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1 Introduction
In this paper, we consider an asymptotic behavior in $L^{2}$ of weak solutions

of the Navier-Stokes equations in the half-space $\mathbb{R}_{+}^{n}$ :

$\{\begin{array}{l}\frac{\partial u}{\partial t}-\triangle u+u\cdot\nabla u+\nabla p=0 in \mathbb{R}_{+}^{n}\cross(0, \infty)divu=0 in \mathbb{R}_{+}^{n}\cross(0, \infty)u=0 on \partial \mathbb{R}_{+}^{n}\cross(0, \infty)u(0)=a in\mathbb{R}_{+}^{n},\end{array}$ (N-S)

where $n\geq 3,$ $\mathbb{R}_{+}^{n};=\{x=(x_{1}, \ldots, x_{n})\in \mathbb{R}^{n};x_{n}>0\}$ denotes the upper
half-space. Here, $u=u(x, t)=(u^{1}(x, t), \ldots, u^{n}(x, t))$ and $p=p(x, t)$ denote
the unknown velocity vector and pressure of the fluid at point $(x, t)\in$

$\mathbb{R}_{+}^{n}\cross(0, \infty)$ , respectively, while $a=a(x)=(a^{1}(x), \ldots, a^{n}(x))$ is the given
initial velocity.

In his celebrated paper [7], Leray proposed the problem whether or not
weak solutions of (N-S) tend to zero in $L^{2}$ as the time goes to infinity.
Masuda [8] first gave a partial answer to Leray’s problem and clarified that
the energy inequality of strong type plays an important role in $L^{2}$ decay of
weak solutions. Here, we mean by the energy inequality of strong type:

$\Vert u(t)\Vert_{2}^{2}+2\int_{s}^{t}\Vert\nabla u(\tau)\Vert_{2}^{2}d\tau\leq\Vert u(s)\Vert_{2}^{2}$ (1.1)

for almost all $s\geq 0$ , including $s=0$ . and for all $t\geq s$ . Leray called a weak
solution with (1.1) a turbulent solution. Later on, exact algebraic decay
rate of energy decay was shown by Schonbek [12], Kajikiya-Miyakawa [5]
and Wiegner [21]. For example, by the asymptotic expansion of heat kernel,
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Fujigaki-Miyakawa showed that there exists a turbulent solution of (N-S)

such that
$\Vert u(t)\Vert_{2}=O(t^{-\frac{l+2}{4}})$ as $tarrow\infty$ , (1.2)

if initial data $a\in L_{\sigma}^{2}(\mathbb{R}^{n})$ satisfies $\int_{\mathbb{R}^{n}}(1+|x|)|a(x)|dx<0$ . They also
found the necessary and sufficient condition that decay rate $t^{-(n+2)/4}$ is

optimal. Furthermore, it is well known that the decay rate as in (1.2) is

one of the nonlinear Duhamel term. Indeed, Kajikiya-Miyakawa [5] and
Borchers-Miyakawa [1] proved that the decay rate of the difference between
the nonlinear Navier-Stokes flow and the linear Stokes flow in $L^{2}$ for the

case of $\mathbb{R}^{n}$ and $\mathbb{R}_{+}^{n}$ .

Proposition 1.1 ([5],[1]). Let $1\leq r<2$ and $a\in L_{\sigma}^{2}$ . If $1\leq r<2n/(n+2)$ .
then every weak solution $u(t)$ of (N-S) with (1.1) satisfies

$\Vert u(t)-e^{-tA}a\Vert_{2}=O(t^{-\frac{\iota+2}{4}})$ as $tarrow\infty$ , (1.3)

where $e^{tA}$ is the Stokes semigroup and $A$ is the Stokes operator.

