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Shallow water approximations for water waves
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1 Introduction

In this communication we are concerned with model equations for generation and propa-
gation of tsunamis. In a standard tsunami model, the shallow water equations

nt+V-((h+n—b1)u) =0,
u+(u-Viu+gVnp=0

are used to simulate the propagation of tsunami under the assumption that the initial
profile of water surface is equal to the permanent shift of the seabed and the initial velocity
field is zero, that is,

n=by—by, u=0 at t=0,

where 7 is the elevation of the water surface, u is the velocity field in the horizontal
direction on the water surface, h is the mean depth of the water, g is the gravitational
constant, by is the bottom topography before the submarine earthquake, and b; is that
after the earthquake. In fact, in [6] it was shown that the solution of the full water
wave problem can be approximated by the solution of this tsunami model in the scaling
regime 42 < £ < 1 under appropriate assumptions on the initial data and the bottom
topography. Here the non-dimensional parameters § and e are defined by
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where ) is a typical wave length and ¢, is the time when the submarine earthquake takes

place. We note that /gh is the propagation speed of the linear shallow water waves,

so that A/y/gh is a time period of the waves. It is natural to assume the condition

6? < £ < 1, since tsunamis have very long wavelength and very long time period.
However, very rarely, the condition §° <« € < 1 is not satisfied, particularly, the

condition on €. One of such events is the Meiji-Sanriku earthquake, which occurred at

]
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June 15 in 1896. The seismic scale of this earthquake was small, but it continued for
several minutes. As a result, huge tsunami attacked the Sanriku coast line. To simulate
such a tsunami, it might be better to consider the limit § — 0 keeping ¢ is of order one.
In this communication we will consider this kind of tsunamis, so that in the following we
always assume that € = 1. In this case, the standard tsunami model should be replaced
by the shallow water equations with a source term

e+ V- ((h+n—bu) =b,
e+ (u-Viu+gVn=0

with zero initial conditions, where b is the bottom topography. In fact, using the tech-
niques in [6] we can show that the solution of the full water wave problem can be approxi-
mated by the solution of the above tsunami model in the scaling regime § < 1 and £ = 1.
Therefore, in this communication we will consider a higher order approximation.

It was shown by Li [10] that the solution of the two-dimensional water waves over a
flat bottom can be approximated by the solution of the so-called Green—Nagdhi equations

{ e+ ((1+n)u)_ =0,

Up + Uty + N = 3021+ 1) (14 1) (et + Uttag — u2))

up to order O(é%). In a dimensional form the Green-Nagdhi equations are written by

m+ ((h+n)u)_=0,
Ut + UUg + GN)p = %(h + )7 ((h + 71)3(% + Ulzg — Ug))z

Alvarez-Samaniego and Lannes [1] extended her result to the three-dimensional water
waves over a nonflat bottom by using the Nash-Moser technique to show the existence
of solution, so that they imposed much regularity of the initial data. In this communica-
tion, we extend the result to the case of moving bottom without using the Nash-Moser
technique. Therefore, in our result the regularity assumption on the initial data is much
weaker than those in [1].

2 Formulation of the Problem

We proceed to formulate the problem precisely. Let = (z;, z2) be the horizontal spatial
variables and z3 the vertical spatial variable. We denote by X = (z,x3) = (z1, z2, z3) the
whole spatial variables. We will consider a water wave in three dimensional space and
assume that the domain Q(¢) occupied by the water at time ¢, the water surface I'(¢), and
the bottom X(t) are of the forms

Qt) = {X = (z,z3) € R?; b(z,t) < 23 < h+7(x, 1)},
I(t) = {X = (z,23) € R®; 23 = h + n(, 1)},
2(t) = {X = (z,z3) € R?; 73 = b(z, 1)},
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where h is the mean depth of the water. The shape of the fluid region is shown in the
following illustration.

