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Pseudoconvex domains in the Hopf surface.
by

Norman Levenberg and Hiroshi Yamaguchi

1 Introduction

Let a € C\ {0} with |a| > 1 and let H, be the Hopf manifold with respect
to a, i.e., Hy = C*\ {0}/ ~ where 2/ ~ z if and only if there exists n € Z
such that 2’ = a"z in C* \ {0}. In a previous paper [1] we showed that
any pseudoconvex domain D C H, with C*¥—smooth boundary which is not
Stein is biholomorphic to T, x Dy where D, is a Stein domain in P*~! with
C“~—smooth boundary and T, is a one-dimensional torus.

For a,b € C\ {0} with |b] > |a| > 1 we let H,z) be the Hopf surface with
respect to (a,b), i.e., Hip) = C?\ {(0,0)}/ ~, where (2, w) ~ (2/,w’) if and
only if there exists n € Z such that 2/ = a”z, w' = b"w. We set

log |b]
= > 1. 1.1
p og o] = (1.1)

We remark that H, ;) is not a complex Lie group; however, with the aid
of the technique of variation of domains in a complex Lie group developed
in [1], we can characterize the domains with C*—smooth boundary in H, )
which are not Stein.

Theorem 1.1. A pseudoconvex domain D with C¥—smooth boundary in
Hap) which is not Stein reduces to one of the following:

Case a:  p is irrational.

(al)  There exist positive numbers ky < ky such that
D = {ki]2]? < [u] < kal2l}/ ~ .
(a2)  There exists a positive number k such that

D = {|w| < k|z[’}/ ~ .
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(a3) There exists a positive number k such that
D = {|w| > k|z|?}/ ~ .

Each |w| = k|z|?, k > 0 is biholomorphic to |w| = |z|° in H.

Case b: p = ¢/p is rational where ¢ > p > 1 and (p,q) = 1. Setting

1
T (2 arg a —arg b), 0<arga, arg b < 2m, (1.2)

we have:

(bl) If T is irrational, then D is of the form (al), (a2) or (a3).

(b2) If 7 = m/l is rational with 1 > 1 and (I,m) = £1 or 7 =0 (and
we setl=1):
There ezists a domain § in P! = CU {oo} such that D = |J 5 0c
where o, := {w = cz’}/ ~ is the integral curve [z, wo] expt Xy
with ¢ = wo /2 # 0,00 of X, := (log|a|) z 2+ (log [b]) w . Also,
o 45 a compact curve which is equivalent to the one dimensional
torus Ty (= Tyq). If c =0, then o, = [z, 0] exptX, = T, x {0}
where zy # 0. If ¢ = oo, then o, = [0, wo]exptX, = {0} x T}
where wy # 0.

1 w| = ky2]°

00 T o M

In the next section, we briefly discuss properties of the Hopf surface Hq),
and in section 3 we state without proof some preliminary results, including
a classification of the holomorphic vector fields on H,p) and their integral
curves. We also indicate why the domains listed in Theorem 1.1 are not
Stein. The proof of Theorem 1.1 is given in section 4 while the proofs of
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the results in section 3 are given at the end of the paper in Appendix A and
Appendix B.
We would like to thank Professor Tetsuo Ueda for suggesting this problem.

2 Properties of the Hopf surface H(a,p)-

We write C* := C \ {0} and (C?)* := C?\ {(0,0)}. Fix a,b € C* with
1 < |a| < |b]. For (z,w), (2',w') € (C?)*, we define the equivalence relation
(z,w) ~ (2/,w') iff I neZsuchthat 2/ =a"2, v’ =b"w.

The space (C?)*/ ~ consisting of all equivalence classes
[z,w] .= {(a"2,0"w) :n € Z}, (z,w) € (CH*

is called the Hopf surface H = H(,p); it is a complex two-dimensional com-
pact manifold.
For z, 2/ € C* we define 2z ~, 2’ if and only if there exists n € Z such

that 2/ = a™z in C}. Then
Ta = C*/ ~Na and Tb = (C*/ ~p

are complex one-dimensional tori, and # contains two disjoint compact ana-
lytic curves T, = T, x {0} and Ty = {0} x T. We have T,UT, = {(z,w) €
(C?)*: zw = 0}/ ~ in H; for simplicity we write T, U T, = {zw = 0}. We
consider the subdomain H* of H defined by

H* :=H\ {zw = 0}. (2.1)

Thus H is a compactification of H* by two disjoint one-dimensional tori. The
set H* is a complex Lie group and will play a crucial role in this work.

We give a more precise description of the Hopf surface. A fundamental
domain for H is
F o= ({lzl <lal} x {lw| < B\ {[2] £ 1} x {Jw]| < 1}) (2.2)
=FUE, € ((CQ)*,

where

By = By x By = {|z| < |al} x {1 < |w| < |8},
By = By x By :={1 < |2| <lal} x {|w| < [b]}.
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For k = 0,+1, ... we set i := F x (a*,b*). Then Fo = F and each Fj is a
fundamental domain.

\

<

z-plane

Y
:

U

z-plane

The Hopf surface H is obtained by gluing the boundaries of OF in the
following way: setting

Ly = {lz| < lal} x {lwl = o]}, Ly = {|z] <1} x {Jw| = 1};
Ly = {lz] = lal} x {lw| < [Bl}, Ly = {lz] = 1} x {|w| < 1},

we have the identifications:

(1) (z2,w) €L, with (z/a,w/b)€ Lj;
(2) (z,w) € Ly with (z/a,w/b) € LY.

