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Abstract

It is mathematically investigated the incompressible viscous flows
in domains 2 C R™ with nonslip boundary conditions in the framework
of LE(), where Q has a possibly non-compact uniform C3-boundary
and boundedness of the Helmholtz projection P, onto L5 (£2) with some
1 < p < 0. The key is to show that the Stokes operator generates an
analytic semigroup on L5(Q) admitting the maximal L9-LP-regularity
estimates. Moreover, the local-in-time existence and the uniqueness of
mild solutions to the Navier-Stokes equation in such €2 and p € (n, o)
are proved, when the initial data belong to L5(().

Introduction

This is a brief survey of the results related to [18], mainly.

For any open set Q2 C R”, it is well-known that the Stokes operator

Ay := =P, A (with nonslip boundary conditions) is a self adjoint operator in
L%(2) by Masuda [28]. Hence, — A, is the generator of an analytic contraction
semigroup {e~*42},50 onto L2(2). Here, L2(9) is defined by the solenoidal
part of the Helmholtz decomposition of L?(2) into L2(Q2) & G*(2), where
@ denotes the direct sum, and P, denotes the Helmholtz projection from
L?(Q) to LZ(2). It seems to be natural to investigate whether this technique

can be applicable in general LP-setting, that is, {e7**};>¢ extends to an



analyti‘c semigroup on an LEZ-space for some 1 < p < oo, and that there
are the maximal L9-LP-regularity estimates for the solution of the associated
Stokes equations. Once we obtain the above semigroup theory, we have a
chance to construct the local-in-time mild solutions to the Navier-Stokes
equations in L2(Q) for n < p < oo by the fixed point argument of Kato [26]
or Giga-Miyakawa [22]. The notion of a mild solution was first introduced by
Fujita-Kato [14, 27] when the initial velocity belongs to Ha' *(€2) with smooth
bounded domains € C R3 via Duhamel’s principle at the almost same years
of Browder [6] to study some equations of parabolic type.

It is clear to have the affirmative answer of the above question when €
is the whole space or the half space (see Ukai [33] and Desch-Hieber-Priif
[7]) for any p € (1,00). For bounded or exterior domains with smooth
boundaries, the maximal L% IP-regularity estimates were firstly shown by
Solonnikov [30]. His proof makes use of potential theoretic arguments. Later
on, Giga [19, 20] also established the Stokes semigroup theory due to the
bounded imaginary powers of the Stokes operator, Giga-Sohr [23] applied
the Dore-Venni theorem in two-dimension case, Grubb-Solonnikov [24] used
the pseudo-differential techniques, and Frohlich [13] made use of the concept
of weighted estimates with respect to Muckenhoupt weights. The reader can
find related results in the list of reference in Farwig-Sohr [11]. Furthermore,
the case of a perturbed half space is treated by e.g. Noll-Saal [29]. For results
concerning infinite layers-like domains, we refer to the works of Abe-Shibata
[1], Abels [2] and Abels-Wiegner [3]. Franzke [12] and Hishida [25] considered
the case of aperture domains. Farwig-Ri [10] derived the maximal L9-LP-
regularity estimates in infinite tube-like domains. In the domains listed-up
above the Helmholtz decomposition is valid.

The key of this approach is to show the boundedness of the Helmholtz
projection P, on LP(Q) into its solenoidal subspace. For example, if € is
bounded, then the boundedness of P,; this fact was first proved by Fujiwara-
Morimoto [15].

On the other hand, in the case of general domains (2, it is not clear
whether the Helmholtz decomposition makes sense, that is, LP(Q) = LE(Q) &
GP(Q2) or not, in general, unless p = 2. Indeed, Bogovskii [4, 5] gave examples
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of unbounded domains 2 with smooth boundaries in which it is not enable
to have the Helmholtz decomposition of LP(2) for certain p. For details, see
also [16]. To overcome the difficulties, Farwig-Kozono-Sohr [9] introduced