Form this proposition, it is easy to see that if we require the slower decay

for the nonlinear Navier-Stokes flow, the linear Stokes flow is dominant and

should be investigated. Here we note that our aim this article is to establish
the lower bound of the energy decay for the Navier-Stokes flow in the half

space, i.e.,
$\Vert u(t)\Vert_{2}\geq Ct^{-\alpha}$ , $t\gg 1$ , (1.4)

where $n/4\leq\alpha<(n+2)/4$ .
Our original motivation and background is based on the energy concentra-

tion phenomenon in the frequency space in order to investigate the asymp-
totic profile of the Naiver Stokes flow in the whole space $\mathbb{R}^{n}$ . For this
purpose, we consider the following asymptotic behavior:

$\lim_{tarrow\infty}\frac{\Vert E_{\lambda}u(t)\Vert_{2}}{\Vert u(t)||_{2}}=1$ (1.5)

where $\{E_{\lambda}\}_{\lambda\geq 0}$ is a family of projection operators on $L_{\sigma}^{2}(\mathbb{R}^{n})$ associated
with the spectral decomposition of the Stokes operator $A$ . Furthermore, for
the case of the whole space $\mathbb{R}^{n},$ $E_{\lambda}u$ can be regarded as a low frequency

component of $u$ in the frequency space. Indeed, we introduce a cut-off
function $\chi_{R}$ :

$\chi_{R}(\xi):=\{\begin{array}{l}1 |\xi|\leq R0 |\xi|>R.\end{array}$

Then by the Fourier transform, we see that

$\hat{E_{\lambda}u}(\xi)=\chi_{\sqrt{\lambda}}(\xi)u$
へ

$(\xi)$ .
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Hence, (1.5) meas that the partial energy of the lower frequency component
of $u(t)$ up to $\sqrt{\lambda}$ becomes dominant over the whole energy of $u(t)$ as $tarrow$

$\infty$ . So it is an interesting problem to clarified that whether concentration
phenomenon (1.5) does occur or not, that what initial data causes (1.5) and
that what $\lambda$ energy concentrates.

To prove (1.5), we found out the following inequality:

$1- \frac{\Vert E_{\lambda}u(t)\Vert_{2}^{2}}{\Vert u(t)\Vert_{2}^{2}}\leq\frac{1}{\lambda}\frac{\Vert\nabla u(t)||_{2}^{2}}{||u(t)\Vert_{2}^{2}}$ , (1.6)

for all $t>0$ and all $\lambda>0$ . Here, it is well-known that $\Vert\nabla u(t)\Vert_{2}$ decays
with the same rate as one of $L^{p}-L^{q}$ estimate of the Stokes semigroup $e^{-tA}$ ,
if initial data $a\in L^{r}\cap L_{\sigma}^{2}$ with some $1\leq r<2$ . Hence, in order to prove
the convergence of the L.H.S. in (1.6), it suffices to derive the lower bound
of the decay of $\Vert u(t)|_{2}$ and to compare with each rate. However, the fastest
decay of $\Vert\nabla u(t)\Vert_{2}$ is $t^{-(n+2)/4}$ via $L^{p}-L^{q}$ estimate for $r=1$ . This is why
we need such a slow decay (1.4).

In this direction, the author established precise behavior of solutions of
the lower bound in $L^{2}(\mathbb{R}^{n})$ . We note that to derive such a slow decay,
the analysis on the linear Stokes flow is essential. By the Fourier splitting
method, the behavior at $t=\infty$ of the Stokes flow is controlled by the lower
frequency component of initial data. Indeed, introducing a class $K_{\alpha,\delta}^{m}(\mathbb{R}^{n})$

for initial data, defined by

$K_{\alpha,\delta}^{m}(\mathbb{R}^{n}):=\{\phi\in L^{2}(\mathbb{R}^{n});|\hat{\phi}(\xi)|\geq\alpha|\xi|^{m}, |\xi I \leq\delta\}$ , $m\geq 0,$ $\alpha,$
$\delta>0$ ,

(1.7)
he [10] proved that if $a\in K_{\alpha,\delta}^{m}(\mathbb{R}^{n})\cap L^{r}(\mathbb{R}^{n})$ with $1<r<2$ , then the weak
solution $u(t)$ of (N-S) satisfies

$\Vert u(t)\Vert_{L^{2}(N^{1})}\geq C(1+t)^{-\frac{n+2m}{4}}$ , (1.8)

for $n=2,3,4$. We note that the set $K_{\alpha,\delta}^{m}(\mathbb{R}^{n})$ has a different character of
the initial profile from that of [13, 14] and [9], and that in particular, our
characterization covers the results of [12, 13, 14], when $0\leq m<1$ .

