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Well-posedness of the Cauchy problem for the
Maxwell-Dirac system in one space dimension

RERZERZEBRBZERFR A 2 (Mamoru Okamoto)
Department of Mathematics, Kyoto University

1 Introduction

In this note, we study the Cauchy problem of the Maxwell-Dirac (M-D) system in
1 4 1 dimensions;

(—iV#a;t +m)y = Ay, (1.1)

04, = = ("%, v), (1.2)

oA, =0, (1.3)

P(0) = o, Au(0) = ay, ,A,(0) =a, (1.4)

where 0g = 0;, 0 = 9, O = —92 + 82, (-,-) denotes the usual inner product in C?,
¥ = (t,x) is a C? valued unknown function, A, = A,(¢,z) are real valued unknown
functions, and m is a nonnegative constant. We are concerned with the Minkowski
space with the metric g = diag(1, —1) and the summation convention is used for
summing over repeated indices. Matrices v* satisfy the conditions

YHYY + A yH = 2¢M7, (1.5)
() =4 (V1) = -4 (1.6)

The constraint (1.3) is the Lorenz gauge condition. The M-D system describes an
electron self-interacting with its own electromagnetic field. The system in 1 + 1
dimensions is the prototype model in the quantum field theory.

We put a® =I5, a = a' = 741, and 8 = 4°, where I, denotes the identity matrix
of size 2. Matrices o*, 8 are Hermitian matrices and satisfy the conditions

(") =p2=1, o'+ pat=0.
Thén, (1.1) and (1.2) become

(=108, + mB)yY = A oty (1.7)
DA, = —(aut,9). (1.8)
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In the one dimensional case, the equations (1.2) and (1.3) require the initial data to
satisfy the following two compatibility conditions:

8za1(x) = |9o(2)* + 0ao(z), do(z) = Oa1(x). (1.9)

The Lorenz gauge condition (1.3) restricts the behavior of the solutions at the spatial
infinity, though wave equations have finite speed propagation. Indeed, if 0;a¢ and a,
vanish at £ = £o00, then (1.9) implies that

/ ol = o2 =0,

-0

which excludes the nontrivial case, this was pointed out in [24]. It is a difficulty of
the one dimensional case. Let f be a real valued function in C*°(R) satisfying the
following assumption

3
flx)=sgnz- 520— on |z| > 5

N

f(z) = Zz on || <
co := ||¢ol|22. In this note, we consider the case s > 0 and the initial data a; — f
vanishing at +00. This condition for the initial data a; of the spatial infinity does not
unnatural condition physically. Replacing A;(t,z) with A;(¢,z) + tf(x), we rewrite
(1.1)-(1.4) as follows.

(—iak8, + mBY = Auaty + tfa, (1.10)
OA, = — (0¥, ¥) — utd2f, (1.11)

O A, = —td,f, (1.12)

$(0) = %o, 4,(0) = ay, 8 A,(0) = do. (1.13)

Remark 1.1. If (1.11) and (1.12) are satisfied by the initial datum, then the solution
to M-D system also satisfies (1.12). Thus, we can remove (1.12) from the system.

The initial datum %o, a,, and @, of the Cauchy problem will be taken in a Sobolev
space H®* = H*(R) defined by the norm

lellzs = 1I()*l] 2,

where (-) := (1 4+ |- |?)*/? and %@ denotes the Fourier transform of u. For 1 + n
dimensions, the M-D system with m = 0 is invariant under the scaling

1 t x 1 t z
’(,D(t,.’l)) - /\—3/57# (Xa X) ) Au(t7$) - XA,U' (X? X) ’

hence the scaling invariant data space is

wO € Hn/2-—3/2(]Rn)’ a, € Hn/2—1(Rn)’



where H *(R™) denotes a homogeneous Sobolev space. One does not expect the well-
posedness below this regularity.

