the following semilinear parabolic initial value problem

(1) $\{$

$u_{t}-\Delta u=|u|^{p-1}u$ ,
$x\in\partial\Omega,t>0x\in\Omega,t>0,$

,$u=0$ ,
$u(x, 0)=u_{0}(x)$ , $x\in\Omega$ ,

where $p>1$ and $\Omega$ is a bounded domain of $R^{n}$ of class $C^{2+\eta}$ for some
$\eta\in(0,1)$ . This equation is a model problem for studying the competition
between the dissipative effect of diffusion and the influence of an explosive
source term. This specific problem has been the object of intense study over
the past fourty years. The recent book [11] contains a detailed account of
much of this literature.

We consider here the Sobolev sub-critical case

(2) $1<p<p_{S}:=(n+2)/(n-2)_{+}$ ,

so that in particular, $H_{0}^{1}(\Omega)\subset L^{p+1}(\Omega)$ . Under this assumption, it is well
known that problem (1) is locally well-posed in $H_{0}^{1}(\Omega)$ (see [1],[4],[15]). More
precisely, given $u_{0}\in H_{0}^{1}(\Omega)$ there exists a maximal time $T(u_{0})\in(0, \infty]$ and
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a unique solution $u\in C([0, T(u_{0}));H_{0}^{1}(\Omega))\cap C^{1}([0, T(u_{0}));H^{-1}(\Omega))$ of (1).
This solution is classical for $0<t<T(u_{0})$ . FUrthermore, if $T(u_{0})<\infty$

then $||u(t)||_{H_{0}^{1}}arrow\infty$ and $||u(t)||_{\infty}arrow\infty$ as $tarrow T(u_{0})$ . In this case, the
solution is said to blow up in finite time. If $T(u_{0})=\infty$ , the solution is said
to be global. A major question, which has motivated a substantial amount
of research, is to determine criteria on the intial value $u_{0}$ which enable one
to decide whether or not the resulting solution is global or blows up in finite
time.

The point of view taken in this article is at the crossroads of two clas-
sical methods used in the study of nonlinear partial differential equations:
variational methods and critical point theory, and the theory of dynamical
systems. Historically, both points of view have contributed to the study of
(1), often in complementary ways. At issue, in particular, is the existence
and stability of stationary solutions of (1).

Rom the variational point of view, there are two natural functionals on
$H_{0}^{1}(\Omega)$ associated with the problem (1), the energy functional and the Nehari
functional, defined respectively by

$E( \phi)=\frac{1}{2}l_{\Omega}|\nabla\phi|^{2}-\frac{1}{p+1}\int_{\Omega}|\phi|^{p+1}$ ,

$I( \phi)=E’(\phi)\cdot\phi=\int_{\Omega}|\nabla\phi|^{2}-\int_{\Omega}|\phi|^{p+1}$.

Stationary solutions of (1) are precisely critical points of the energy functional
$E$ . In particular, they satisfy $I(\phi)=0$ . We recall certain well-known results
about these critical points. Many of the proofs are based on the mountain
pass theorem of Ambrosetti and Rabinowitz [2]; see the recent books [11],
[13] Of course these results depend on the condition (2) that the power be
Sobolev sub-critical, which implies that the energy functional is well defined
in $H_{0}^{1}(\Omega)$ and satisfies the Palais-Smale condition.

There exists a positive regular stationary solution of (1), and an infinite
sequence of regular stationary solutions $\phi_{k}$ with $E(\phi_{k})arrow\infty$ . A positive sta-
tionary solution can be obtained either by a direct application of the moun-
tain pass theorem, or else by minimizing $\int_{\Omega}|\nabla\phi|^{2}$ (or equivalently the energy
functional) subject to the constraint that $\int_{\Omega}|\phi|^{p+1}=1$ . In this latter case,
the resulting function needs to be multiplied by a constant to compensate
for the Lagrange multiplier.

The Nehari functional enters as follows. If $\phi\in H_{0}^{1}(\Omega)$ , and $\phi\not\equiv 0$ , then
there is a unique $\lambda_{0}>0$ such that $\frac{d}{d\lambda}|_{\lambda=\lambda_{0}}E(\lambda\phi)=0$ , and this gives the
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maximum value of $E(\lambda\phi)$ . One checks easily that $I(\lambda_{0}\phi)=0$ and $I(\lambda\phi)>0$

if and only if $0<\lambda<\lambda_{0}$ . Thus, $\lambda_{0}=1$ if $\phi$ is a critical point of $E$ . The
Nehari manifold is defined by

$\mathcal{N}=\{\phi\in H_{0}^{1}(\Omega):I(\phi)=0, \phi\not\equiv 0\}$ .