Rom this observation, to derive energy concentration (1.5), the slow de-
cay of $\Vert u(t)\Vert_{2}$ is essential. Here, we notice that the method to derive the
lower bound depends heavily on the Fourier transform. Hence it is inter-
esting problem to establish the lower bound of the energy decay in other
domains where the Fourier transform does not work well.

Next we consider the Navier-Stokes flow in the half-space $\mathbb{R}_{+}^{n}$ . In the half-
space, there are many results for the upper bound of the temporal decay
of the Stokes flow and the Navier-Stokes flow. See, for instance, Borchers
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and Miyakawa [1], Fujigaki and Miyakawa [3, 4]. However, up to now, it
seems that there are few results for the lower bound of the energy decay. In
such a situation, [3, 4] obtained the same lower bound as (1.8) under some
condition on initial data. Especially, in [4], it was clarified that the strong

solution $u(t)$ of (N-S) satisfies $\Vert u(t)\Vert_{2}\geq Ct^{-n/4}$ if and only if the Stokes
flow $v(t)$ satisfies $\Vert v(t)\Vert_{2}\geq Ct^{-n/4}$ . As is mentioned in [4], it seems to be an
interesting problem to characterize a class of the initial data which exhibits

a lower bound of the Stokes flow in the half-space $\mathbb{R}_{+}^{n}$ . In the present article,

focusing on the profile of initial data, we investigate the lower bound such as
(1.8) for weak solutions of (N-S) which satisfy the energy inequality of strong

type (1.1) in the half-space $\mathbb{R}_{+}^{n}$ . Our rate as in (1.8) improves the rate given

by [3] like $($ ?? $)$ . Furthermore, we give a positive answer to the question of
[4] for the slow decay of the Stokes flow by the concrete characterization of
the initial data in $\mathbb{R}_{+}^{n}$ which is similar to (1.7).

To study on the asymptotic behavior of the Navier-Stokes flow in the
half-space, we first consider the Stokes flow and establish the estimate from
below in terms of the explicit solution formula given by Ukai [20]. In the
whole space $\mathbb{R}^{n}$ , a number of decay properties of lower bounds relies heavily

on the Fourier transform. However, in order to overcome such difficulty, we
split the variables of the initial data $a$ with the following form:

$a(x)=a’(x’)\eta(x_{n})$ ,

where $x=(x’, x_{n})\in \mathbb{R}^{n}$ and $x’$ $:=(x_{1}, \ldots, x_{n-1})\in \mathbb{R}^{n-1}$ . Moreover, under
some restriction on $a’$ and $\eta$ , we notice that the property of $a’$ is dominant

to the slow decay of the Stokes flow. By this form, the problem is reduced
to that on the lower dimensional whole space $\mathbb{R}^{n-1}$ . Conversely, we see
that the 2-dimensional initial data can be embedded in the 3-dimensional
half-space $\mathbb{R}_{+}^{3}$ and also the whole space $\mathbb{R}^{3}$ , where the slow decay properties
are preserved. In the same manner, for every $n\in N$ , we find out a hier-

archy structure between $\mathbb{R}^{n}$ and $\mathbb{R}^{n+1}$ for the decay of the lower bounds
of solutions with respect to the initial data. On the other hand, instead
of $K_{\alpha,\delta}^{m}(\mathbb{R}^{n})$ as in (1.7), we introduce a more general profile on the lower
ffequency part on initial data such as