There are not many results on the 1 + 1 dimensional case unlike the higher di-
mensional case. Chadam [5] obtained the global existence of solution in H'(R) x
HY(R) x L*(R). In the case m = 0, Huh [12] proved the global well-posedness in
L*(R) x Cp(R) x Cy(R). Note that the wave data a, and a, are taken in the same
space Cp(R) and 9,4, € Cp(R) is not proved in [12]. Usually, we assume that the
regularity of a, is one derivative less than a,, and for the well-posedness, we have
to prove the solution stays in the same space as the initial data, which is called the
“persistency”. Recently, the well-posedness for the M-D system in 1 4+ 3 and 1 + 2
dimensions has intensively been studied by D’Ancona, Foschi and Selberg [7] and
D’Ancona and Selberg [9] (see also [6]). Especially, the three dimensional result ob-
tained by D’Ancona, Foschi, and Selberg [7] is optimal with respect to the scaling
except for the critical case L?(R3) x HY/2((R3).

We describe two new ingredients of the proof by D’Ancona, Foschi, and Selberg
[7] and the difference between the higher dimensional and the one dimensional cases.
The first one is they have uncovered an additional null form in the Dirac equation.
We here explain null forms and null form estimates. In the 3-dimension case, the
quadratic forms in first derivatives

3

Jj=1

Quu(fhg) = 8,uf81/g - 8I/faugv O S ,LL <v S 37

are said to be null forms. The space-time estimates for null forms were first proved
in Klainerman and Machedon [13]. They were used to improve the classical local
existence theorem for nonlinear wave equations with the null forms. Using the classical
method, i.e., energy estimates and the embedding theorems, one can prove that the
M-D system in 1 + 3 dimensions is locally well-posed in H?(R3) x H3(R3). Roughly
speaking, the use of the Strichartz inequality allows us to improve classical local
existence theorems by 1/2 derivative. However, the Strichartz inequality method
does not take into account the special structure of the nonlinearities that come up in
the equations. Using the null form estimates, Bournaveas [3] proved local well-posed
in HY2+¢(R3) x H*<(R3) for ¢ > 0. D’Ancona, Foschi, and Selberg [6, 7] have
uncovered the full null structure which can not be seen directly. The null structure
found in [6, 7] is not the usual bilinear null structure that may be seen in bilinear
terms of each individual component equation of a system. But one can find the special
property depends on the structure of the system as a whole. Hence, they call it system
null structure. In the 1+ 1 dimensional case, we can find the system null structure by
employing the argument in [7]. Thus, our task is to prove the one dimensional null
form estimates.

The second one is the fact that the M-D system in Lorenz gauge with space being
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3-dimension or 2-dimension can be rewritten as the following system.

V-E=p,V-B=0,VXxE+0B=0,VxB-06,FE=J,
(a“Dﬂ+mB)'¢v=0,

where B = VXA, E=VAy—-0;A, A= (A1,A42,43), D, = %8“—14”, JH = (ot 1),
p=J%=|¢y|? and J = (J1,J2,J3). From this expression, we may consider the M-D
system in 1 4+ n dimensions, n > 2 as the system of the fields (B, E) and the spinor
¥, instead of the potentials A, and the spinor 9. In this case, the worst part of A4,,
that has no better structure, can be neglected. The observation plays a crucial role in
the proof of [7] and [9]. On the other hand, in 1 + 1 dimensions the electromagnetic
fields (B, E) are not necessarily converted to the potential fields A, decaying near the
spatial infinity. We directly consider the system of the potentials A, and the spinor
1, and we must estimate the worst part of A,,.
The M-D system has the charge conservation low;

/l¢(t)|2dx = constant.

It is natural and important to ask whether or not the global existence of the solution
to the M-D system follows the charge conservation. Using this conservation, the
global existence of solution was proved by [5], [10], and [12] for 1 + 1 dimensions and
by [9] for 1+ 2 dimensions. In view of the scaling, L?(R) x H'/2(R) is natural charge
class. The problem with initial data in L?(R) x H'/2(R) has been solved for the 1+ 2
dimensional case, but it remains open in 1 + 1 and 1 + 3 dimensions.

We define the well-posedness in this note as follows.