T3 -
l J=—ge;

I'(t) : free surface

The functions b and 7 represent the bottom topography and the surface elevation, re-
spectively. It is very important to predict the deformation process of the seabed, so that
we have to analyze the behavior of this function . However, in this communication we
assume that b is a given function and we concentrate our attention on analyzing the
behavior of the function 7, namely, the water surface.

We assume that the water is incompressible and inviscid fluid, and that the flow
is irrotational. Then, the motion of the water is described by the velocity potential
® = (X, ¢) satisfying the equation

(2.1) Ax®=0 in Q(t),

where Ay is the Laplacian with respect to X, that is, Ax = A + 92 and A = 8? + 9.
The boundary conditions on the water surface are given by
n+V®.-Vn—-0:9 =0,

(2.2) . \
& +35|Vx®|°+gn=0 on T(t),

where V = (8;,0,)7 and Vx = (0,,0,,85)7 are the gradients with respect to z = (1, z2)
and to X = (z,x3), respectively, and g is the gravitational constant. The first equation is
the kinematical condition and the second one is the restriction of Bernoulli’s law on the
water surface. The kinematical boundary condition on the bottom is given by

(23) bt + V&.Vb-— 63‘1) =0 on E(t)
Finally, we impose the initial conditions

(2.4) n=mn, ®=® at t=0.
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These are the basic equations for the full water wave problem.

Next, we rewrite the equations (2.1)-(2.3) in an appropriate non-dimensional form.
Let X be the typical wave length and h the mean depth. We introduce a non-dimensional
parameter 0 by § = A/ and rescale the independent and dependent variables by

. X A - N ) i
(2.5) T =ME, x3= hi;, tz—ﬁt, ® = \\/gh®, n=h@, b=nhb

Putting these into (2.1)-(2.3) and dropping the tilde sign in the notation we obtain

(2.6) AP+ 820=0 in Q)
1) 82(n, + V@ - V) — 0:8 =0,

' 62(®: + 3IVR* + ) + 2(8:@)2 =0 on I(2),
(2.8) &b+ V®-Vb)—8:2=0 on X(),
where

Qt) = {X = (z,23) € R?; b(z,t) < z3 < 1 + (. 1)},

I'(t) = {X =(z,z3) ER3; 23 = 1+n(:v,t)},

(t) = {X = (z,23) € R?; 23 = b(z, 1) }.
Since we are interested in asymptotic behavior of the solution when § — +0, we always
assume 0 < 4 < 1 in the following.

As in the usual way, we transform equivalently the initial value problem (2.6)—(2.8)
and (2.4) to a problem on the water surface. To this end, we introduce a Dirichlet-to-
Neumann map A°™ and a Neumann-to-Neumann map AN in the following way. In the
definition the time ¢ is arbitrarily fixed, so that we omit to write the dependence of ¢.

Definition 2.1 Under appropriate assumptions on 7 and b, for any functions ¢ on the
water surface I' and 3 on the seabed X in some classes, the boundary value problem

A®+6288=0  in @
(2.9) ®=¢ on T,
0720, -Vb-V®=3 on X

has a unique solution ®. Using the solution we define A°¥(n), b, ) and AN(n, b, d) by
= (5_263¢ - V7} . V@)lp

The solution ® will be denoted by (¢, 8)".
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We should remark that both of the maps APY = APN(n,b,6) and AN = ANN(, b, d)
are linear operators acting on ¢ and 3, respectively. However, they depend also on the
unknown function 7 and the dependence on 7 is strongly nonlinear.

Now, we introduce a new unknown function ¢ by

which is the trace of the velocity potential on the water surface. Then, it holds that

(2.12) { ¢ = (20 + (32)m) ),
Vo = (V@ + (8:2)Vn)|r).