$T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n}):=\{\phi\in L^{2}(\mathbb{R}^{n});|\hat{\phi}(\xi)|\geq\alpha|\xi_{n}|^{m}, |\xi_{n}|\leq\gamma, |\xi’|\leq\delta\}$ , (1.9)

for $m\geq 0,$ $\alpha,$ $\gamma,$
$\delta>0$ , where $\xi=(\xi’, \xi_{n})\in \mathbb{R}^{n}$ and $\xi’$ $:=(\xi_{1}, \ldots, \xi_{n-1})\in$

$\mathbb{R}^{n-1}$ . It should be noted that the class $T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ can be characterized
in terms of the estimate from below of the low frequency $\xi=(\xi’, \xi_{n})$ in

the $\xi_{n}$ -direction. It turns out that such a profile of initial data only in one
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direction to $\xi_{n}$ dominates the asymptotic behavior in time from below of
the Stokes flow. We also note that by making use of $T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ , we can
improve the previous result in [10] for the whole space $\mathbb{R}^{n}$ . By the virtue of
Ukai $s$ solution formula of the Stokes flow, the profile of initial data can be
directly applicable to the exact exponent of the decay in (1.8). If we take
$m=0$ in (1.8) and (1.9), then we obtain such a lower bound as:

$\Vert u(t)\Vert_{2}\geq Ct^{-\frac{l1}{4}}$ $t\gg 1$ . (1.10)

In addition, if $|a’(\xi’)|$

へ

$\leq M$ for near $\xi’=0$ , it is easy to see that

$\Vert u(t)\Vert_{2}\leq C(1+t)^{-\frac{l}{4}}$ . (1.11)

Therefore, (1.11) gives the optimal decay rate of the energy of the Navier-
Stokes flow in the half-space $\mathbb{R}_{+}^{n}$ for such a initial data. Indeed, we con-
struct an initial data which causes both (1.10) and (1.11), as an example in
$T_{\alpha,\gamma,\delta}^{0}(\mathbb{R}^{n})$ .

2 Results
We consider the following assumption on initial data:

Assumption. (A 1) $a(x)=(a^{1}(x), \ldots, a^{n-1}(x), 0)=:(a’(x), 0)$

$(A2)a’(x)=a”(x’)\eta(x_{n})$

(A 3) $\eta(-x_{n})=-\eta(x_{n})$ and $|\hat{\eta}(\xi_{n})|\geq Cnear\xi_{n}=0$

$(A4)a”\in T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ . $i.e..|$
へ

$a^{\prime l}(\xi’)|\geq C|\xi_{n-1}|^{m}$ near $\xi’=0$

Now our results read:

Theorem 2.1. Let $n\geq 3$ , and let $r$ and $m$ satisfy either (i) or (ii):

(i) $1<r\leq 2n/(n+2),$ $0\leq m<1$ ,

(ii) $2n/(n+2)<r<2n/(n+1),$ $0\leq m<2n/r-n-1$ .

If $a\in L^{r}(\mathbb{R}_{+}^{n})\cap L_{\sigma}^{2}(\mathbb{R}_{+}^{n})$ sa$tisBes$ the assumptions $(Al),$ $(A2),$ $(A3)$ and $(A4)$

for some $\alpha,$ $\gamma,$ $\delta>0$ , then there exist $T>1$ and a constant $C>0$ such
that every weak solution $u(t)$ of (N-S) with (1.1) fulfills the estima$te$,

$\Vert u(t)\Vert_{2}\geq Ct^{-\frac{21+2m}{4}}$ (2.1)

for all $t\geq T$ .