Definition 1.1. The Cauchy problem (1.10)-(1.13) is said to be locally well-posed in
H?® x H" if for any radius R there exists a time T = T(R) > 0 and a continuous
flow map from {(vo,ay,a,) € H® x H" x H™™1 : ||(Yo0,au, au) | o x trrxgr—1 < R} to
C(-T,T); H*) x (C([-T,T;; H") NCH[-T, T} H™™1)).

Remark 1.2. The following assertion is equivalent to Definition 1.1 : for every é§ > 0,
there exists a T > 0 such that if ||(v0,a,,a,)||gsxarxgr—1 < 9 holds, the solution
to M-D system on [—T,T) exists, and for every € > 0, there exists a § > 0 such that
if [|(Y0,au,au)llHexHrxHr-1 < 0 holds, |[(%, Au, 8:A) | c((=T,1);He x Hr x Hr-1) < &,
where (¢, A,,,0;A,,) is the solution to M-D system with initial data (vo,a,,a,).

We obtain the local well-posedness in (0+,1/2+), while the critical scaling regu-
larity is (-1, —-1/2).

Theorem 1.2. Ifs >0, s <r < min(2s+1/2,s+1), r > 1/2, and (s, ) # (1/2,3/2),
then (1.10)-(1.13) is locally well-posed in H® x H".

In the proof of Theorem 1.2, we will pick out the worst part. The many restrictions
in Theorem 1.2 comes from this part. Thus, we may suppose the well-posedness is
broken by this part. We analyze this part in details and obtain the following theorems,
which say Theorem 1.2 is optimal.



Theorem 1.3. Suppose 0 < s < 1/2, r > max(2s + 1/2,1/2).Then there ezist
sequences {un} C S (R) and tn \, 0 such that |lun||yzs — 0, as N — oo, and
the corresponding solution (Y, A, N) to (1.10)-(1.11) with initial data ((*%}'),0,0)
satisfies

“AO,N(tN)“HT‘ — 00, as N — 0.

Remark 1.3. The ill-posedness appearing in Theorem 1.3 is referred to as norm infla-
tion. It says that the flow map of (1.10)-(1.13) fails to be continuous at 0, and fails
to be bounded in a neighborhood of 0. In the case of nonlinear operator, the notions
of boundedness and continuity are not equivalent.

Theorem 1.4. Supposer < s orr>s+1orr<1/2ors=1/2,r>3/2. Then for
any T > 0, the flow map of (1.10)-(1.13), as a map from the unit ball centered at 0
in H x H" x H™™Y to C([~T,T}; H*) x (C([-T,T]; H") N CY([~T, T}; H"™"Y)), fails
to be C2.

We note that the M-D system does not have better structure than the Dirac-Klein-
Gordon (D-K-G) system.

(—tv"0u + M)y = v,
(~O+m?)e = (Y%, ),

where ¥ = 9(t,z) is a C? valued unknown function, ¢ = @(t,z) is a real valued
unknown function, m and M are nonnegative constants. Machihara, Nakanishi, and
Tsugawa [16] proved the local well-posedness for D-K-G in H*(R) x H"(R), provided
that s and r satisfy the conditions s > —1/2 and [s| < r < s + 1. The difference
between Theorem 1.2 and the result in [16] comes from the structure of the right
hand side of each second equation. The right hand side of (1.2) with g = 0 is the
square of ¢, which is the worst part. This part has no null structure and proving the
local well-posedness for small (s, r) is a difficult problem. The part that breaks down
the proof of the well-posedness may imply the ill-posedness. In our case, the norm
inflation comes from this part.

Remark 1.4. Theorem 1.4 does not imply the ill-posedness but precludes proofs of
the well-posedness by the contraction argument. Indeed, if the contraction argument
works, the flow map proves to be C* in most cases.