On the other hand, it follows from (2.6), (2.8), and (2.11) that ® satisfies the boundary
value problem (2.9) with 3 replaced by b;, so that we have

(2.13) AP + A¥b, = (57205® — V- V)|gy.
These relations (2.12) and (2.13) imply that

(85®)Irey = 6%(1 + 82| V|?)"Y(APNg + A¥b, + Vi - V),
(V®)Irey = Vi — 62(1 + 62| Vn|?) "1 (APN¢ + A™b, + Vi - V)V,
Bire) = ¢ — 621 + 82|Vn|?) "L (AN + ANNb; + V) - V).
Putting these into (2.7) we see that 7 and ¢ satisfy the following initial value problem.

e — ADN(’% b’ 6)¢ - ANN(”’ b’ J)bt = 0’
(2.14) ¢+ 1+ Vo2
—182(1 + 62| Vn|2) 2 (APN(m, b, ) + AW (n, b, 6)by + V- Vo) =0,

(2.15) n=mn, ¢=¢¢ at t=0,

where the initial datum ¢ is determined by ¢ = ®¢(-, 1 +10(-)). We will investigate this
initial value problem (2.14) and (2.15) mathematically rigorously in this communication.

The following theorem is one of the main results in this paper and asserts the existence
of the solution of (2.14) and (2.15) with uniform bounds of the solution on a time interval
independent of small § > 0.

Theorem 2.1 Let s > 3 and My,co > 0. Then, there exist a time T > 0 and constants
Co, 00 > 0 such that for any 6 € (0,8)], no € H*"/2, V¢o € H**3, and b € C([0, T); H*4)

satisfying
1B lls+a + 10e(E)lls43 + loee (Bl 51 + l[beee ()5 < Mo,

[Imolls+7/2 + | Volls+3 < Mo,
1+ no(z) — bo(z) > g for (z,t) € R?x[0,T],
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the initial value problem (2.14) and (2.15) has a unigue solution (n,8) = (1°,¢°) on the
time interval [0,T) satisfying

17 (@) llsxs + 1V (E)llov2 + (7 (2), 92D |42 < Co,
1+ n%(z,t) — b(x,t) > co/2 for (z,t) € R2 x[0,T)], & € (0,8

3 Shallow water approximations

We proceed to study formally asymptotic behavior of the solution (7%, ¢%) to the initial
value problem (2.14) and (2.15) when § — +0 and derive the shallow water equations and
the Green-Nagdhi equations whose solutions approximate (n°, ¢°) in a suitable sense.

In order to derive approximate equations to (2.14) we need to expand the Dirichlet-
to-Neumann map AN = AP¥(n, b,d) with respect to §2. Let ® be the solution of the
boundary value problem

A® + 672028 = 0 in Q
(3.1) d=0¢ on T,
57208 -~Vb-V&®=0 on I.

Here and in what follows, for simplicity we omit to write the dependence of the time ¢ in
the notation. By the first and the third equations in (3.1),

(3.2) (8:)(z, 73) = (0:®)(z,b(z)) + / ;s)(a@)(x, 2)dz
= §2Vb(z) - V®(z, b(z)) — 62 /‘53 (A®)(z, 2)dz,
b(z)

which implies that (83®)(X) = O(4?). This and the second equation in (3.1) give

T3

(33) ¥(z,20) = (a1 +1() + [ (@0®),2)dz
1+n(z)
= ¢(z) + 0(6?).
Putting this into (3.2) yields that
(3.4) (05®)(z, 33) = 8Vb(z) - Vi(z) — 62 /  Ad(z)dz + O
b(x)
= §°Vb(z) - Vé(z) — 6°(z3 — b(z)) Ad(z) + O(&*).
Hence, by the definition (2.10) with 8 = 0 we have

(3.5) (A°"(n,b,8)¢)(z) = =V - (1 + n(z) — b(z))Ve(z)) + O(8).
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We proceed to derive a higher order expansion of A°¥(n, b, §) up to order O(d*). Putting
(3.4) into (3.3) we have