21



Remark 2.1. (i) We note that (2.1) improves the result in [4] when $0\leq$

$m<1$ .
(ii) The estimate (2.1) inspires us that the optimal decay rate for such an

initial data seems to be $n/4$ . Indeed, by taking $m=0$ in (2.1), we obtain

$Ct^{-\frac{\iota}{4}}\leq\Vert u(t)\Vert_{2}\leq C_{r}(1+t)^{-\frac{\iota}{2}(\frac{1}{r}-\frac{1}{2})}$ , $t>T$ , (2.2)

for $a\in L^{r}(\mathbb{R}_{+}^{n})\cap L^{2}(\mathbb{R}_{+}^{n}),$ $1<r<2$ . Letting $rarrow 1$ in (2.2) formally, we
may expect an exact estimate both from below and above such that

$Ct^{-\frac{}{4}}\leq\Vert u(t)\Vert_{2}\leq C(1+t)^{-\frac{l}{4}}$ , $t\geq T$.

However, up to now, we do not establish any uniform estimate with respect

to $1<r<2$ on the constant $C_{r}$ in (2.2).

(iii) In addition to the case $m=0$ , if $|\hat{a’’}(\xi^{l})|\leq M$ for near $\xi’=0$ and
$|\eta^{\hat{*}}(\xi_{n})|\leq M$ for near $\xi_{n}=0$ then we obtain the optimal decay rate $n/4$ for
such an initial data, since it holds that

$Ct^{-\frac{\iota}{4}}\leq\Vert u(t)\Vert_{2}\leq C(1+t)^{-\frac{l}{4}}$ , $t\geq T$.

3 Stokes flow in the half-space $\mathbb{R}_{+}^{n}$

To prove our main theorem, it is essential to investigate the energy decay

of the linear Stokes flow in the half-space. For this purpose, we first intro-

duce some specific properties of solutions, $v=(v^{l}, v^{n}),$ $v^{l}=(v^{1}, \ldots, v^{n-1})$ ,

of the Stokes equations:

$\{\begin{array}{l}\frac{\partial v}{\partial t}-\Delta v+\nabla p=0 in \mathbb{R}_{+}^{n}\cross( 0, oo)divv=0 in \mathbb{R}_{+}^{n}\cross(0, \infty)v=0 on \partial \mathbb{R}_{+}^{n}\cross(0, \infty)v(0)=a in \mathbb{R}_{+}^{n}.\end{array}$ (S)

Ukai [20] gave a explicit solution formula for (S). To state Ukai $s$ formula

we prepare some notations. Let $R=(R’, R_{n})$ with $R’=(R_{1}, \ldots, R_{n-1})$

and $S=(S_{1}, \ldots, S_{n-1})$ denote the Riesz transform over $\mathbb{R}^{n}$ and $\mathbb{R}^{n-1}$ ,

respectively. Each $R_{j}$ (resp. $S_{j}$ ) is a bounded linear operator on $L^{r}(\mathbb{R}^{n})$

(resp. $L^{r}(\mathbb{R}^{n-1})$ ), $1<r<\infty$ . For a function $f(x’, x_{n})$ , we umderstand that
$S_{j}$ acts as a convolution with respect to the variables $x$‘, so $S_{j}$ is regarded as
a bounded operator on both $L^{r}(\mathbb{R}^{n})$ and $L^{r}(\mathbb{R}_{+}^{n}),$ $1<r<\infty$ . Let $B=B_{r}=$

-A be the Laplacian on $\mathbb{R}_{+}^{n}$ with domain $D(B)$ $:=W^{2,r}(\mathbb{R}_{+}^{n})\cap W_{0}^{1,r}(\mathbb{R}_{+}^{n})$ . It
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is well known $that-B$ generates a bounded analytic semigroup $\{e^{-tB}\}_{t\geq 0}$

on $L^{r}(\mathbb{R}_{+}^{n}),$ $1<r<\infty$ . More precisely, we have

$e^{-tB}f=e^{t\triangle}f^{*}|_{\mathbb{R}_{+}^{?l}}$ , for $f\in L^{r}(\mathbb{R}_{+}^{n})$ , $1<r<\infty$ ,

where $e^{t\triangle}$ is the usual heat operator on $\mathbb{R}^{n}$ and $f^{*}$ denotes the odd extension
with respect to variable $x_{n}$ , i.e.,

