0000000000
017790 20120 140-150 140

THE PHRAGMEN-LINDELOF THEOREM FOR
LP-VISCOSITY SOLUTIONS

KAZUSHIGE NAKAGAWA (/1| A1E)
TOHOKU UNIVERSITY (HitA%)

ABSTRACT. The Phragmén-Lindeldf theorem is established for LP-viscosity
solutions of fully nonlinear second order elliptic partial differential equa-
tions with unbounded ingredients.

1. INTRODUCTION

The notion of LP-viscosity solutions was introduced in [5] to study fully
nonlinear second order elliptic partial differential equations (PDEs for short)
with unbounded inhomogeneous terms. We refer to [3] (see also [4]) as
a pioneering work for the regularity theory of viscosity solutions of fully
nonlinear PDEs.

It turned out that the Aleksandrov-Bakelman-Pucci (ABP for short) max-
imum principle can be extended to LP-viscosity solutions for fully nonlinear
second order elliptic PDEs with unbounded coefficients and inhomogeneous
terms in [15]. See also [18] for a generalization.

As an application of the ABP maximum principle in [{15], it is known
that the (boundary) weak Harnack inequality for LP-viscosity solutions of
the associated extremal PDEs in [16] holds, which implies Holder continuity
for LP-viscosity solutions of fully nonlinear elliptic PDEs with unbounded
ingredients. We also refer to [20] for Holder continuity estimates on LP-
viscosity solutions by a different approach.

On the other hand, qualitative properties of viscosity solutions of fully
nonlinear elliptic PDEs have been investigated as generalizations for clas-
sical elliptic PDE theory. For instance, the ABP maximum principle in
unbounded domains in (7] and [16], the Liouville property in [11, 6], the
Hadamard principle in [6], and the Phragmén-Lindel6f theorem in [8, 14].
We refer to references in [8, 11, 6] for these qualitative properties of strong/classical
solutions.

Our aim here is to give a sharp estimates of the Phragmén-Lindelof the-
orem in [14] when PDEs have unbounded coefficients (i.e. b in this paper).
In view of the boundary weak Harnack inequality in {16], it is natural to
relax the hypotheses on coefficients and inhomogeneous terms. However, for
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the weak Harnack inequality, we need to suppose that the coefficient to the
first derivatives is small enough in L™-norm. When we work in bounded
domains, this is not a restriction. Since we are concerned with unbounded
domains, we will need a bit more delicate analysis than those in [8].

Our paper is organized as follows: section 2 is devoted to showing the def-
initions and known results. In section 3, we present the ABP type estimates
on LP-viscosity subsolutions of fully nonlinear PDEs with unbounded in-
gredients under appropriate geometric conditions. We show the Phragmén-
Lindel6f theorem in our setting in section 4.

2. PRELIMINARIES

We consider next fully nonlinear second order PDEs in unbounded do-
mains ) C R™:

G(z,u, Du, D?u) = f(z) inQ, (2.1)
where G : @ x RxR" x S® — R and f : @ — R are given measurable
functions. We also suppose that (r,p, M) € R x R® x S" — G(z,r,p, M) is
continuous for almost all z € Q. Here, S™ denotes the set of n x n symmetric
matrices with the standard order.

We will use the standard notation from [13]. We denote by L% (Q) the set
of all nonnegative functions in LP((2).
Throughout this paper, we assume that

>’I’L
p 2’

We note that if u € Wlif(ﬂ) for p > n/2, then we may identify u with
a continuous function in Q, and u(z) is twice differentiable for almost all

z €.
At first, we denote the definition of LP-viscosity solutions of (2.1).

Definition 2.1. We call u € C(2) an LP-viscosity subsolution (resp., su-
persolution) of (2.1) if

essi:_lir%inf{G(x,u(m),D¢(x),D2¢(a:)) - f(z)} <0

(resp., ess. limsup{G(z,u(z), Dé(z), D*¢(z)) — f(z)} > O)

T—TQ

whenever ¢ € Wf)f(ﬂ) and zo € € is a local maximum (resp., minimum)
point of u—¢. A function u € C(Q) is called an LP-viscosity solution of (2.1)
if it is both an LP-viscosity subsolution and an LP-viscosity supersolution of
(2.1).