O(z, 23) =¢(z) + 6* (25 — (1 + n(2))) Vb(z) - V(z)
= 82{3(23 — (1 +n(2))?) - (23 — (1 + n(2)))b(z) } Ad(z) + O(5*),
which together with (3.2) implies that
039(z, z3)
= §*{Vb(z) - Vop(z) — (23 — b(z))Ad(z)}
-+ 04Vb(2) - {3(1 +n(z) - b(2))*VAg(z) + (1 + n(z) — b(x))(Vn(z) — Vb(z))Ad(z)
— (1 +n(z) - b(2))V(Vd(z) - Vé(2)) — V(z)(Vb(z) - Vo(z))}
+84{(Vn(z)(Vb(z) - V() + 2Vn(z) - V(Vb(z) - V(2)))(z5 — b(z))
+3(2+n(z) — 23 = b(z))(25 — b(z))A(Vb(z) - V() }
+8*{(2Vn(z) - Vb(z) — [Vn(2)]* — (1 + n(z) — b(z)) An()) (25 — b(z)) }
+ 32+ n(z) — 23 — b(2))(z3 — b(x))Ab(z) } Ad(2)
+ 54{(2 +n(z) — 25 — b(z))(z3 — b(x))Vd(z)
= 2(1+ n(z) — b(z))(z3 — b(z)) V() } - VAH(z)
+ {32+ n(z) — z3 — b(2))(z3 — b(2))b(z) + i (3 — b(2))?
— 3((1 +n(x))? — bxs) (z3 — b(x)) } A2p(z) + O(8°).
Therefore, we obtain
(36) A™(n,b,0)p ==V ((1+n-b)Ve¢) —BA(3(1+n-b)3Ag)
+8?A(3(1 47— b)2Vb- Vo) — 82V - ((1+ 7 - b)2(Vb)Ag)
+ 62V - ((1+ 17— b)(Vb)(Vb- V¢)) + O(6*).

This formal expansion of the operator A°~ = AP¥(n, b, §) with respect to 42 can be justified
mathematically by the following lemma.

Lemma 3.1 ([1]) Let s > 1 and M, c; > 0. Suppose that
Inlls+o/2 + 1Bllst11/2 < M,
1+n(z) —b(zx) >c, for zeR2
Then, there ezists a constant C = C(M,c;,s) > 0 independent of § such that for any
§ € (0,1] we have
|| A% (n,b,8)¢ + V - (1 + 1 — b)V¢) + 2A(3(1 + 71— b)*Ag)
- A1 +n—1b)?Vb- Vo) + 6V - (3(1 +n— b)*(Vb)Ag)
~ 8V - (1+n - B)(VO)Vb- V) ||, < CHVllsrsye.
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Similarly, we can obtain an expansion of the Neumann-to-Neumann map AY(n, b, §)
with respect to 42, that is, letting ® be the solution of the boundary value problem

=0 on I,

AD + 672020 =0 in 0
§720;8 —Vb-V® =4 on %,

we obtain
V&(z,z3) = —0°6(x) Vn(z) — 6*(L + n(z) — 23)VB(z) + O(6*)

and
85®(z, z3) = 6°B(z) — §*Vb(z) - (B(x)Vn(z) + (1 + n(z) — b(z))VA(x))
+ 8% (z3 = b(2))(V - (B(2)Vn(z)) + V(z) - VB(x))
— 584((1 + n(z) — z3)* — (1 + n(z) - b(x))?) AB(z) + O(3°).

Hence, by the definition (2.10) with ¢ = 0 we have
37  A™(n,b,8)8=0+8V-((1+n-b)(Vn)B+ 3(1+n—b)3>VE) +0(6*).

This formal expansion of the operator ANN = A™ (), b, §) with respect to d2 can be justified
mathematically by the following lemma.