$f^{*}(x’, x_{n}):=\{\begin{array}{ll}f(x’, x_{n}), x_{n}>0,-f(x^{l}, -x_{n}), x_{n}<0.\end{array}$

The solution formula of Ukai [20] is now read:

Proposition 3.1 (Ukai [20]). For $a\in L_{\sigma}^{r}(\mathbb{R}_{+}^{n}),$ $1<r<\infty$ , the solution
$v=(v’, v^{n})$ of $(S)$ is expressed as

$v^{n}(t)=Ue^{-tB}[a^{n}+S\cdot a’]$ , $v’(t)=e^{-tB}[a’-Sa^{n}]+Sv^{n}$

where $U$ is the bounded operator on $L^{r}(\mathbb{R}_{+}^{n})$ , indeed, $Uf=R’\cdot S(R’\cdot S-R_{n})ef|_{\mathbb{R}}\dotplus^{l}$ ’

which is also expressed with the Fourier transform on $\mathbb{R}^{n-1}$ as

$\hat{Uf}(\xi’, x_{n})=|\xi’|\int_{0^{e^{-|\xi’|(x_{l}-y)}}}^{x_{l}\prime},f(\xi’, y)dy$ .

Here, $ef$ denotes the zero extension of $f$ from $\mathbb{R}_{+}^{n}$ over $\mathbb{R}^{n}$ :

$ef(x’, x_{n})=\{\begin{array}{ll}f(x’, x_{n}) x_{n}>00 x_{n}<0.\end{array}$ (3.1)

Remark 3.1. In this paper, we use the Fourier transform with the following
form:

$\hat{f}(\xi)$ $:=(2 \pi)^{-\frac{n}{2}}\int_{\mathbb{R}^{n}}e^{-ix\cdot\xi}f(x)dx$ , $i$ $:=\sqrt{-1}$.

Furthermore, we note that the symbols of Riesz $s$ operator $R_{j}$ and $S_{j}$ are

$\sigma(R_{j})=-i\xi_{j}/|\xi|$ , $j=1,$ $\ldots,$
$n$ ,

$\sigma(S_{j})=-i\xi_{j}/|\xi’|$ , $j=1,$ $\ldots,$ $n-1$ ,

which have opposite signs of ones in [20, 1].

With Ukai $s$ solution formula for the linear Stokes flow in the half-space,
we can directly calculate the Stokes flow if the initial data is given. Indeed,
we have the following Theorem for the lower bound of the energy decay for
the Stokes flow in the half-space:
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Theorem 3.1 (The half-space). Let $n\geq 3$ and put $v(t)=e^{-tA}a$ . If
$a\in L_{\sigma}^{2}(\mathbb{R}_{+}^{n})$ satisfies assumptions $(Al),$ $(A2),$ $(A3)$ and $(A4)$ then the Stokes
flow $v(t)$ satisfies

$\Vert v(t)\Vert_{2}\geq Ct^{-\frac{n+2m}{4}}$ for $t\geq 1$ (3.2)

where $C=C(n, m, \alpha,\gamma, \delta)>0$ .

Since we focus on the initial data with splitting variables $a(x)=a”(x’)\eta(x_{n})$ ,

the following lemma for the Stokes flow in the whole space plays an impor-

tant role for $a^{l\prime}(x’)$

Lemma 3.1 (The whole space). Let $n\geq 2$ and put $v(t)=e^{-tA}a$ with the
Stokes semigroup $e^{-tA}$ on $L_{\sigma}^{2}(\mathbb{R}^{n})$ . If $a\in L_{\sigma}^{2}(\mathbb{R}^{n})\cap T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ for some
$m\geq 0$ and $\alpha,$ $\gamma,$

$\delta>0$ , then $v(t)$ satisfies

$\Vert v(t)\Vert_{2}\geq Ct^{-\frac{\iota+2m}{4}}$ for $t\geq 1$ , (3.3)

where $C=C(n, m, \alpha, \gamma, \delta)>0$ .