Note that if $I(\phi)=0,$ $\phi\not\equiv 0$ , then $I’(\phi)\neq 0$ . The Sobolev embedding
$H_{0}^{1}(\Omega)\subset L^{\rho+1}(\Omega)$ and the Poincar\’e inequality imply that $\mathcal{N}$ is bounded away
from $0$ in $H_{0}^{1}(\Omega)$ . A positive stationary solution of (1) can also be found by
minimizing the energy functional on $\mathcal{N}$. The energy of the stationary solution
obtained by this method,

$d:= \inf\{E(\phi);\phi\in H_{0}^{1}(\Omega)\backslash \{0\}, I(\phi)=0\}$ ,

is the minimum energy for a nontrivial stationary solution, and is precisely
the mountainpass energy

$d=$ $inf\max E(\lambda\phi)>0$ .
$\phi\in H_{0}^{1}(\Omega)\backslash \{0\}$ $\lambda\geq 0$

In addition, the energy and the Nehari functionals play an important role
in the dynamics of (1). Indeed, the energy is a Lyapunov function for the
flow induced by (1). More precisely, if $u=u(t)$ is a non-stationary solution
of (1), then

$\frac{d}{dt}E(u(t))<0$ .

Also
$\frac{d}{dt}\frac{1}{2}\int_{\Omega}|u(t)|^{2}=-I(u(t))$ .

A fundamental result about problem (1), due to Levine [9], is that the so-
lution $u$ blows up in finite time, i.e. $T(u_{0})<0$ , whenever the initial value
$u_{0}\in H_{0}^{1}(\Omega)$ has negative energy $E(u_{0})<0$ .

In the case when $E(u_{0})\geq 0$ , classical results about blowup and global
existence were obtained by Tsutsumi [14] and Payne and Sattinger [10] (see
also Ishii [8] $)$ , using ideas of potential well theory developed by Sattinger [12]
in the context of hyperbolic equations.

-If $u_{0}\in H_{0}^{1}(\Omega)$ satisfies $E(u_{0})<d$ and $I(u_{0})<0$ , then $u$ blows up in finite
time [10].
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-If $E(u_{0})<d$ and $I(u_{0})>0$ , then $u$ is global and decays uniformly to $0$ as
$tarrow\infty[$ , $]$ .
Note that $d$ can be interpreted as the depth of the following potential-well

$W$ $:=\{\phi\in H_{0}^{1}(\Omega)$ : $E(\phi)<d,$ $I(\phi)>0\}\cup\{0\}$ .

In fact, $W$ is invariant under the semiflow associated with problem (1). Basi-
cally, if the initial value has energy below the minimal energy on the Nehari
manifold, then since energy is decreasing, the resulting solution must be
entirely either inside or outside the potential well $W$ .

In the limiting case $E(u_{0})=d$ , if $I(u_{0})\geq 0$ then $u$ is also global. Indeed,
if $I(u_{0})=0$ , then $u_{0}$ minimizes $E$ on $\mathcal{N}$ and so is a stationary solution. If
$I(u_{0})>0$ , then $u_{0}$ is not a stationary solution, so $E(u(t))<d$ and $I(u(t))>0$
for small $t>0$ , and so the result of [14], [8] applies. By a similar argument,
reducing to the result of [10] for small $t>0$ , if $E(u_{0})=d$ and $I(u_{0})<0$ ,
then $u$ blows up in finite time. Therefore, when $E(u_{0})\leq d$ , the question of
whether or not $T(u_{0})$ is finite is entirely determined by means of $I(u_{0})$ .

In the case, $E(u_{0})>d$ , the potential well arguments do not apply in any
obvious way. Gazzola and Weth [6] have shown that there exist initial values
$u_{0}$ and $v_{0}$ with arbitrarily large energy, and $I(u_{0})>0,$ $I(v_{0})>0$ , such that
$T(u_{0})<\infty,$ $T(v_{0})=\infty$ and the solution starting from $v_{0}$ decays uniformly
to $0$ .

In view of the above results, as noted by Gazzola and Weth [6], it is
natural to ask whether or not the condition $I(u_{0})<0$ is still sufficient for
finite time blowup when $E(u_{0})>d$ . One of the main results in this paper is
that the answer is negative. (See Theorems 1 and 2 below.)

Our approach to this question relies on a study of the local stable manifold
of a nontrivial stationary solution $\phi$ of (1). Let $\mathcal{L}$ be the linearized operator
around $\phi$

$\mathcal{L}u=\triangle u+p|\phi|^{p-1}u$ .
$\mathcal{L}$ is a self-adjoint operator in $L^{2}(\Omega)$ with domain $H_{0}^{1}(\Omega)\cap H^{2}(\Omega)$ whose
spectrum consists entirely of eigenvalues. Since $I(\phi)=0$ , it is easy to see
that $\langle \mathcal{L}\phi,$ $\phi\rangle>0$ , and so the first eigenvalue of $\mathcal{L}$ is positive. Moreover, only
finitely many eigenvalues of $\mathcal{L}$ are positive. It follows (see 11) that $\phi$ has a
local stable manifold $\mathcal{M}$ of nontrivial finite codimension.