Lemma 3.2 ([6]) Let s> 1 and M,c; > 0. Suppose that

[nlls+or2 + [1bllss11/2 < M,
1+n(z)—b(z)>c for zeR2

Then, there ezist constants C = C(M,c1,8) > 0 and & = 6o(M, c1,8) > 0 such that for
any é € (0, 80) we have

[A¥(n,6,6)8 — 8- 8V - {1 + 71— b)(BVn+ 21 + 0 = B)VB) }|, < COBllass-

It follows from (2.14), (3.5), and (3.7) that

m+ V- ((1+n7-0)Ve) = b + 0(6?),
¢ +n+ 3|Ve|? = 0(8?),

which approximate the equations in (2.14) up to order O(6%). Now, putting u = V¢ and
letting 6 — 0 in the above equations we obtain

4+ V- (1+n-0bu)=b,
u+ (u-V)u+Vn=0.
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We proceed to derive higher order approximate equations. By (3.6) and (3.7), we can
approximate the equations (2.14) by the following partial differential equations up to
order O(44).

(7 —b:+ V- ((1+7-b)Ve¢) +6A(3(1 +17-b)3A9)
~PA(3(1+7—-b)?Vb-Vg) + 62V - (3(1+ 1 — b)*VbA¢)
(3.8) ¢ =V ((147n—b)Vd(Vb- V¢))

—V - {(1+n1 =) (6:Vn+ i1 +n-b)Vb)} =06,

[ &+ 1+ L[Vo|* — 182(Vb- Vo — (147 - b)Ad +b,)* = O(6%).

Here, we define a second order partial differential operator T(n, b) depending on 7 and b
and acting on vector fields by

T(n,b)u =~V ((1+7—b0)*V-u)) + V(5(1+n — b)2(Vb-u))
— L1+ 7= b)2Vb(V - u) + (1 + 5 — b)Vb(Vb - u)

and introduce a new variable u by
(3.9) Vo =u+8(1+n—b)7T(n,b)u+ 62(b;Vn+ 3(1 +n - b)Vd,).

Putting this into equations (3.8) and neglecting the terms of order O(6*), we obtain the
Green-Naghdi equation

m+ V- ((1+n-0bu) =b,

(L+n=0b)+8T(n,b)us + (L+ 71— b)(Vn+ (u- V)

3.10
(3.10) +62{3V((1+n—b)3Pu(V - u)) + Q(n, u,b)
+R:1(n, u,b)b, + Ry(n, b)btt} =0 for t>0,
(3.11) n="my, uU=1uy at t=0,
where

P,=V-u—u-V,

Q(n,u,b) = V((1+ 71— b)*(u- V)?) + 3((1 + 1 — b)2Pu(V - u)) Vb
+(1 + 71— b)((u- V)2) Vb,

Ry(n,u,b)by = (1 + 7 —)>V(u- Vb) + 2(1 +n — b)(u- Vb,) V7,

Ry(n,b)by = %(1 + 1= 5)*Vby + (1 + 1 — )by Vi,

and vy is determined by (3.9) from (1, by). Now, we are ready to give the main result in
this paper, which asserts the rigorous justification of the Green-Nagdhi approximation.
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Theorem 3.1 Let s > 3 and My,co > 0. Then, there exist a time T > 0 and constants
C, 8 > 0 such that for any 8 € (0,8, no € H**'5/2, Voo € H**", and b € C([0, T]; H**®)

satisfying
16 s+ + 1Bl s+7 + [1Bee(E) 45 + N1bere (E)l]sa < Mo,

10lls+15/2 + | Vdolls47 < Mo,
14 no(z) — bo(z) = o for (z,t) € R? x [0,T],
the solution (1, ¢) = (1°, ¢°) obtained in Theorem 2.1 and the function u® determined by
(3.9) from (7°,¢%) and b satisfy
In () = B (E)ls + 1W°(2) — @Ol + 81V - ((2) = & ()]s < CO*

for 0 <t < T, where (n,u) = (7°,%°) is a unique solution of the initial value problem for
the Green-Naghdi equation (3.10) and (3.11).