This note is organized as follows. In Section 2 we prove the well-posedness results.
In Section 3 we prove the ill-posedness results.
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2 Local well-posedness

As in [7], we decompose A, as follows:

Ay = W(O)lay, au] + AP — p(tf ~ W), f1),
Aifh' = *D_1<au¢,’l/’>-
Here we use the notations W (t){a,b] and O~ 1F for the solution of the homogeneous
wave equation with initial data a, b and the solution of the inhomogeneous wave

equations Ou = F with vanishing data at time ¢t = 0, respectively. We decompose
the spinor as

Y=+, Y =119, (2.1)
where Iy = II(£0, /) is the multiplier whose symbol is the Dirac Projection
L ey g &
I(¢) := = ({ , &= =,
Note the identities
Iy = () + (=€), &a =TI(§) - TI(=¢), BII(E) = T(-£)B, (2:2)
()" = 1(¢), T(&)* =I1(€), (E(-E) = 0. (2.3)

We see that (1.10) splits into two equations:

(=40 £ 10: )92 = —mBypg + N ((Ap°™ + uW ()0, fl)as — N(%,%,9)). (2.4)
According to the linear part of (2.4), we define the following function spaces.

Definition 2.1. Fors,b & R, X3° is the completion of the Schwartz space &(R'*1)
with respect to the norm

el g = I6)°(r = 1€D%a(r, Oz,

where u(1,§) denotes the time-space Fourier transform of u(t,z).

Definition 2.2. For s,b € R, H*® and H*® are the completion of #(R'*1) with
respect to the norm

[ull 5.6 := $€)*CI| — |§|>bﬂ||L3,£,
lull3ss = llullgso + [|Ocul gs-15,

respectively.

These spaces are introduced by Bourgain [2] and Klainerman and Machedon [14].



Remark 2.1. The norm ||u||4s.s equivalent to |[{(€)*~(|7| + |€]){(|7| — |§|)ba||L3 g

Remark 2.2. For b > 1/2, we have X3* < C(R;H*) and H** — C(R;H®) N
CY(R; H*~1). The dual spaces of Xj:’b and H*? are X;_s’—b and H~%~° respectively.

By a standard argument (see, for instance, [6] or [7]) the problem obtaining closed
estimates for the iterates reduces to proving the nonlinear estimates

”H:!:2 (Azom'auwil)IIXi’;1/2+2E(ST) 5 IO“¢”X1‘11/2+6(ST)’ (25)
MLy (W )I0, Al My /205, S Toll bl v s, (2.6)
3
IIH:i:4D—1 <ap.w:i:1 ) 7/’i2>04“¢i3 l‘Xiv;1/2+2€(ST) 5 ]:[1 ”'d}llxi’;/%LE(sT)) (27)
J:
”<au¢7w)l’Hr~lv-1/2+2f(ST) 5 ]WI %(s,1/2+s(sT)a (2-8)

where Zg = ||(¥0,a,,0,) || Hsx Hrx g=—1- We omit the details for the proof these esti-
mates. Since the null structure plays crucial role in the proof, we only consider the

null form estimates.
We define

1, ejep < 0, 1, :f:j = :tk,fjfk < 0or :]:j 75 ik,ﬁjfk > 0,
Ojk = 9(€j, ex) = =
0, ejer >0 0, £j==x,&& >0o0r £; # £x,&E <O0.
Remark 2.3. In higher dimensions, 6;; denotes the angle between e; and e;, and works
system null structure (see (7, 9]).
We use the notation

F{B. (1, uz)](Xo) = [ / o (X1, Xo) 1 (X)) (Ka) ..

The following Proposition is the 1-dimensional null form estimates.
Propositon 2.3. Suppose sg, s1,52 € R, by, b1,b2 > 0. We define A := by + by + bo,
B = min(bg, b,b2), and s = so + 81 + 82). If
Sso+51 >0, so+s2>0, A>1/2,
s1+s2+A>1/2 s+A>1,
s1+s2+B>0, s+B>1/2,

we then have

”(‘3012 (u1, u2)“x—30*‘b0 S ”ulnxslvbl HU2HXS2”’2 : (2.9)
) *; +2

If
so+52>0, s1+s2>0, A>1/2,
80+81+A>1/2, s+A>1,
80—1—81—’-320, 3—}-321/2,
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we then have
B, (u1, u2)|l xgio S S Jlual] x5h [luzll xiztbe: (2.10)

