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Abstract

I will report my result on the collapsing behaviour of the maximal solution
of the equation u; = Alogu in R2x(0, T), u(x,0) = up(x) in R?, near its extinction
time T = fR2 uodx/4n without using the Hamilton-Yau Harnack inequality.
This result extends the recent result of P. Daskalopoulos, M.A. del Pino and
N. Sesum [DP2], [DS2].

In this report I will discuss my recent result [Hu5] on the collapsing behaviour
of the maximal solution of the logarithmic diffusion equation:

{ut=Alogu,u>0, inR?x(0,T) o)

u(x, 0) = ug in R?.

(0.1) arises in many physical and geometric models. For example P.L. Lions and
Toscani [LT] have shown that (0.1) arises as the diffusive limit for finite velocity
Boltzmann kinetic models and T.G. Kurtz [Ku] has proved that (0.1) is the limit-
ing density distribution of two gases moving against each other and obeying the.
Boltzmann equation. In [G] PG. de Gennes showed that (0.1) also appears in the
model of viscous liquid film lying on a solid surface and subjecting to long range
Van der Waals interactions with fourth order term neglected.

Recently K.M. Hui [Hu3], [Hu4] (for the case m > 0 and m < 0), and J.R. Esteban,
A. Rodriguez, ].L. Vazquez [ERV] (for the case m > 0) have shown that the solution
of the porous medium equation

m
U = A(u—)
m



converges to the maximal solution of (0.1) as m — 0. In [W1], [W2], [H], Angenent,
L. Wu and R. Hamilton showed that the equation also arises in the study of the
conformally equivalent metric g;; = u6;; on R? under the Ricci flow

d
Egij = —ZR,']' (02)

where R;; is the Ricci curvature of the metric g;;. Note that in R? the scalar curvature
R is given by

Al
R=- os ¥ 0.3)
u
and the Ricci curvature is given by
1
Rij = -Z-Rg,] (04)

By (0.3) and (0.4) the Ricci flow equation (0.2) is equivalent to the logarithmic
diffusion equation:
u; = Alog u.

1 Existence and properties of solutions

The equation (0.1) has many properties different from the heat equation such as
existence of infinite many solutions for any given initial L' data. There also does not
exist any fundamental solution for (0.1) [Hul] which suggests that conservation of
mass does not hold. K.M. Hui [Hu2] by using approximation by Neumann solu-
tions in bounded domains and P. Daskalaopoulos and M.A.del Pino [DP1] by using
approximation by Dirichlet solutions in bounded domains proved independently
that corresponding to each

0<uye PR)NLY(R?,p>1,2< f € L}0, ),

there exists a classical solution # of (0.1) in R" x (0, T) satisfying the mass loss

equation,
t
f u(x, t)dx = f uodx—27'cf f(s)ds YO<t<T
R2 R? 0

where T = T(uy, f) > 0 given by

\[RZ uodx=2nLTf(s)ds

is the extinction time for the solution u. Hence the solution with flux f vanishes
identically to zero at time T.

99



100

Note that the maximal solution of (0.1) is the solution of (0.1) that corresponds
to flux f = 2 which satisfies

fu(x,t)dx=fuodx—4nt YO<t<T
R2 R?

1
T—a—n'j];zuodx.

For any 2 < f € C(0,T) the solution u with flux f satisfies the following decay
condition at infinity:

with

1
fxl—c0 lc?gg |l;| =—f uniformlyonfab] V0<a<b<T
or equivalently
|1|im %r' =—f uniformlyonf[ab] VO0<a<b<T.

One would like to ask what is the asymptotic behaviour of the solution with
constant flux f = v > 2? When y > 2, S.Y. Hsu [Hsl], [Hs2], by using the lap
number method of Matano [M], V.A. Galaktionov and L.A. Peletier [GP], proved
that if the initial value is radially symmetric and monotone decreasing and u is
the solution with flux y > 2, then there exist unique constants a > 0, § > -1/2,
a = 2B + 1, depending only on y such that the rescaled function

T~ t)5, ¢t
v(y,s) = u(y(:(r- t)z )’

s=-log (T —1),

converges uniformly on every compact subset of R? to ¢, s(y) for some constant
A > 0 as s — oo where ¢,5(y) = Pag(lyl) is radially symmetric and satisfies the
following O.D.E.:

1 r(P’ ’ , .