To make easier recalling the right inequality, we will often say that w is
an LP-viscosity solution of

G(z,u, Du, D*u) < f(x)
(resp., G(z,u, Du, D*u) > f(z)),
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if it is an LP-viscosity subsolution (resp., supersolution) of (2.1).
In what follows, instead of (2.1), we mainly consider PDEs which do not
depend on u-variable:
F(z,Du,D%u) = f(z) in Q. (2.2)
We will assume that F is (degenerate) elliptic:
F(x’p’ M) S F(x’p7 N)

for all (z,p, M,N) € Q x R™ x S™ x S™ provided M > N. (23)
For fixed ellipticity constants 0 < A < A, we also assume that
there exists b € L (Q) such that (2.4
P~ (M) - b(z)|p| < F(z,p, M) for (z,p, M) € Q xR" x S, '
where the Pucci operators P* : S — R are defined by
P~ (M) = min{—trace(AM) : A€ S": A\l < M < AI}, 2.5)

and P+ (M) = max{—trace(AM): A€ S™: A\ < M < AI}.

We will use the Escauriaza’s constant pg = po(n,A,A) € [n/2,n), for
which we refer to [12]. It is known that for p > po, and f € LP(B,(z)),
where B.(z) = {y € R" : |z — y| < r}, there exists a strong solution

u € C(B1(2)) N W, (Br(2)) of
P~ (D%vu(x)) = f(x) a.e. in By(2)
under v(z) = 0 for € 8B, (z) with estimates:
—C\f |lLe(Br(e)) < v(@) < ClfFlle(B(z)) in Br(2)
and '
”v“W:i'f(Br(z)) < C,Hf“LP(Br(z)),

where C = C(n,\,A,p) > 0 and C' = C'(n,\,A,p,r) > 0 are positive
constants.

We remark that to prove the ABP maximum principle [15, Theorem 2.9],
which implies the boundary weak Harnack inequality [16, Theorem 6.1}, it
suffices to obtain the existence of strong solutions of the above extremal
equation only in balls although this fact is not clearly mentioned in [15, 16].
In fact, this existence result holds with local W?2P-estimates for more general
domains satisfying the uniform exterior cone property but the po € [§,n)
associated with general domains might be bigger than the above. We also
notice that we may replace cubes by balls in the (boundary) weak Harnack
inequality in [16] by Cabré’s covering argument.

Fix R >0 and z € R". Let T, T’ C Bgr(z) be domains such that

— T

TcT, and GOS-}‘-I—;'I-SI for some 6y > 0.
When we apply our weak Harnack inequality below, our choice of T and T’
always satisfies the above condition.
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For a given domain A C R” and a function v € C(A4), we define v, on
T UA by

v (z) =

min{v(z),m} ifz € A,
m ifxeT \ A,

where

m = liminf v(x).
z—T'NOA

We note that if 7" N 0A # 0, then v, is a real-valued function and that if
T'NAA # 0, v is a nonnegative LP-viscosity supersolution of (2.2) and f < 0
in T'N A, then vy, is a nonnegative LP-viscosity supersolution of (2.2) in 7".

Next, we recall the boundary weak Harnack inequality when PDEs have
unbounded coefficients and inhomogeneous terms.

Lemma 2.2 ([16, Theorem 6.1]). Let T, T', A be as above. Assume that
TNA#0 and T'\ A # 0 and that

g>mn, q=>p>po. (2.6)

Then, there erist constants g9 = go(n, A\,A) >0, r =r(n,\,A,p,q) > 0 and
Co = Co(n, A, A,p,q) > 0 satisfying the following property: ifb € L% (T'NA),
feLE(T'NA), a nonnegative LP-viscosity solution w € C(T' N A) of

PT(D*w) +b(z)|Dw| > ~f(z) nT' N A,

and
6]l Ln (77 4) < €0, (2.7)
then it follows that

1 — YT o
(l—T_l /T(wa,A) d:c) 5CO(“%fwT/,A+Rl|f|an(T/nA))

provided that ¢ > n and g > p > n, and

(% /T(U’E/,A)Td$> .