- 2 <

irQ) = LQ(Q) NLP(Q), 2<p<oo,

LY Q)+ LP(), 1l<p<2

for domains Q C R?® with uniform C?-boundaries, proved the existence of
the Helmholtz projection P in P (assisted by L?), and obtained the useful
properties as usual in LP(2). Moreover, they proved that the Stokes operator
Ay = —PA with nonslip boundary conditions is well-defined in Dg, and

generates an analytic semigroup onto L2(Q2) as well as the maximal L9-LP-

~ ~

regularity estimates in the class LY(L?) := L((0,T); L?(2)) for T > 0
“ut”Lq(Ep) + “u”Lq(iP) + ”VZUHLQ(IZP) + ||V7~rHLq(EP) < C”f”Lq(EP)

with some constant C > 0 independent of f € LI(L?). Here (u,7) is a

solution to the Stokes equations in domains 2 with f € LI(LP):
u—Au+Va=f inQx(0,7T),
V-u=0 inQx(0,7),
u=0 ondQx(0,T),

uft=o=0 in Q.

(1.1)

In the paper [18] they however employed a different approach to [9]. For
Q2 C R" having a uniformly C3-boundary with p € (1, 00), it is assumed that
the Helmholtz projection P, exists bounded in L?(2). They actually showed
that —A, generates an analytic semigroup onto usual L2(f2), which comes
from the fact that solutions to the Stokes equation satisfies the maximal L9-
LP-regularity estimates in L9((0,7T); LP(Q2)). They also obtained the local-
in-time existence of a unique mild solution to the Navier-Stokes equations in
L2(Q) with p > n under the assumption of the existence of the Helmholtz
projection. Although it seems to be an interesting problem in the framework
of L™(Q2) which is excluded by [18], the author has no idea to overcome the
difficulties (for example, it is not clear whether P, = P, if p # q) so far.
This paper is organized as follows. In Sections 2 we will state the main

results of [18]. In Section 3 the strategy of their approach is explained.



2 Main Results

In this section we mention the main results in [18]. Here and hereafter, let
n > 2. The definition of uniform C*-domain for & € N will be given in the

next section. For any open set 2 C R™ and for p € (1,0), we set

GP(Q) :={u € LP(Q);u = V7 for some 7 € Wli)’cP(Q)}’
I2(Q) ={ueCo(Q);V - u=0m Q"

We say that the Helmholtz projection P := PP, exists for LP(f2), whenever
LP(?) can be decomposed into

IP(Q) = I2(Q) & G*(9).

In this case, there naturally exists a unique projection P, : LP(Q2) — LE(Q)
having the properties P2 = P, and G?(Q2) as its null space. A well-known fact
by e.g. [16] is that the Helmholtz projection exists for LP(£2) for p € (1, 00) if
and only if for every f € LP(Q2), there exists a unique function u € W”"(Q)
satisfying

(Vu, Vo) = (f,Vy), ¢e W (Q).

Thus the Helmholtz projection exists for LP(2) if and only if for every f €
LP(Q?) the above weak Neumann problem is uniquely solvable within the class
W”’(Q). We now state the maximal L9-LP-regularity estimate for solutions

to the Stokes equations, which is one of the main results of [18].

Theorem 2.1. Let n > 2, p,q € (1,00) and T > 0. Assume that Q C R
is a domain with uniform C3-boundary and that the Helmholtz projection B,
exists for LP(Q?). Let f € L((0,T); LP(Q)). Then equation (1.1) admits a

unique solution (u, ) in the class
uweWY(LP)NLI(W2P AWIP N IE) and # e LYWP),
and there exists a constant C > 0 such that

lwellLaceey + Null ooy + IVl La(rey + | V7| Lazey < C| fllLa(zr)-

31



32

Assuming as in the above theorem that the Helmholtz projection P, exists
for LP(§2), we may define the Stokes operator A = A, in L2(2) as

D(Ap) = W2P(Q) N WoP(Q) N LE(9),
Apu = -P,Au  for ue D(A).
The definition of the function spaces are found in e.g. the book of Triebel
[32]. Concerning the Cauchy problem in L2(€2), the following corollary holds
true for the abstract equation with valued in the solenoidal subspace
u'(t) + Apu(t) = f(t), t>0,
u(0) = wo.