From a geometric point of view, the main result of this paper is that the
local stable manifold $\mathcal{M}$ of any nontrivial stationary solution $\phi$ intersects the
Nehari manifold $\mathcal{N}$ transversally at $\phi$ . (See Theorem 3 below.) Consequently,
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part of the stable manifold $\mathcal{M}$ lies outside $\mathcal{N}$ , i.e. where $I<0$ . Thus, we
may choose $u_{0}\in M$ , arbitrarily close to $\phi$ , with $I(u_{0})<0$ . Since $u_{0}\in M$ ,
this produces an initial value $u_{0}$ , whose energy is bigger than but arbitrarily
close to $E(\phi)$ , such that $I(u_{0})<0$ but $T(u_{0})=\infty$ . For the same reason,
part of the stable manifold $\mathcal{M}$ lies where $I>0$ and the above conclusion
remains true with $I(u_{0})>0$ .

The proofs of our main results require the use of another fundamental tool
in the study of partial differential equations: elliptic regularity. The principal
technical result in the paper, from which we deduce our main results, is that
a nontrivial stationary $soluti6n\phi$ is not orthogonal to its own local stable
manifold. The proof proceeds by contradiction. If $\phi$ were orthogonal to
its own stable manifold, then $\phi$ would be equal to a linear combination of
the (finitely many) eigenvectors of $\mathcal{L}$ with nonnegative eigenvalues. It then
follows from (1) that $|\phi|^{p-1}\phi$ must also be a linear combination of those same
vectors. When $p$ is not an integer this results in a mis-match of regularity
where $\phi$ vanishes. The case $p$ integer is more delicate, and we obtain a
contradiction by analyzing $\mathcal{L}^{k}\phi$ for some appropriate $k$ .

We now give precise statements of our main results. Theorem 1 is simply
the response to the question asked by Gazzola and Weth [6].

Theorem 1. Suppose that the power $p$ satisfies (2). Then there exist
initial data $u_{0}\in H_{0}^{1}(\Omega)$ with $I(u_{0})<0$ such that the solution $u$ of (1) is
global.

Theorem 1 is a consequence of the following more precise result, which
provides information on where such $u_{0}$ can be found in the region $E>d$ .
As noted earlier, such an initial value can be found on the stable manifold,
arbitrarily close to any nontrivial stationary solution, and can be chosen so
that $I(u_{0})>0$ or $I(u_{0})<0$ . Additionally, there exist positive initial values
$u_{0}$ with $I(u_{0})$ of either sign, for which the resulting solution is global and
converges to $0$ .

Theorem 2. Suppose that the power $p$ satisfies (2).

(i) There exists $u_{0}\in H_{0}^{1}(\Omega)$ with $I(u_{0})<0$ $($resp. $I(u_{0})>0)$ , such that
the resulting solution $u$ of (1) is global and converges uniformly to $0$ as
$tarrow\infty$ . Moreover, we may take $u_{0}>0$ and $E(u_{0})>d$ arbitrarily close
to $d$ .
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(ii) Let $\phi>0$ be a mountain-pass stationary solution of problem (1). Then
there exists $u_{0}$ on the local stable manifold of $\phi$ , and arbitrarly close
to $\phi$ , such that $I(u_{0})<0$ $($ resp. $I(u_{0})>0)$ . Moreover, we may take
$u_{0}>0$ and $E(u_{0})>d$ arbitrarily close to $d$ .

(iii) Let $\phi\in C^{2}$ (St) be any nontrivial stationary solution of problem (1).
If $\phi>0$ or if $p\in$ , assume in addition that $\Omega$ is of class $C^{m+\epsilon}$ where
$m$ is the integral part of $(p+1)/2$ and $\epsilon>0$ . Then there exists $u_{0}$

on the local stable manifold of $\phi$ , and arbitrarily close to $\phi$ , such that
$I(u_{0})<0$ $($resp. $I(u_{0})>0)$ .

Theorem 3. Suppose that the power $p$ satisfies (2), and let $\phi$ be a
stationary solution as in (ii) or (iii) of Theorem 2. It follows that the local
stable manifold $\mathcal{M}$ of $\phi$ intersects the Nehari manifold $\mathcal{N}$ transversally at
$\phi$ . In other words, the tangent space of $\mathcal{M}$ at $\phi$ (a subspace of $H_{0}^{1}(\Omega)$ of
non-zero finite codimension) is not a subspace of the tangent space at $\phi$ of
the Nehari manifold $\mathcal{N}$ (a subspace of $H_{0}^{1}(\Omega)$ of codimension 1).
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