M
< Co(ipfwp g + B Ff lornay > RO P e
k=0

provided that ¢ > n > p > py, where M = M(n,p,q) > 1 is an integer.

In the next section, we will establish some local and global ABP type esti-
mates on LP-viscosity subsolutions for (2.2). Finally, we recall the notations
concerning the shape of domains from [§].

Definition 2.3 (Local geometric condition). Let o,7 € (0,1). Wecally €
a Gg,r point of Q if there exist R = Ry > 0 and z = z, € R™ such that

yE€ BR(Z)> and |BR(z)\Qy,BR(z),T| > 0'|BR(Z)I’ (2.8)
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where Q,, g, (.),- is the connected component of Br(z)N{) containing y. For

o,7€ (0,1),and Rp > 0,7n>0,wecally € Q a Gﬁ‘}’" point in Qif y is a
Gy, point in Q with R = Ry > 0 and z = 2, satisfying

R < Ro +nlyl. (2.9)
Definition 2.4 (Global geometric condition). We call Q2 a weak-G domain
ifanyyeQisa Gﬁ"r’" point in .

Remark 2.5. For the sake of simplicity of notations, for a G, point y € (Q,
we will write By, for Br, (2y), where Ry, > 0 and 2, € R" are from Definition

2.3.

We refer the reader to [21] and [8] for examples of weak-G domains 2.
We also refer to [1] for a generalization.

3. ABP TYPE ESTIMATES

In this section, we first present pointwise estimates on LP-viscosity subso-
lutions of (2.2), which is often referred as the Krylov-Safonov growth lemma.
For simplisity, throughout this paper, we assume that p > n. In what fol-
lows, we fix 0,7 € (0,1) and Ry > 0. Let y € Q2 be a Gf}’" point with n > 0.
It is possible to apply our weak Harnack inequality in By, which is from
Definition 2.3, if ||b]|z»(B,nq) < 0. Here and later, go > 0 is the constant
from Lemma 2.2.

Even if [|b]|zn(B,nq) > €0, We may use Cabré’s covering argument; we
divide By into small pieces so that we may apply the weak Harnack inequal-
ity in each piece. We then obtain the weak Harnack inequality in By, by
combining all the inequalities for small pieces.

However, since we need the estimates uniform in y € €2, this argument
does not work immediately because of unboundedness of {R,},co when
n>0.

To avoid this difficulty, we will suppose a decay rate of b:
for any € > 0, there exists § > 0 such that

sup/ R"b(Rz)"dx <& for EC A,|E| <, (3.1)
E

R>1
where A = QN {z € R*|{min{1/(1 + n), (c/4)'/"} < |z| < 2+ 1/7}.

Lemma 3.1 (pointwise estimate). Assume that (2.3), (2.6) and (2.4) hold
withb € L1(Q). Letn >0 andy € Q be a GEO" point in Q with R = R, >0
and z = zy € R™. Then, there exist k = k(n, A, A,0,7,Ro,n) € (0,1) and
e = g(n,o,n) > 0 satisfying the following property: if w € C(2) is an LP-
viscosity subsolution of (2.2) with f € L% (Q), then we have the following
properties: (i) If |yl < Ro and p > n, then

w(y) < & sup wh + (1 - &) limsup w* + Rol|fl|zn(B,n0)-
ByNQ z—B,NOQ
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(%) Assume that (3.1) is satisfied and that |y| > Ry. If p > n, then
w(y) < K sup wt + (1 — k) lim su(%) wt + RHf”Ln(BynQ\BER(O)).

BynQ z-—-ByN
Remark 3.2. To get the weak maximum principle (Lemma 4.1 below), it
is important to have the term || f|| s Byn\B.g(0)) instead of || f||»(5,nq) in
the estimates of the assertion (ii) above.

Proof. First of all, we shall omit giving the proof in the case of ||b| i) =0
because it is easy to do it, and we suppose that ||b]|ze(q) > 0.