Corollary 2.2. Letn > 2, p,q € (1,00) and T > 0. Assume that Q2 C R"
is a domain with uniform C3-boundary and that the Helmholtz projection P,
exists for LP(Q). Then —A, defined as in (2.1) generates an analytic Co-
semigroup {e"*4r};50 onto L2(Y). Moreover, the solution u to the problem
(2.2) satisfies

(2.1)

(2.2)

I lzoczoy + WApulzaesy < € (11 zeces) + luoll =2re)

with some constant C > 0 independent of f € L((0,T); L2(?)) and up €
Byq”(9) N LE(Q).

Setting Vi = (I — P)YAR(\, A)f for f € LP(Q2), where I denotes the
identity matrix and R(\, A) := (A + A)~!, we can also obtain the following
results for the Stokes resolvent problem

AM—Au+Va=f inQ,
(2.3) V.-u=0 inQQ,
u=0 on 90N
for A € 3p:={A € C; ) #0,|arg \| < 0} for some 0 € (0, 7).

Corollary 2.3. Let 1 < p < oo, Q@ C R™ as above and 8 € (0,7). Then
there exists Ao € R such that for all X\ € Ao + Zg and f € LP(Q2) there exists
a unique solution (u,7) € (WP(Q) NWyP(Q) N L2(Q)) x WLe(Q) satisfying
(2.3). Moreover, there exists C > 0 such that

IMullze@)+H VUl o)+ IVl e@) < Cllflle), X € Ao+Eg, f € LP(Q).



The semigroup {e~*47},5¢ on L2(Q) described in Corollary 2.2 admits the
following LP-L? smoothing properties, which are well known for the situation

of bounded or exterior domains.

Proposition 2.4. Let p,7,5 € (1,00) such that s < p < r, f € L*(Q)",
F e L*(Q)™" and T > 0. Then there exists a C > 0 such that fort € (0,T)

1 2 1 1 1 2

“thp £l < G S_f<Z Z<ZgZf

e %P flle < CEREDYSL, for S-Z<n <o sl

1 1 1 1 1 1

Ve P fll < CoECD73YIfll, for S <o —< o4
p n r S p n

1 1 _1 1 1 1

le™* P,V - Fll, < Ct3G=D72 P, for ——=<=, —<=4-
p n r s p n

The proof of this proposition can be found in [18]. So, we omit it in here.

We finally consider the Navier-Stokes equations

—Au+(u-Vu+Va=0 inQx(0,7),
V-u=0 inQx(0,7),

(2.4)
u=0 ondQ x (0,T),

u‘tzo = Up in Q.

We prove the following local well-posedness results for (2.4). To this end,
assume that 2 C R" is a domain such that the Helmholtz projection P, exists
for LP(£2). Then, by the notion of a mild solution of (2.4), it is understood a
function v € C([0, T); L2(2)) for some T > 0 satisfying the integral equation

t
u(t) = e “rug — / e~ NP V- (u(s) @u(s))ds, 0<t<T.

0

Theorem 2.5. Let n > 2. Assume that Q C R" is a domain with uniform
C3-boundary and that the Helmholtz projection P, exists for LP() for some
p>n. Let ug € LE(Q). Then there exist Ty > 0 and a unique mild solution.

The proof follows the lines of the well-known iteration procedure described

in [21, 22, 26] with Proposition 2.4. We will not give a detailed proof here.
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3 Outline of the proof

In this section we give the outline of the proof of Theorem 2.1. We refer
to the localization procedure and the divergence equation. Starting from
the corresponding results for the half space R"}, the main problem is that the
usual localization procedure known from elliptic problem does not transfer to
the situation of the Stokes equation. Indeed, the usual localization procedure
does not respect the condition on the divergence. In [17], a new localization
procedure for the Stokes resolvent problem (2.3) respecting the condition on
the divergence was introduced.

Throughout this section, let 2 be an unbounded domain. For given k € N,
a domain Q C R™ is called a uniform C*-domain, if there exist constants
K,a,8 > 0 such that for each zo € OS2 there exists a Cartesian coordinate
system with origin at zo, coordinates ¥y = (¥',y.) and h € C*((—a, )" 1)
with ||h||cx < K such that the neighborhood

U(zo) = {(¢/ s 4n) ER™A(Y) — B <yn <h(y) + B, ly| < o}
of o satisfying QN U(zo) = {(v', h(¥')); |¥'| < a} and
U™ (z0) := {(¥,yn) € R%R(Y) = B <yn <h(Y), [y'| < a} =U(zo) N Q2.