Proof. We only prove (2.9), because the proof of (2.10) is similar. By a duality
argument, (2.9) is equivalent to

012(F1(X1), F2(X2))Fo(Xo) "
[ e e e Ao S IRINEMNR],  21)

where
Fy(X;)

LAt SN,
(o) (&)
If 012 =0, (2.9) is trivial. Assuming 0;2 # 0, we have £, # £2, £1€2 > 0 or &1 = =+,
&€, < 0. We only consider the case ; # %23, £1&; > 0, since the other case can be

handled similarly.
We then have |&| = [|&1] — |€2]| and

o0 — 01 + 02 = Foléo| F1 (1] + [€2]) = Follé1] — [&2l] F1 (€] + [€2])-

Thus we get min(|&;], |£€2]) < max(|oo|, |o1], |o2]). Since Xo = X3 — X2, one of the
following must hold:

ui(X;) = =15 %5 &1, X; = (15,€), Fj € L%

|€o] < 1€1] ~ |&2l, (2.12)
€0l ~ max(|€1], |€2]) = min(|&], [€2])- (2.13)
In the case (2.12), (2.11) reduces to
| Fo(Xo)F1(X1)F2(X2)| <
// ool o o (2o Eoyoo yyorvor oo S IRRMNANIE]. - (234)

We consider the case (gp) > (01) > (02). We get (&1) S (00). If by + b2 > 1/2, we
then have

| Fo(Xo)F1(X1)F2(X2)]
L.H.S of 2 14 // 0.2 b1+b2 50 so<§1>31+sz+bo+d dX

el o
F-1 ________ 1
” (GoyotPot Il L2 poo 1Ealzz. ’]: (o2)or+b2= [l e
S ||Fol|”F1||||F2||

where we have used Holder’s inequality, Young’s inequality, and Sobolev’s inequality.
If by + by < 1/2, dividing by = (1/2 — by — b2) + (A — 1/2), we then have

| Fo(Xo)F1(X1)F2(X2)|
L.H.S. of (2.14) // <02 T72+(go )50 (€, )o1+s2+A—1/2— dp, dXo

_ Fo ] _ F>
IS S (N SN
H <§0>S+A_1/2_ L2Lee 1Eillez. ' (02)/2* Jipoo 2

S 1 Foll|FL || F2]l-



The remaining cases are handled similarly. O

If the bilinear form has no null structure, the following estimate holds. We omit
the proof of Proposition 2.4, since it is similar to Proposition 2.3.

Propositon 2.4. Suppose sg, 51,52 €R, bg,b1,b2 >0, and b + by + by > 1/2. If
S+ 81+ 82 > maX(So,Sl,Sz), So + 81+ 82 > 1/2,

or

50 + 81 + sz > max(sp, 51, 82), So + 1+ 82 >1/2,
and we do not allow both to be equalities, we then have

(2.15)

”ulﬁi”)(;;m%o S ”ulﬂxil{bl ||U2I|X;22vb2

for all u; € Xijj’b", j=1,2.

Remark 2.4. By the null structure, Proposition 2.3 permits sq + s1 + s < 1/2, while
Proposition 2.4 requires sg + s1 + s2 > 1/2. Roughly speaking, in Proposition 2.3, we
can replace s; by s; + b;.

3 ll-posedness

Since all representations of operators satisfying (1.5) and (1.6) are unitary equivalent,
we may choose
01 0 1
0 _ 1 A1
7 (1 o)"y (—1 0) 3
for calculation. |

The following statement follows from Theorem 1.2. Let 0 < ¢ < 1 and let s and
r satisfy 0 < s < 1 and max(s,1/2) < r < min(2s +1/2,s + 1). For (¢0,au,a,) €
H® x H" x H™™1, there exist T = T(||(%0,au, @) | msxurxa—1) € (0,1] and the
solution of M-D system with initial data (v, a,,a,) satisfies

¥l xs1/24e 57y < Clltboll e,
[Aullagrarate sy < CU@p @)l mrwmr—1 + 1ol 7s)- (3.3)