It is enough to show the assertion when € := lim SUP,_.B, o0 wt(z) = 0.
In fact, after having established the assertion when C =0, we may apply
the result to w — C to prove the assertion in the general case.

Due to (2.4), w is an LP-viscosity solution of

P~ (D?*w) — b(z)|Dw| < f(z) in Q.
Setting Cyy = supg ~qw™, we immediately see that v(z) := Cy — w(z) is
an LP-viscosity solution of

P+ (D%) + b(z)|Dv| > —f(z) in Q.

We shall first prove (ii).

Case (ii) |y| > Ro:

Taking ¢ = §min{gl;,(§)%} € (0, imin{l;,(§)7}). Note that 2 <
1/(1+n) and (26)" < 0/4. We set T = Bg(2)\B2:r(0) and T’ = B, \ B.r(0).
Observe that

R _ R+ nly|
1+~ 149
and consequently y € T = Bg(z) \ B2:gr(0). Let A be the connected com-
ponent of 7/ N 2 which contains y. We have

IT\A| = |T\Qy,Bx(2),]
> |Ba(2)\Qy,za(e)r| — | Baer(0)
> o|Bgr(0)| — (2¢)"|Br(0)]

o
> 21BR(0)

2¢eR < < |y

o
> — .
> ||
Since
T'NOACT NO(T' NQ) CT' NnOT UIN) =T Nax, (3.2)
in view of C < 0, we have

. Ao sc. .
ml_lgl,%fAv(x) Cuw zlﬁr% Isr%a w(z) > Cy (3.3)

Now, we verify (2.7). By (3.1), if || Rb(R-)|L~(4) < €0, We see that
18]l Lr(zvnay < IIRB(R )| Lncay < €0
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Setting m = liminf,_,7ng4 v(z), we use (3.3) to show for any r > 0,

()" s () "o ( fumrae)™ < Gy fowree)™

Since y € A, we have

inf ur, < v(y) = Co — w(y). (3.4)

Thus, letting r > 0 be the constant from Lemma 2.2, we have

1/r
(%) / Cuw < CO (i?,fv;z + R”f”L"(T'ﬂA)) < CO (Cw - w(y) + R”f”L“(T’ﬂQ)) .
Therefore, we conclude that the assertion (ii) holds with x = 1—(%)/" min{C{ 11y >
0 in the case where ||Rb(R-)||zn(4) < €o-

Next assume that |Rb(R-)||z~(4) > €0. In this case, we can show that
using a Cabré’s covering argument.

Case (i) |y| < Ro:
Since we have R < (1 + 17)Rp in this case, we may regard Q as a bounded
domain. Thus, we can use the standard covering argument by Cabré without
using (3.1). Setting T = Bg(z), T’ = B§ (2) and A = Q gp(z)r, We have

g
IT\A| = |BRr(2) \ Q,Ba(2),r| 2 9|Br(2)| 2 5IT].

We shall only give a proof when ||b|| 1r(7/n4) < €o.
Following the same argument as in case (ii) with the above inequality,
and new A,T,T’, we have

1/r
(%) Cw < Co (ir%fv;, + Rollf IILn<Bynm)
< Co (Cw — w(y) + Rollfll n(Byne) -

Therefore, we conclude that the assertion holds with the same « € (0,1) as
in case (ii). O

When Q C R” is a weeak-G domain, we derive the ABP maximum prin-
ciple for LP-viscosity subsolutions bounded from above of (2.2).

Theorem 3.3 (ABP maximum principle in unbounded domains). Assume
(2.6), (2.3) and (2.4) with b € L% (Q) satisfying (3.1). Letn > 0 and Q@ C R"
be a weak-G domain. Assume also

sup Ryl fllLr(a,ne) < o0 (3.5)
yEQ,|Y|I>Ro

Let %min{ﬁ, (9)/"}<e< min{ﬁ_—n, (§)Y/"}. Then, there exists

C= C(n’ )\aA,pa q,¢&,0, T)ROa'n) >0



satisfying the following properties: if w € C() is an LP-viscosity subsolution
bounded from above of (2.2) with f € LE (), then it follows that

supw <limsupw™(z) +C sup Ryl fllznca,ne)
z—00 yeQ,|lyl>Ro (3 6)

+CRy  sup || fllzn(B,ne)-
y€Q,|y|<Ro

Here, Ay = Bry (2y) \ Ber,(0) and By, BR Ry (2y).