Let us note that our assumption implies that one may choose for some
r € (0, a), depending only on «, 8, K, balls B; := By(z;) with centers z; € Q
for j € N and C3-functions h; if x; € 082 such that

QCcuR,B;, B;jcU(z) if z;€dQ, B;cQif z;€Q.

Moreover, we may construct this covering in such a way that not more than
a finite fixed number Ny € N of these balls can have a nonempty intersection.
Thus, choosing Ny + 1 different balls By, By, . .., their common intersection
is empty. For given the covering {B;}32,, there exists a partition of unity
@; € CPR™), Y w5 =1 in Q, satisfying suppp; C Bj and 0 < ¢; < 1.

(i) Compact Boundary. We now consider the case when 02 is compact.

In order to explain the main idea of [17], let us consider

e 9) oo
U= E pju; and T = E P
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Here (u;,7;) is the solution to the Stokes resolvent equations (2.3) in the
whole space with 9;f in the right hand side if z; € Q, and (u;,7;) is the
push-forward of the solution (4;, ;) to the Stokes resolvent equations in the

half space
Mij — Aty + Vi; = f; in RY,
(3.1) V-i; =0 in R},
%=0 on OR}

with the right hand side fj defined by a suitable affine transformation of v, f
if z; € 0%2, where 1; € C*(R") satisfying ¢; = 1 in B; and suppy; C D; :=
Bo(x;). Define the solution operator U y and ﬁ,\ by

(O f3, T fy) = (a5, 7).

Since we assume that © has boundary of class C3, we may construct the

pull-back and push-forward mappings in such a way that they preserve the

condition on the divergence. Hence, u; is solenoidal by construction. How-

ever, 4 is not solenoidal, in general, since
o0
Vei=) (Vo) u; #0.
j=1

Therefore, we use the modified ansatz
(3:2) = (e +By(V - (5u7))
Jj=1
where B; denotes the Bogovskil operator on U} := B;N{2 such that supp Vp; C
U; = B; N QL. Inserting (@,7) in (2.3), we thus obtain

M—Au+ V7= f+Tf inQ,
V. 0 inQ,
0 on 052,

§|
f

l
I

where T, denotes the correction terms. In order to show that T is small for

A large, it is crucial to estimate the correction terms involving the pressure 7
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and the Bogovskil operator. Note that, for domains with compact boundary
it is enough to consider the divergence problem on suitable bounded domains,
since one can get the convergence of the right hand side of (3.2). If the domain
does not have a compact boundary it seems to be necessary to correct the
divergence term on an unbounded domain, because it is not clear how to

prove the convergence of (3.2).

(ii) Non-compact Boundary. We now consider the case when 0f2 is not
compact. In order to circumvent these difficulties, we present an approach to
the Stokes problem on domains which non-compact boundaries which relies
on the above localization procedure where, however, the Bogovskii correction

term (3.2) is replaced by the solution v; of the weak Neumann problem:

Av=V-f inQ,

(3.3) ov
5 = f-v on Q.

To be more precise, we use the other ansatz

o0
U= Z w;u; + Vv,
j=1
with v; which solves the weak Neumann problem (3.3) with f = ¢;u;. Note
that the existence and uniqueness of v; is guaranteed since the Helmholtz

projection exists by assumption. By construction we then obtain

00
V'UZZV'((ijj)+AUj = 0.
j=1

However, the tangential component of u does not vanish at the boundary
anymore. This leads to additional correction terms. In our main linear
result we show that (2.3) has a unique solution for any f € Li(2) satisfying
the usual resolvent estimates. Replacing norm bounds by R-bounds (see e.g.
[8]) in the arguments above, we even obtain the maximal LP-L9-estimate in
view of the vector-valued version of Mihklin’s theorem due to Weis [34].