3.1 Outline of the proof of Theorem 1.3

Let S, be the free evolution operator of the Dirac equation expressed as Sy, (t) :=

cos((Dz)mt) + (v18, — im)vOW, where (8;)m 1= (m? — 82)1/2. By (3.1), we
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get
S, (t) = cos((0z )mt) + <6a> sin({9z)mt) (a 5 sm(( ) mt) .
" — o5 sin((0z)mt) c08((0z)mt) — k= sin((8z)mt)
(3.4)
We put
W(t) = sin(t\/——ag),
which is the free evolution operator of the wave equation. We set
Uy (€) = N72¥ 273 (0 g was—rr372)(€) + X (=N = w2s-r+372 _n1 (),

where x 4 is the characteristic function of A. Then we have

lun || jror < N72547/273/4 s +omr/243/4 — o=, (3.5)

We split the proof into four steps.
Step 1. We now prove

Z2tN%, o:=—-s+r/2—-1/4>0
Hr

t
/ Wt — 8)]Sm(s)on ds
0

fort 2 1/N. Thus the desired result holds provided uo n is replaced by Sp(t)Yo,N,
where Yo n = ("} ).
Without loss of generality, we may consider the case m = 1. By a direct calculation,

we have

|51(75)¢o,1\/|2(€)=/6+5 e A(fhﬁz)aN(él)aN(fz)ﬂL/& e B(&1,&2)un(&1)un(€2),

A6, €)= (cos((E0)t) + 1755 sin((6a)t) ) (cos((€2)0) + ik sin((€2)))

(€1) (€2)
_ sin({&1)t) sin({£2)t)
Blr,&) = (€1) (&2)

We divide A into the reading term e:(é11+1€2Dt and the remainder M(&,&;) :=
A(&1, &) — eilléal+eDt - Restricting € to the region 2N < |€] < 2N + 2N1729 by
symmetry, we only consider the case &;,& € [N, N + N'~29]. Then we get

lun|2(€) = N*~"=1/2p(g),
where

£— 2N, £ € [2N,2N + N1~29],
h(€) =< —€+2N +2N1~2%29 ¢¢e[2N + N1-2¢ 2N + 2N1‘2"],
0, otherwise.



Thus we have

/t Si_n(—(é:ﬁleiﬁsh(f)ds = ——"1—}1(5)6“5(ff_mE — 1+ 2itg).
N «

For |t&| 2 1, we get

/t Meigsh(f)ds > E-('Qt.
0 £ : 13
We obtain
PN Csin((t—9)8) oo PN
(/ @ | [ R ey Regas) de ) zave
2N 0 &

Since M (&1,&2) S ¢/N, for 2N < €] < 2N 4+ 2N1729 we have

’S t2N4a'—'r‘—5/2h(£),

t . —
/ sin((t — 5)¢) / M(&1, &2)o,n (61)to, v (€2)dt’
0 £ §1+&2=¢

which completes the proof of Step 1.

Step 2. When 0 < s <1/2 and 2s+1/2 < 7 < min(14s/11 + 19/22,14s/3 + 1/2),
we prove

< No/2,
L H™(ST)

”/0 Wt — s)([¥n(8)|? = [Sm(s)vo,n|?)ds

Since
[N (8)]2 = |Sm (B0, N[> = |98 () = S ()20, 3 |2 + 2R (W n (£) — S ()0, Sm (t)%o,n)

and H™Y/2+¢(Sr) < L H™(Sr), it suffices to show that

/0 Wt = ) () — Sm(5)Po.n Sa(5)bo. )ds

SN2, (3.6)

/0 Wt - 8)[on(s) — Sm(s)o.n|2ds

Hr,1/2+5(ST)

SN2 (3.7)
Hr,1/2+E(S’T)

We only prove (3.6), because (3.7) can be handled similarly. We put

s1="Ts/4—3r/8+3/16, s, = —Ts/4+ 11r/8 — 11/16.
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From the conditions in Step 2, 0 < 57 < s < sg < 1/2. By Proposition 2.3,
187 o, Y)andll yszmrrave S 91511724 9]l x 021724 - (3.8)