;(?) +ad+pr¢’ =0 in (0,00)

$(0) = 1/4,¢'(0) = 0.

In particular for y = 4, the rescaled solution

u(x, t)

with

v(x,s) = T S= —log(T - t),
converges uniformly on every compact subsets of R? to the function
8A

(A + [xP)?



as s — oo for some constant A > 0. What this said is that for solution with flux
f=4
_8AT—1)
u(x,t) ~ A+ P2 ast /' T
which corresponds to contracting spheres Ricci flow solution on 5.

What about the asymptotic behaviour of the solution with flux f = 2? J.R. King
[K] by using inner and outer asymptotic expansion and matching asymptotic
method showed that if u is the solution of the logarithmic diffusion equation (0.1)
with flux f = 2 then as t approaches the extinction time T the vanishing behaviour
for solution is very different from the vanishing behaviour for the case f = y > 2.
J.R. King found that for compactly supportly finite mass initial value the maximal
solution behaves like

(T-t?
T 2T
ElXIz + ¢T3
in the inner region (T - t)log x| < T and behaves like

2t
[x|2(log Ix[)?

in the outer region (T - t)loglx| > T as t /' T. In [DP2] P. Daskalopoulos and
M.A. del Pino gave a rigorous proof of an extension of this formal result for radially
symmetric initial value uy(r) > 0 satisfying the conditions,

uo(x) = ug(|x|) is decreasing on r = |x] > r; for some constant 7; > 0,

o
uo(X) = W(l + 0(1)) as |.XI — 00,

for some constant y > 0 and

Aloguy 1

Ro(x) := - ” >-— onR~.

Later P. Daskalopoulos and N. Sesum [DS2] extended this result to the case of com-
pactly supported 0 < u; € L}(IR?) N L*(IR?). However their proof of the behaviour
of the maximal solution in the outer region near the extinction time is very difficult
and uses the Hamilton-Yau Harnack inequality. Recently in [Hu5] I extended their
result to the case of initial value

O0<uge Ll(]RZ) N L=(R?)
that satisfies

uo(x) = up(lx|) is decreasing on r = |x| > r; for some constant r; > 0,
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24
uo(x) = m(l +0(1)) as|x|— oo,

and Al
B, 1 mRr
Up u

for some constant p > 0 with the right hand side being replaced by ~c0 if 4 = 0 and

Ro(JC) =

ess inf up > ess sup up for some constantr; > ;. 1.1)
B, (0) R2\B,,(0)

Note that (1.1) is automatically satisfied if uo has compact support in R?. In [Hu5] I
proved the behaviour of the maximal solution in the outer region near the extinction
time by elementary method without using the difficult Hamilton-Yau Harnack
inequality for surfaces. I also obtained the behaviour of the maximal solution in
the inner region as the extinction time is approached.

I will now assume that 1, satisfies the above structural conditions and u is the
maximal solution of (0.1) in R? X (0, T) with flux f = 2 and

1
T=— .
4n R ude

I will sketch of proof of [Hu5] here.

2 Inner region behaviour

By using the reflection method of D.G. Aronson and L.A. Caffarelli [AC] one has
the following lemma:

Lemma 2.1. (Lemma 1.1 of [Hu5]) The solution u satisfies
u(x,t) > u(y,t)
forany t € (0, T) and x, y € R? such that |y| > |x| + 2.
Then for any 0 < ¢ < T there exists x; € By, such that
u(x;, t) = rgnaéc u(x, t).

That is the maximum of u(-, t) is attained on the compact set §2,2. We will now
perform a rescaling of the solution of (0.1). Let

,7>1/T.

1
— — 2 -
u(x, ) = t°u(x, t), T T3



Then u satisfies

U, = Alogu + Z?u in R? x (1/T, c0).