To explain more details, we prepare the notation. For each x; € 01, the

local coordinate corresponding to z; is defined as a coordinate obtained from
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the original ones by some affine transform which moves z; to the origin and
after which the positive x,-axis has the direction of the interior normal to
0 at x;. Let z; € 0Q and choose local coordinates corresponding to z;.
By definition of a uniform C3-boundary, there exists an open neighborhood
U:=U; =V, xVy CR" containing z; = 0 with V;, Cc R* ! and V, C R
open, and a height function h; € C3(V}) satisfying 00 NU = {z = (¢, z,) €
Uszn = hy(z')} and QNU = {z € U;z, > h;(z')}. Note that choosing the
radius of V; small, we may assume that ||A;||o + || VAj|l« (independent of 7)

is as small as we like. Next we define
(34) g](x) = (g]l(x)a s 79?(:[:)) = (.T/,Z'n - hj(x/))’ reU.

We obtain an injection g; € C3(U, R™) satisfying QNU = {z € U; g7 (z) > 0}
and O NU = {z € U : g}(zx) = 0}. Since 99 is a uniform C3-boundary, all
derivatives of g; and of gj_1 (defined on U, := g;(U;)) up to order 3 may be
assumed to be bounded by a constant independent of z;.

For a function u : U;NQ — R, we call the push-forward v = Gu on Uj NR?
defined by v(y) := u(g; ' (y)), locally. Due to the regularity of the boundary,
this transformation is an isomorphism W#P(U; N Q) — W#P(U; N R?) for
all p € (1,00) and s € [—2,2]. Similarly, for a vector-valued function u :
U NS — R™ we define the push-forward v, = G,u for the solenoidal spaces
by v5(y) := Jg(u(g7*(y))), where J, denotes the Jacobian of g. In fact, the
linear transformation G, is an isomorphisms from L2 (U; NQ) to LE(U; NRY).
Furthermore, it is an isomorphism from W*?(U; N Q) — Ws’p((AJj NRY) for
all p € (1,00) and s € [-2,2]. The corresponding pull-back mappings G!
and G;! are defined in a similar way. Note, that we may choose h = 0 if
U; N 0L = 0, that is, z; € €.

For any € € (0,1), let {Q}en be a family of locally finite covers of
such that U; C Q, 9Q5 has C3-regularity,

(3.5) IVRS]leo <,
(3.6) Z Xas < C,
jEN

where Xqs Is the characteristic function on Q2 for each j, h is the height

function corresponding to 2, and C > 0 is a constant independent of . For
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each such covering {{2%}en, we choose a partition of unity {¢5}jen subordi-
nate to this covering. Furthermore, denote by G, Gz ;, G; L¢ and G ;,s the
corresponding push-forward mappings and pull-back mappings.

The commutator [A, G, ld; for 4; € W>P(R%) of A and G 1 can be
split into two parts: [A,G;*|ad; contains second order terms (highest) of i;
only and [A, gjj;’f]laj contains all lower order terms. In particular, by (3.5)

there exists a constant C' > 0 such that
H[A)g;ol"s]hajllﬂ’(ﬂj) < Ce”raj”WZp(Q;)v g€ (0’ 1)7 JE N, ’&J' € Wz,p(Qj)?
”[A’gj_l’e]lﬂj”LP(Qj) < C“ﬁjllwlm(ﬂg)a e€(0,1), jeN, u; € Wz’p(ﬂj)'

Nea

Here and in the following, Qj denotes the transformation by the j-th push
forward map of 2. In the same way 4} denotes the function living on the
half space R} which is connected with u through the j-th push forward map.

Similarly, there exists a constant C' > 0 such that
”[v’ gj—l,f]ﬁ'j”Lp(Qj) S CE:“ﬁ'j”WLp(Ri), £ € (0, 1), ] € N, 7}1 € WLP(Q;).

As in [17], we use Bogovskil’s operator to construct localized data for
our localization procedure. For a bounded Lipschitz domain €' C € and
g € LP(Q) with [, g = 0 Bogovskil’s operator Bo is a solution operator to
the divergence equation as follows
{divu = g inQ,

(3.7) u = 0 onof.

By the definition of €23, there exists C' > 0 independent of j € N such that
IBos fllzoos) < Cllfllees), €€ (0,1), j €N, f e LP(Q).