Proof. By Plancherel $s$ theorem and Fubini’s theorem, we have

$\Vert v(t)\Vert_{2}^{2}=\Vert\hat{v}(t)\Vert_{2}^{2}\geq\int_{|\xi_{1}|\leq\gamma,|\xi’|\leq\delta}e^{-2t|\xi|^{2}}|\hat{a}(\xi)|^{2}d\xi$

$\geq\alpha^{2}\int_{|\xi_{l}|\leq\gamma,|\xi’|\leq\delta}e^{-2t|\xi|^{2}}|\xi_{n}|^{2m}d\xi$

$= \alpha^{2}(\int_{|\xi_{n}|\leq\gamma}e^{-2t\xi_{1}^{2}},|\xi_{n}|^{2m}d\xi_{n})(\int_{|\xi’|\leq\delta}e^{-2t|\xi’|^{2}}d\xi’)$

$=:\alpha^{2}I_{1}\cdot I_{2}$ ,

for all $t\geq 0$ . By changing variables we have

$I_{1}=2 \int_{0}^{\gamma}e^{-2t\xi_{l}^{2}}\cdot\xi_{n}^{2m}d\xi_{n}$

$=2 \int_{0}^{\sqrt{t}\gamma}e^{-2\rho^{2}}(\frac{\rho}{\sqrt{t}})^{2m}\frac{d\rho}{\sqrt{t}}$

$\geq 2t^{-\frac{2m+1}{2}}\int_{0}^{\gamma}e^{-2\rho^{2}}\rho^{2m}d\rho$

for all $t\geq 1$ . Similarly by polar coordinates $\xi’=\rho\omega\in \mathbb{R}^{n-1}$ , we have

$I_{2}=(n-1) \omega_{n-1}\int_{0}^{\delta}e^{-2t\rho^{2}}\rho^{n-2}d\rho$

$=(n-1) \omega_{n-1}\int_{0}^{\sqrt{t}\delta}e^{-2\rho^{2}}(\frac{\rho}{\sqrt{t}})^{n-2}\frac{d\rho}{\sqrt{t}}$

$\geq(n-1)\omega_{n-1}t^{-\frac{n-1}{2}}\int_{0}^{\delta}e^{-2\rho^{2}}\rho^{n-2}d\rho$,
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for all $t\geq 1$ , where $\omega_{n-1}$ is the volume of the unit ball in $\mathbb{R}^{n-1}$ .
Therefore, we obtain (3.3) with a constant

$C^{2}=2 \alpha^{2}(n-1)\omega_{n-1}(\int_{0}^{\gamma}e^{-2\rho^{2}}\rho^{2m}d\rho)(\int_{0}^{\delta}e^{-2\rho^{2}}\rho^{n-2}d\rho)$ .

This completes the proof of Lemma 3.1 $\square$

Remark 3.2. We note that Lemma 3.1 still holds, if we replace $a\in$

$L_{\sigma}^{2}(\mathbb{R}^{n})\cap T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ and $e^{-tA}$ by $a\in T_{\alpha,\gamma,\delta}^{m}(\mathbb{R}^{n})$ and $e^{t\triangle}$ respectively.

Finally, with this lemma and theorem for the linear Stokes flow, we obtain
main theorem for the nonlinear Navier-Stokes flow in the half-space.

$\ovalbox{\tt\small REJECT},\prime’\yen x_{\not\simeq}m^{\backslash }$

[1] W. Borchers and T. Miyakawa, $L^{2}$ decay for the Navier-Stokes flow in
halfspaces, Math. Ann., 282 (1988), 139-155.