Let
Roax(t) = maxR(x, t)
x€R?

and let W(t) be the width function with respect to the metric gij(t) as defined by
P. Daskalopoulos and R. Hamilton [DH]. We now recall a result of P. Daskalopoulos
and R. Hamilton [DH]:

Theorem 2.2. ([DH]) There exist positive constants ¢ > 0 and C > 0 such that
(i) (T-H) <WH <C(T-1)
(i) 75 < Rua() < 555
hold for any 0 < t < T.
By Theorem 2.2,

¢ < limsup(T — t)’Rpa(t) < C.
t/T

Hence the singularity is a type II singularity. Note that u satisfies the Aronson-
Bénilan inequality,

% < % in R? x (0, T).
As
R= _Alogu _ _ﬂ’
u u
the Aronson-Bénilan inequality is equivalent to
R> -
t
So if we let Al
R(x,7) = ~——8%
u
Then s o
Ur . 0
—t——>—>- 2/T, 00). 2.1
T+12T_u— C in R* x (2/T, o) (2.1)

Theorem 2.3. (Theorem 1.3 of [Hu5]) For any sequence {Ti}2,, T — o0 as k — oo, let

—, i _
u(y,7) = aku(a;y +X, T+T), YE R%,7> -1+ T!

where
kh=T-1' VkeZ*
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and
Qg = 1/ﬁ(xtkl Tk)'

Then {}2 | has a subsequence (U}, that converges uniformly on C=(K) for any compact

set K ¢ R? X (—00,00) as i — oo to a positive solution

1
Uy, 7) = AgE T e
of equation
U, =AlogU inR?* X (-0, c0)
with uniformly bounded non-negative scalar curvature and uniformly bounded width on
R? x (—00, 00) with respect to the metric g;;(t) = U(-, t)d;; where A > 0 is some constant.

Proof:(Sketch) By definition,
7(0,00=1 and #u(y,0)<1 VyeR:
Leta < b. By (2.1) there exist constants M; > 0 and ky € Z* such that
Ue(x,7) < M;  and [ (x,7)| SCM; x€R%,a<t<bk2k. (2.2)

By (2.2) one can deduce the following Harnack inequality:

For any R; > 0,4 < b, there exists a constant C, > 0 such that

sup le(y, T1)9 <G Ixill;lgl u(x,72) Yk = k.

<R
uhsllnslb a<m b

Hence the sequence %; is uniformly parabolic on Bg, X [4,b] and are uniformly
Holder continuous in CZV'I?’(ER1 X [a,b]) for any y € Z*. Then the sequence {ui}2,
has a subsequence which we may assume without loss of generality to be the
sequence itself that converges uniformly in C*(K) as k — oo for any compact set
K c R?x(—00, 00) to some positive function U that satisfies the logarithmic diffusion
equation. Let

- Alog ux

k= — .
Uk

Then R converges uniformly on every compact subset of R? X (=0, 0) as k — oo
to the scalar curvature
7 AlogU

~TTu

of the metric g;i(t) = U(-, 7)d;;. Moreover

0< E(y, 7)< C Y(y,7) € R? X (—00, c0).



By an approximation argument the width function with respect to the metric
gij(t) = U(-, 7)d; is uniformly bounded on R? x (-0, 0). Then by the result of
P. Daskalopoulos and N. Sesum [DS1],

2
By — yol? + 6e%")

for some yp € R? and constants B > 0,6 > 0. Since u(y,0) attains its maximum at
y =0, U(y, 0) will attain its maximum at y = 0. Hence y, = 0.

Uy, 7) =

2
uo,0=1 = 1= 23_5
Thus
U(y,7) = Ay + oo
for some constant A > 0. o
It can be proved that

ar =00 ask— oo

Hence we can change the origin in rescaling and have the following result:

Lemma 2.4. (Lemma 1.10 of [Hu5]) Let

5,7 = aii@ly, T + ).

Then qy,(y, T) converges uniformly in C=(K) for every compact set K C R to the function
U(y,t)as T — oo.

We will now perform a change of scaling. Let
B(1) = 1/u(0,7),

B = B(tx), and ;.
ﬁk(yr T) = ﬁkﬁ(ﬁf Yy, T+ ’Ck).