We finally choose cut-off functions ¢5 € C2°(€2) such that 0 < ¢; <1 and
¥5 = 1 on supp ¢§. For f € Xy := LF(f), we define the local external force
terms by

5 =05 —Bas (V¥5)f),
and let fj denote the extension to R} by 0 of the push-forward G; ; f7. By
the uniform boundedness of Bogovskil operator, we obtain ff € LE(R?}) and

(3.8) “fﬂle(mgz) < Cllfllzes)
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with some C' > 0 independent of €, j and f. Hence, (3.6) yields that

(3.9) ((Ssex) € £(X;, (%)

€€(0,1)
is uniformly bounded, where S;’E f:= fj Similarly, for (a,b) € X, :={a €
WI=1PP(9Q);a - v = 0} x {b € W2~ 1/PP(9Q);b - v = 0}, we define the local
boundary data a := y%a, b; = Y5b, a5 = Q‘m Ewsa and bE = Qﬁ?’ezﬁb.
Here, gﬁ ¢ is the restriction of gs, to the boundary of Q2. Agam, we see

(310) ((S7%(@,b)sen) € L(Xas, (Ras)

€€(0,1)

is uniformly bounded, where Sf’s = Sf “(a,b) = (a5, 135) We now set

U(fra,b) :=Y_ &5G; »UAS:(f,a,b) — VN (D 0562 UAS(f, a, b))

jeN JjeN

where A is the solution operator of the weak Neumann problem and S5 =
S5(f,a,b) := (S;’ef, S?’s(a, b)). Here, similarly to (3.2), we add a correction
term in order to have a solenoidal ansatz U;. However, in contrast to the
case (i), the correction term is based on the solution operator of the weak
Neumann problem instead of Bogovskii’s operator. Inserting u := U$(f, a, a),

we calculate

Au—PAu = f + 7:\1’6(f, a,a) in £,
(3.11) V-u=0 in Q,
u=a+T*(f,a,a) on oL,

where
7;€(f7 a, b) = (7:\1,6(f7 a, b)7 7;\2,6(fa a, b)) = Tle,)\(f) a, b) +-ee TGE,/\(f’ a, b)
with

Te\(f,a,b) = ( Y IV, G LSE (£, 0, b), 0 o)

JeN

T%\(f,a,b) (IPZ (V)G TS5 (f, a,),0 o)

jeN
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T5a(f.a,8) = (=P Y65, G, TaS5(f,a,),0,0),
JEN

Tia(fr00) = (=P ¢EIA, 6710385 (f,,0),0,0),
JjeN

T (f,a,b) =( PY i(A, 67 DS (S, a,b),0 o)

jeN

salfra,b) = (0, ~VNVE, —VJ\/VE),

Here V¢ := goeg 1, eU,\Se f,a,b)|aq. This means that we obtain a solu-
JEN

tion of the Stokes resolvent problem in 2 which is given by

(3.12) RE(N)f = US(1+T)7N(£,0,0) = US > (T)*(/,0,0),

k€ENp

provided if the above Neumann series converges.

In the following we show that the Neumann series exists for some € €
(0,1), which hence yields the existence of a solution to (3.11). The uniqueness
of the solution follows from a standard duality argument. Hence, we finally
obtain R¢(A\) := (A + A,)~!. In order to estimate it, we set X := X; x Xgp.
Then, the representation formula (3.12) can be written as

Nf=US Y (TOH,0,0) = USKS' Y (KATIK ) KA(£,0,0)

keNp keNg

= UK ) (KOTEK)E(£,0,0),

keNg

provided if the above series converges. Here

1 0 0
Ki:=1l0 2% o].
0 0 1

In the following lemma we show that
(3.13) Rx{qug\eK;‘_l; AE N+ 29} <1

for sufficient large Ay > 0. Hence, R*()) is well defined for some ¢ € (0,1)
and all A € )y + Xy with large A\g. The following lemma is crucial.



Lemma 3.1. For o € (0,1/2p') there exist ¢y € (0,1) and C > 0 such that

Rx{K\T KA € 1+ S} < 1/4,
Rx{\K\TH K ) € 1+ 59} < C,
Rx{ANPK\TL K A€ 1+ 50} < C,

R{EK\T K A € 1+ 5 < 1/4,
Rx{MN KIS, K{5 A €1+ 5o} < C,
Rx{\*PKTEK A€ 1+ 59} < C.

The reader can find the proof of the above lemma in [18]. This lemma
leads us to (3.13) if Ay is taken sufficient large. That is the outline of proof
of Theorem 2.1.
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