Thus, we have

4N — Sm()%o,n 1 xs2.1/24e(57) S Cll(Apa® + tf )Pl xo2.-1/24¢ (1)

S— C',D—1<a#wN7 wN>alin”X;2"1/2+f(5T) + “W(t) [O, f]wN“ng,—l/2+e(ST)

< CUN ey /252 5y + Il lom L xoa 2 )

< CUWN I ey 2re(spy + 1 fllcir2)

X (lon = ©Sm ()0, Nl xs2.1/2+¢(57) T 19Sm(E)¥0,N | xo2.1724¢ (57)-

Since |on || xs1 12457y S Ionllen S N9 72 and ||fllgiz S N7°%, provided N is
taken large enough, we get

19N — @Sm(t)o Nl xs21/2+e (57) < CNZET 08 (8) b0, N ll 32172+ (5.1
By the linear estimates (see [20]), Proposition 2.4 with s =1 —r and by = 1/2 — 2¢,
(3.2) with (s;,s; +1/2), j = 1,2, we obtain
L.H.S. of (3.6) 5 “('QDN - Sm(t)¢0,Na¢N - Sm(t>'¢'0,N>“Hr—l,—l/erzs(ST)
5 “wN - Sm(t)1/)0,N|lxilv1/2+5(5T)”¢N - ‘psm(t)wO,N“X:Stzyl/2+s(ST)

< o, w e N2 =9 |lapg || o S N2 H301%02 = No/2,

~S

Step 3. We obtain
| Ao,w ()|l Z tN°

if0<s<1/2 and 2s +1/2 < r < min(14s/11 + 19/22,14s/3 + 1/2), and t 2 1/N.
For, by Steps 1 and 2, we have that

t
Ao @)z > / W (t — 5)|Sim(5)bo, [2ds

HT

> ¢N°.
L H™(ST)

/0 Wt — ) (1w (5)® — |io(5)Sim(s) 0. [2)dls

Step 4. When 0 < s < 1/2 and r > 25+ 1/2, we have
Ao, N ()| ir > CEN®

for some a >0 andt 2 1/N.
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Indeed, let 7’ be such that r’ < r and / satisfy the conditions in Step 3, and let
s’ be such that 0 < s’ < 7//2 —1/4, ie, 7' > 25’ +1/2. From ||¥|lzs < ||l ye
appealing the conclusion of Step 3 with s and r replaced by s’ and r’, we obtain

(Ao,nllar > | Ao N g 2 (NS T 2-1/2

3.2 Outline of the proof of Theorem 1.4

In the proof of Theorem 1.4, we can neglect the mass term (see, for instance, [16]). In
this subsection, we abbreviate Sy to S. We prove that if (s, r) satisfy the assumptions
of Theorem 1.4, there exist a sequence (Yo n,a,, N, @, n) satisfying

1 (%o,5,au N, G N s x v x -1 S 1,
but 95 [z or AN s is unbounded, where »{(t) = S(t)on, A ) =
W(t)(au,N,au,n),

@ / S(t = 5)(AD, (s)am 9D (5))ds

2 1 1
A% —z/Wt—s<am“<> uiP(s)ds.
We only consider the case s € R and 7 = 1/2. Define aj,n = do Ny = a1,n = 0,

un(§) = N~28~1/2X[N2—N,N2+N] (€,
ao.n (§) = (log N)~H2(€) " xy wy (£).

Since

N24N N24N d§
/ o * AN ()|dE 2 N2 1/2(log N)~1/2 / %1 e
N2 1 &

= N~2+1/2(log N)/2

and

/ emiter SR o e e — €1)ae | de

N24N
‘/Nz 51
N24+N
< tN—ZS 1/2(logN 1/2/ / 2X N2_ N2+N](§ - fl)dfldf

<tN~ 23+1/2(10gN) 1/2,
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we get

—

2 — 2
198 Olle > (61l 2 N2 72 u s veceansen)

)

N24N i
22 [0 (dagw o)l - | [ e M @mie - 6de

> t(log N)Y% — t(log N)~*/2 > t(log N)*/2.
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