Proof. We take the supremum over y € Q W1th the estimates in Lemma, 3.1
to conclude the inequalities (3.6). O

4. PHRAGMEN-LINDELOF THEOREM

In this section, we show that the weak maximum principle holds for
PDEs with zero-order terms. As before, assuming that Q is a weak-G
domain, for each y € , we use the notations R, > 0 and 2, € R".
Also, By and Ay, respectlvely, denote Br, (zy) and BR (2y) \ Ber,(0) for

€€ [4 mln{ 1+17)( )l/n}’ 2 mln{ 1+7 ’( )l/n})

Lemma 4.1. Assume (2.3), (2.6) and (2.4) with b € L1(Q) satisfying
(3.1). Letn > 0 and Q be a weak-G domain. Then, there exists cg =
co(n, A\, A,p,q,0,7,Ry,n) > 0 satisfying the following property:

ifce LT (Q), w € C(Q) is an LP-viscosity solution bounded from above of

F(z, Dw, D*w) — c(z)wt <0 inQ (4.1)
such that
limsupw(z) <0, (4.2)
z—00
and

Ko := max sup H(')C(')”Ln(Ame), sup ||C”Ln(BynQ) < co,
y€Q,ly|>Ro y€Q1|yISRO
(4.3)
then w < 0 in Q.
Proof. Note that by (2.4), w is an L™-viscosity solution of
P~ (D*w) — b(z)|Dw| — c(z)w™ < 0.

We apply Theorem 3.3 with f = cw™ to obtain that when |y| < Ry,

Rollew™ || zn(B,n0) < RoSngJ"HCHLn(Bym) < Ry Ko Sup w*.

On the other hand, when |y| > Ry, we have

R Ky
R llcw™ || zn < —¥% _ _supwT||(-}e()||zn < —supw™.
yllew™ || na,n0) < R up 1) el lzn(ayne) < — up
(4.4)
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Choosing &; = 1 min{ 1—_}3, (§)}/7} for instance, we have

1
supw < C3max {Ro, —} cosupw™t
Q €1 Q

for some constant C3 > 0. Taking ¢ < 1/(C3max{Ry,1/e1}), this end the
proof. O

Theorem 4.2 (Phragmén-Lindel6f theorem). Assume (2.3), (2.6) and (2.4)
with b € LY (Q) satisfying (3.1). Letn > 0 and Q be a weak-G domain. There
exists a positive constant o > 0 such that if w € C(Q) is an LP-viscosity
solution of

F(z, Dw,D*w) <0 inQ (4.5)
with (4.2) holds and
w¥(z) = O(|z*) as || — oo, (4.6)
then w < 0 in Q.
Proof of Theorem 4.2. Define a positive smooth function
§(z) = ()%,

where a > 0 will be fixed later. Setting u = w/&, which is bounded from
above. A straightforward calculation shows that

D€l ) ¢ o 1D, _ Cua
e 5% g @=gp

for some C4 > 0. Thus, we see that u is an L™-viscosity solution of

P~ (D%*u) — m1(z)|Du| — arz(z)ut <0 inQ,

where
C50t C(; 1
m(z) = — +b(z), v(z)=-— (—— +b x))
@ @ \(@ ™
for some positive constants Cs,Cs > 0. We easily see that v; satisfies (3.1).
We next show that (4.3) holds for «2. Direct calculation implies

Ky := ma.x{ sup ||<'>'72(')”L“(Ayr19)’ sup ||72”Ln(3ynn)} < +00
yEQL|Y|>Ro yeQ,ly|<Ro
(4.7

is boounded. Thus, Ky = afi'o is small when a > 0 is small enough.
Therefore, using Lemma 4.1 with b = v; and ¢ = 73, we get u < 0. This
imlies w < 0. O
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