4 The Green—Naghdi equations

We first explain what are the Green-Nagdhi equations and why we introduce the new
variable u by the formula (3.9). For simplicity, we consider a linearized problem around
the trivial flow in the case of a flat bottom. Since the Dirichlet-to-Neumann map in the
trivial case can be written explicitly in terms of the Fourier multipliers as A°¥(0,0,4) =
3| D|tanh(d|D]), the linearized equations for the full equations (2.14) have the form

{¢t+77=0a

(4.1)
n — 5|D| tanh(8|D|)¢ = 0.

Using the Taylor expansion tanhz = z + O(z?) (z — 0), we have
1 D| tanh(8|D]) = |D|* 4+ O(8%) = ~A + O(&?),

so that the linearized equations (4.1) can be approximated by the partial differential
equations up to order O(6?) as

Tt + A¢ = 0(52)7
¢:+1n=0.

Letting § — 0 we obtain linearized shallow water equations.
To obtain a higher order approximation, we use the Taylor expansion tanhz = z —
32% + O(2®) (z — 0). Then, we have

3/D|tanh(é|D|) = |D|* — 36°| DI* + O(6*)
= —A — 182A2 + O(5%).
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Putting this into the linearized equations (4.1) and neglecting the terms of order O(§4),
we obtain higher order approximate equations

{ M+ D¢+ 182A2 = 0,

4.2
(42) ¢t +n=0.

This system has a non-trivial solution of the form
n(z,t) = e, ¢(z,t) = goei®="
if the wave vecotr £ € R? and the angler frequency w € C satisfy
w? — (1= 15EP)IER =0,

which is the so-called dispersion relation for (4.2). In the case [¢| > &, the solutions w
of this dispersion relation are purely imaginary and given by w = +il¢| $62|¢12 -1, so
that the approximate equations (4.2) have a solution of the form

ﬂ(x,t) = noeif-:c+t|§| v %62I£|2_17

which grows exponentially as |¢| — oo for each ¢ > 0. Therefore, the initial value problem
for (4.2) is in general ill-posed, and (4.2) is not good approximation for the linearized
equations (4.1).

On the other hand, in view of the relation

Dltant@Pl g = —A(¢ + 18°A8) + O(8%),

let us introduce a new variable v satisfying the relation

¢+ 30200 = ¢ + O(6*).
This implies that ¢ = 1 + O(6?), so that

¢ =P — 38200+ O(0*) = (1 — 282A)yp + O(8*).
This motivates us to introduce a new variable 1 by
¥=(1-18024)""9.

Then, it follows from (4.1) that

U3 + Adj = 0(64)a
P +n = 3020,
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Putting u = V1 and neglecting the term of order O(d*), we obtain

{nt+V'U=O,

4.3
(43) u + Vi = 16°Auy.

We note that if we use the Padé approximation

T

in place of the Taylor expansion tanhz = & — 32 + O(«®), we can directly obtain the
linearized Green-Nagdhi equations (4.3) from the linearized water wave equations (4.1).
The dispersion relation for (4.3) is

(1+38°1EP)w” ~ I =0,
so that the initial value problem for (4.3) is well-posed. In fact, for any smooth solution
for (4.3) we have the following energy equality.
d
{12 + @I + 361V - u @2} = 0.

Therefore, we can expect that the solution for (4.1) can be approximated by the solu-
tion (4.3) up to order O(4*). Corresponding nonlinear equations are the Green-Nagdhi

equations.

Next, we consider the initial value problem for the Green-Nagdhi equations (3.10) and
(3.11). We first show that the change of variables by (3.9) is well-defined. To this end,
we define a second order differential operator L(n, b, §) by

L(n,b,0)u := ((1+ 7 —b) + 6*T(n,b))u
and comnsider the partial differential equation
(4.9) L(n,b,6)u=F + daVf.
It is easy to see that
(L, ¢) = (1 + 71— b)u, @) + (L + 71— b)*(V - u),V - ¢)
— 21 +n-b*(Vb-u),V-¢) — £((1+n—b)*(V-u),Vb- ¢)
+68%((1 +7—0b)(Vb-u),Vb- ¢).
Therefore, under appropriate assumptions on 7 and b we have

(4.5) CH(lull* + 81V - ull*) < (Lu,u) < C([lull® + 6%V - ul|?).