Then N
5 =00 U0 =1 ask— oo
k

Hence there exists ky € Z* and constants ¢, > ¢; > 0 such that

C1S'ﬂ—kSC2 Vka()
Ok

Thus we have the following result.
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Theorem 2.5. (Theorem 1.11 of [Hu5]) g, has a subsequence g, that converges uniformly
on C=(K) for any compact set K C R? X (-0, 00) to U(y, T) as T — oo. Moreover f — oo
as k — oo,

Lemma 2.6. (Proposition 1.17 and Proposition 1.18 of [Hu5])

. B(m) _ .. logp(t) _
g.li{lo%—)'—’}l_glo—-———z(T+[.l)

Let

~ Alogg
R = -28%
Gx
Since fz) 2
~ ’Ck
R:(0,0) = —,
0.0 ="y o
then _
4A = lim Ri(0,0) = 2(T + p).
Let

7y, 1) = BBy, ).
We then have the following main theorem for inner region.
Theorem 2.7. (Theorem 1.21 of [Hu5]) q(y, ) converges uniformly on C®(K) for any .
compact set K C R? to the function
1
U = g
H y (T_;-;_Q |y|2 +1

as T — oo,

Corollary 2.8. (cf. [Hu5]) For any € > 0 and M > 0 there exist 19 > 1/T and C > 0 such
that
{ u(x, t) - UL u0,t)e Vx| < B(1)IM, T > 1o
Alx + B(7)
u(0,t) < C(T - t)? Vt>T - 15
where t = 1/(T - ¢).
As in [DP2], [DS2], [Hu5], we now consider the cylindrical change of variables,

v(,0,t) = u(r,0,t), C=logr,r=|x|

and let
wnE,0,7) = T*0(1&,0,t), t=1/(T-t),7>1/T.

Then v satisfies

TV, = %(logfz')gg + 7(logV)ge + EVe +2v  in Rx [0,271] X (1/T, ).
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Corollary 2.9. (Lemma 1.23 of [Hu5]) For any € > O there exists To > 1/T such that

e

T+
7 €+ B)

g% VE < log B(7)

‘z}’(élelT)— <ﬂ(’[)€ _T

,0¢€]0,2n],7 2 1o.

Corollary 2.10. (Corollary 1.24 of [Hu5])

- 27
f f 0(&,0,7)d0dE -0 asT— o
—-00 J(0

lim9(&,6,7) =0 uniformly on (~c0,£7] % [0, 2]

and
forany & < T+ .

3 Outer region behaviour

Let
&(1) = (log B(7))/2.

Lemma 3.1. (Lemma 2.1 of [Hu5]) There exists constants C; > 0, C, > 0, C3 > 0 and
To > 1/T such that the following holds.

i) v(&,0,T1)<C, VYEeR,0€[0,2n],t=>1/T
(i) OE0,1)2F VE2E(1),0€[0,2n],7 =1

Gi)) U(E,8,1) < % V&> 0,0 €[0,27],T > 1.

Moreover
E()=T+u+o(l) ast— oo.
We now let
w(&, 0,s) =v(¢&,0,1)
with
s =logT = —log(T —¢t).
Then

ws = e (log w)gs + e*(logw)ee + Ews + 2w in R x [0,27] X (—1og T, oo).

The following is the main theorem for outer region.
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Theorem 3.2. (Theorem 2.3 of [Hu5]) As T — oo, the function v converges to the function

52

2T + )
V(E) = —_— VE>T+u
0 YE<T+ .

Moreover the convergence is uniform on (—oo,a)] for any a < T + y and on [y, &} for any
& >80 >T+p

Proof:(Sketch) Let {s};2, be a sequence such that sy — oo as k — o0 and
wi(&,0,8) =w(&,0,s+s) VEE€R,0<0<2m,s>~-logT —s.

Let

27
W,’j(r;,s)=fbf wi(§,0,8)dOdE Vb2n>T+u,s>-logT —s, ke Z*,
n Jo

27
Wk(n,s)sz wi(&,0,5)d0dE VYn>T+u,s>-logT —s,keZ*
n 0

and let {b;}2, be a monotonically increasing sequence such that b; > T + u for any
i€Z*and b; » 0 asi — .
Since
f u(x,t)dx=4n(T-t) VO<t<T,
R2

27t
’ f wi(&,0,s)d0dE =4n Vs> —~logT — sy, k€ Z*.
-0 JO .