[2] W. Borchers and T. Miyakawa, Algebmic $L^{2}$ decay for Navier-Stokes
flows in exterior domains, Acta Math. 165 (1990), 189-227.

[3] Y. Fujigaki and T. Miyakawa, Asymptotic profiles of nonstationary
incompressible Navier-Stokes flows in the half-space, Methods Appl.
Anal., 8 (2001), 121-157.

[4] Y. Fujigaki and T. Miyakawa, On solutions with fast decay of nonsta-
tionary Navier-Stokes system in the half-space, in Nonlinear problems
in mathematical physics and related topics, I,” Int. Math. Ser. (N. Y.),
Kluwer/Plenum, New York, 2002, pp. 91-120.

[5] R. Kajikiya and T. Miyakawa, On $L^{2}$ decay of weak solutions of the
Navier-Stokes equations in $R^{n}$ , Math. Z., 192 (1986), 135-148.

[6] H. Kozono, Global $L^{n}$ -solution and its decay property for the Navier-
Stokes equations in half-space $R_{+}^{n}$ , J. Differential Equations, 79 (1989),
79-88.

[7] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace,
Acta Math., 63 (1934), 193-248.

[8] K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math.
J. (2), 36 (1984), 623-646.

25



[9] T. Miyakawa and M. E. Schonbek, On optimal decay mtes for weak
solutions to the Navier-Stokes equations in $\mathbb{R}^{n},$ in Proceedings of Par-
tial Differential Equations and Applications (Olomouc, 1999),” Math.
Bohem., 126 (2001), 443-455.

[10] T. Okabe, Asymptotic energy concentmtion in the phase space of the
weak solutions to the Navier-Stokes equations, J. Differential Equations,
246 (2009), 895-908.

[11] M. E. Schonbek, $L^{2}$ decay for weak solutions of the Navier-Stokes equa-
tions, Arch. Rational Mech. Anal., 88 (1985), 209-222.

[12] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes
equations, Comm. Partial Differential Equations, 11 (1986), 733-763.

[13] M. E. Schonbek, Lower bounds of mtes of decay for solutions to the
Navier-Stokes equations, J. Amer. Math. Soc., 4 (1991), 423-449.

[14] M. E. Schonbek, Asymptotic behavior of solutions to the three-
dimensional Navier-Stokes equations, Indiana Univ. Math. J., 41
(1992), 809-823.

[15] J. Serrin, The initial value problem for the Navier-Stokes equations, in
Nonlinear Problems (Proc. Sympos., Madison, Wis),” Univ. of Wis-

consin Press, Madison, Wis., 1963, pp. 69-98.

[16] C. G. Simader and H. Sohr, A new approach to the Helmholtz decom-
position and the Neumann problem in $L^{q}$ -spaces for bounded and exte-
rior domains, in Mathematical problems relating to the Navier-Stokes
equation,” Ser. Adv. Math. Appl. Sci., vol. 11, World Sci. Publ., River
Edge, NJ, 1992, pp. 1-35.

[17] Z. Skal\’ak, Asymptotic energy and enstrophy concentmtion in solutions
to the Navier-Stokes equations in $R^{3}$ , Ann. Univ. Ferrara Sez. VII Sci.
Mat., 55 (2009), 377-394.

[18] Z. Skal\’ak, Conditions for asymptotic energy and enstrophy concentra-
tion in solutions to the Navier-Stokes equations, Nonlinear Anal., 71
(2009), $e2070-e2081$ .

[19] Z. Skal\’ak, Large time behavior of energy in some slowly decreasing
solutions of the Navier-Stokes equations, i$n^{::}Advances$ in mathematical
fluid mechanics,” Springer, Berlin, 2010, pp. 573-580.

26



[20] S. Ukai, A solution formula for the Stokes equation in $R_{+}^{n}$ , Comm.
Pure Appl. Math., 40 (1987), 611-621.

[21] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equa-
tions on $R^{n}$ , J. London Math. Soc. (2), 35 (1987), 303-313.

27