Thus, we can show the existence of the solution to (4.4) satisfying the estimate ||u|| +
OV - ull < C(J|F|l + || fI)- More precisely, we have the following lemma.



Lemma 4.1 Let s > 2 and M,c; > 0. Suppose that

 Mlls + 1Blls+s + llalls < M,
1+n(z)—b(z) >c; for ze€R2

Then, for any F,f € H® and § € (0,1], equation (4.4) has a unique solution u € H*
satisfying V - u € H®. Moreover, we have

l[ulls + 611V - ulls < C(IFlls + | £1ls),

where C = C(M, c1,8) > 0 is independent of 4.

Next, we consider linearized equations around a flow (7, u) and give an energy estimate
of the solution to the linearized equations. Letting ¢ := On and w := Ou we can write the
linearized equations as

( G+ V- (hw) +V-(Cu) = fi,
Lw; + (V¢ + (u - V)w)
—30°V(h3(u - V)(V - w)) + 62h(Vb)(u - V)(w - Vb)

(46) ) +382V(h*(u- V)(w - Vb)) — 26%(Vb)V - (h?u(V - w))
+6°V(ai1l) + a2 + 6°V(a3(V - w) + aq - w) + 62a5(V - w) + Agw
\ = f2 + 6Vf3)

where h = 14+ 1n —b. a; = a1(n,b,u) and a3 = as(n,b,u) are scalar valued functions,
az = az(n,b,u), as = as(n,b,u), and as = as(n,b,u) are vector valued functions, and
Ag = Ag(m, b, u) is a matrix valued function. We can write down explicitly these functions
in terms of 7, b, and u. However, we omit it since the explicit forms are not important in
our purpose. The basic energy function for these linearized equations is defined by

Et) = IKON* + (L(n, b, S)w, w).

In view of (4.5), under appropriate assumptions on 7 and b, this energy function is equiv-

alent to
E(t) := [IKOI? + [lw@)|? + &IV - w(t)|?

uniformly with respect to € (0,1]. For any smooth solution (¢, w) to the linearized
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equations (4.6), we see that

5 S0 = (6,6) + (w, Lwe) + 3w, 101, Liw)
=—((, V- (hw)) = (¢, V - (Cu)) + ({, f) = (w, RVE) = (w, h(u - V)w)
1 182w, V(R (u - V)(V - ) — 8(w, h(V6)(u - V) (w - Vb))
— 18%(w, V(R¥(u - V)(w - Vb)) — (VD)V - (KPu(V - w)))
— 6%(w, V(a10)) — (w, az€) — 6*(w, V(as(V - w) + a4 - w))
— 8*(w,as(V - w)) — (w, Asw) + (w, fo + 6V f3) + 3(w, [0, L]w).
Here, we have
(¢ V- (hw)) + (w, RV() =0,
(¢ V- (¢w) = 3(¢, (V- u)0),
(w, h(u- VYu) = —3w, (V - (hu)w),
(w, V(RP(u - V)(V - w))) = 3(V - w,(V - (h3u))V - w),
(w, (V) (u- V)(w- Vb)) = —3(w - Vb, (V - (hu))w - Vb),
(w, V(h2(u - V)(w - Vb)) — (VB)V - (h*u(V - w))) =0,
so that
2 SE0) = —HG (V- u)0) + (G )+ 3w, (9 (b))
+ 1V w, (V- ()Y - w) + 3w - Vb, (V - (hu))w - V)
+ 0%V - w,a:¢) — (w,a20) + 8%2(V - w,a3(V - w) + a4 - w)
- 02(w,a5(V - w)) — (w, Adsw) + (w, fo) — 8(V - w, f3) + 3(w, [, L]w)
< CUIKON* + lw@®I? + IV - w@®*) + I AON + I L012 + 1 @I
< CE@) + LA + 1N + I fEN1*.
Therefore, Gronwall’s inequality gives

B(®) < Ce(BO + [ (A + 1501 +15)IFr).
A higher order energy function is defined by
Es(t) = n@®II7 + (L + |D])*y, (1 + | D])*w).