One can prove that there exists a function w and a subsequence of Z* which we
may assume without loss of generality to be Z" itself such that

WZ"—>W"" uniformly on [4,b] X [c,d] b>a>T+p,d>c ask— o
foranyie€ Z* and
Wy —» W uniformlyon[a,b]x[c,d] b>a>T+ud>c ask— oo

where

27T 27
Wh(n,s) = f fo TE, 0,5)d0dE, W(n,s) = fm fo BE, 6,5) dOE.
n n

By elementary argument one can show that

nW(,s) =nqW@,s) Yn,n>T+pu,s,5€R
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and
W(T +u,s)=4n V¥YseR

Lettingn —» T + p,

4n(T
W(n,s) = M Yn>T+useR
which will then imply the theorem after some elementary computation. |

References

[AC] D.G. Aronson and L.A. Caffarelli, The initial trace of a solution of the porous
medium equation, Transactions A.M.S. 280 (1983), no. 1, 351-366.

[DH] P. Daskalopoulos and R. Hamilton, Geometric estimates for the logarithmic fast
diffusion equation, Comm. Anal. Geom. 12 (2004), nos. 1-2, 143-164.

[DP1] P. Daskalopoulos and M.A. del Pino, On a singular diffusion equation, Comm.
Anal. Geom. 3 (1995), no. 3, 523-542.

[DP2] P. Daskalopoulos and M.A. del Pino, Type II collapsing of maximal solutions to
the Ricci flow in R?, Ann. Inst. H. Poincaré Anal. Non Linaire 24 (2007), 851-874.

[DS1] P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on R?, Int.
Math. Res. Not. 2006, Art. ID 83610, 20 pp- .

[DS2] P. Daskalopoulos and N. Sesum, Type II extinction profile of maximal solutions
to the Ricci flow equation, J. Geom. Anal. 20 (2010), no. 3, 565-591.

[ERV] J.R. Esteban, A. Rodriguez, and J.L. Vazquez, The maximal solution of the
logarithmic fast diffusion equation in two space dimensions, Advances in Diff. Eq.
2 (1997), no. 6, 867-894.

[GP] V.A. Galaktionov and L.A. Peletier, Asymptotic behaviour near finite-time extinc-
tion for the fast diffusion equation, Arch. Rat. Mech. Anal. 139 (1997), 83-98.

[G] P.G.deGennes, Wetting:statics and dynamics Reviews of Modern Physics 57 (1985),
no. 3, 827-863.

[H] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity
(Santa Cruz, CA, 1986), 237V262, Contemp. Math., 71, Amer. Math. Soc.,
Providence, RI, 1988.

[Hul] K.M. Hui, Nonexistence of fundamental solutions of the equation u, = Alogu, J.
Math. Anal. Appl. 182 (1994), no. 3, 800-809.



110

[Hu2] K.M. Hui, Existence of solutions of the equation u; = Alog u, Nonlinear Analysis
TMA 37 (1999), no. 7, 875-914.

[Hu3] K.M. Hui, Singular limit of solutions of the equation u, = A(u™/m) as m — 0,
Pacific J. Math. 187 (1999), no. 2, 297-316.

[Hu4] K.M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear
Analysis TMA 68 (2008), no. 5, 1120-1147.

[Hu5] K.M. Hui, Collapsing behaviour of a singular diffusion equation, http://arxiv.org
/abs/0910.5045v2.

[Hs1] S.Y. Hsu, Asymptotic behaviour of solutions of the equation u, = Alogu near the
extinction time, Advances in Differential Equations 8 (2003), no. 2, 161-187.

[Hs2] S.Y. Hsu, Behaviour of solutions of a singular diffusion equation near the extinction
time, Nonlinear Analysis TMA 56 (2004), no. 1, 63-104.

[K] J.R. King, Self-similar behaviour for the equation of fast nonlinear diffusion, Phil.
Trans. Royal Soc. London, Series A 343 (1993), 337-375.

[Ku] T.G. Kurtz, Convergence of sequences of semigroups of nonlinear operators with an
application to gas kinetics, Trans. Amer. Math. Soc. 186 (1973), 259-272.

[LT] PL. Lions and G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic
models, Revista Matematica Iberoamericana 13 (1997), no. 3, 473-513.

[M] H. Maténo, Nonincrease of the lap number of a solution for one dimensional semi-
linear parabolic equation, J. Fac. Sci. Univ. Tokyo, Sec. IA 29 (1982), 401-441.

[W1] L.E Wu, The Ricci flow on complete R?, Comm. in Analysis and Geometry 1
(1993), 439-472.

[W2] L.E Wu, A new result for the porous medium equation, Bull. Amer. Math. Soc. 28
(1993), 90-94.