Under appropriate assumptions on 7 and b, this energy function is equivalent to E4(t) :=
@2 + )Ju(®)||? + 62||V - u(t)||? uniformly with respect to § € (0, 1]. Similar calculation
as above yields the energy estimate

B0 < 0 (B0 + [ A+ 1A+ 1IN



119

To construct the solution, we use, for example, a parabolic regularization of the equations
by

(m—eAn+ V- ((1+n-bu)=b,

(1 +n—b) +6*T(n, b)) (us — eAu)

(4.7) 4 +(1+7-5)(Vn+ (u- V)u)

+82{3V((1+ 71— b)*Pu(V - u)) + Q(n, u,b)

{ +R1(n,u,b)b; + Ry(n, b)btt} =0 for t>0.

For each € € (0, 1] the initial value problem for the regularized Green-Nagdhi equation
(4.7) and (3.11) has a unique solution (7°,uf), which satisfies a uniform bound on a
time interval independent of €. Moreover, the solution (7¢, u®) converges as € — +0. The
limiting function is the desired solution. More precisely, we have the following proposition
which asserts the existence of the solution to the initial value problem (3.10) and (3.11)
with a uniform bound of the solution on a time interval independent of § € (0, 1].

Proposition 4.1 Let s > 3 and M, ¢, > 0. Then, there exist a time T > 0 and a constant
Co > such that for any 6 € (0,1], ng € H®, uo € H®, and b € C([0,T]; H**?) satisfying

lImolls + lluolls + 61V - uolls < M,
6 ls+2 + () lls+2 + 1Bee(B)lls1 < M,
1+ no(z) —bo(z) > c; for (z,t) € R?x[0,T),

the initial value problem for the Green—Naghdi equation (3.10) and (3.11) has a unique
solution (n,u) on the time interval [0,T] satisfying

{ n()ls + llu@lls + IV - u(@®)ls < Co,
1+n(z,t) — b(z,t) > /2 for (z,t) € R?x[0,T].

5 Proof of the main theorem

Let (n°, ¢°) be the solution of the full water wave problem (2.14) and (2.15) obtained in
Theorem 2.1 and define u® by

L(n®,b,0)u? = (1+7° — b)(V¢® — 82(b,V® + 1(1+n° — b)Vby)).
Then, we have
1+ V- (147 - b)ud) = b + &gl
L(n®,b,6)ul + (1+7° = b)(Vn® + (1 +n° = b)(w? - V)u)
+82{3V((1 +n° = b)*Ps(V - %)) + Q(n°, v, b)
+Ri(n°,u®, b)b: + Ra(n’, b)btt} = &g},

where ¢g¢ and g¢ are uniformly bounded with respect to 6 € (0,1]. In fact, we have the
following lemma.

(5.1)
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Lemma 5.1 Under the same hypothesis of Theorem 3.1, there ezists a constant C =
C(My, co, 8) > 0 such that we have

I(gd(t), i@l < C for te€[0,T], 6€(0,d]

where T and &y are the constants in Theorem 2.1.

Let (7%, @°) be the solution of the Green-Nagdhi equations (3.10) and (3.11) obtained

in Proposition 4.1 and put
(==, w=u' -3

Then, we see that { and w satisfy linearized Green-Nagdhi equations (4.6) with appro-
priately modified coefficients and (fi, f2, f3) = 6*(g1,92,0). We also have ({,w) = 0 at
t = 0. Therefore, we obtain

t
E.(t) < C&® / SN (lgy ()12 + lga(r)|D)dr < C&,
0
which implies the desired estimate

IK@E)ls + Nlw@®)lls + SV - w(t)]l < CE*.

The details will be published elsewhere.
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