We set
1= {(a”,b") eC*xC"':neZ}CcC xC (2.3)

which is a discrete set in C* x C*.

For a set D C H we will often simply describe D as a set of points in
(C?)* where the equivalence relation ~ is understood. If there is possibility
of confusion we will write

D = {(z,w) € (C**: [z,uw] € D} C (C?)",

so that D = D x T and hence D/ ~ = D.



As an example, which will also illustrate the difference between the Lie
group ‘H* and the Hopf surface H, let D = C, x {w} where w # 0. As a
subset of H*, the complex curve DN (C* x C*)/ ~ is not relatively compact
and is equivalent to C*. As a complex curve in H, D / ~ is not closed and is
equivalent to C. Moreover, if |b]*~! < |w| < |b]*, then (0, w) € F; and

D/ ~=DyUD;UDyU--.

where
Dy ={]z| < Ialk}x{w}, D,={lalf' < 7| < lal*} x{w/b"}, n=12...
Thus Dy is a disk and D,, n = 1,2, ... are annuli such that D, =D, x
(1,1/b), n=1,2,.... Hence D,, n=1,2,3,... are conformally equivalent,
and lim,_,o D, = T, in H.

Following T. Ueda, we consider the following real-valued function U[z, w]
on H*: | |

Ulou] = 212l _ Toglul

= f *,
logla| log|b] or [zu] eH

This has the following properties:
(1) Ulz,w] is a pluriharmonic function on H* satisfying

lim Ulz,w]=—-00 and lim  Ulz,w] = o0,
[z;w] =T, [z,w] =T

thus for any interval I € (—o0,00), the subdomain U~(I) of H* is
relatively compact in H*.

(2) [U[z,w]| := Max{U[z,w], —U[z,w]} is a plurisubharmonic exhaustion
function for #* which is pluriharmonic everywhere except on the Levi-
flat set

log|z|  log|w]
logla] — log|b]’

i.e., |wl=|z” in H*.

(3) For c € (—o0, +00), the level set
Sc: Ulz,wl=c¢c

is equal to |w| = k|z|® where k = e 8!t > 0. Thus {k;|2|* < |w| <
ka|z|P} is equal to U~'([cy1, cp]) where k; = e~%108 Bl: while {|w| <
k|z|°} is equal to U™([c, +00)) U T,; and {|w| > k|z|°} is equal to
U= ((~o0,c])) UTy, where k = e~clog 18],

81
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From (2) and (3), each of the domains D in (al), (a2) and (a3) in the
statement of Theorem 1.1 contains a compact, Levi-flat hypersurface S, for
appropriate ¢; hence each such D is not Stein. In case (b2), D contains a
compact torus o, and we will have the same conclusion.

3 Preliminary results

In this section, we discuss two basic results which we will need. The first
concerns holomorphic vector fields in H, while the second concerns pseudo-
convex domains with C¥—smooth boundary in C2. We consider the linear
space of all holomorphic vector fields X of the form

0 0
X-—az-a-;-l-ﬂw%, a,peC

in C* x C*. Any such X clearly induces a holomorphic vector field on H =
H(ap)- The integral curve of X with initial value (2o, wo) € (C?)* is

— at
Z = Zp€ ',

(Zo,’w()) exth = { teC.

w = weePt.

B8 o
(i> = (E) , hence w= ( ’L;);) ) 2Pl
29 Wo 25"

In particular, we consider

Therefore,

0 0
X, := (loglal) 2 5, T (log |b]) w e (3.1)

The integral curve of X, with initial value (1, 1) is

Z = e(bglal)t’
exptX, = w — (o8Bt teC.

Thus w = 2°. We set G, := {exptX, : t € C} C H* and denote by >, the
closure of 6, in H.

The next lemma, gives more precise information about the integral curves
and will be crucial in the proof of Lemma 4.2. For notational purposes,



for rational p = %, we write p = ¢/p, p > 1, (p,q) = 1 and we define
= ((¢/p) arga — argb)/2m. For T rational, if 7 = 0, we define { = 1; if

7 # 0, we define l by 7 =m/l, [ > 1, (m,]) = £1.

Lemma 3.1. 1. For X, = (logla|) z Z + (log |b]) w 2 we have:

(1) In case p is irrational or T is irrational, ¥, = {|jw| = |2|°} is
a real three-dimensional Levi-flat closed hypersurface in H* with
Y. €@ H".

(2) If T is rational, then &, ~ Tpu/n(= Tyyq) as Riemann surfaces.

2. For X = aza% + Bw% € {cX, : ¢ € C}, the integral curve o =
{exp tX : ¢t € C} in H* is not relatively compact in H*. If we let ¥
denote the closure of o in H, then:

(1) If o, B # 0, we have ¥ D T, UT,.
(2) If only one of a or B is not 0, e.g., o # 0 and B8 = 0, we have
XOT, and XNTy = 0.

The proof of Lemma 3.1 is in Appendix A.
We now turn to an elementary property of a pseudoconvex domain D
with C*—smooth 8D in C2. In C? = C, x C,, we consider disks

Ar=A{lzl <rm}t, Ag={|w| <r}

and the bidisk A = A; x A,. Let D be a pseudoconvex domain with Cv
boundary in A. We do not assume D is relativell compact. Thus there exists
a C*—smooth, real-valued function % (z,w) on A such that

D ={(z,w) € A: ¢¥(z,w) < 0};
ODNA = {(z,w) € A:¢(z,w) = 0},

83

and on ¥(z,w) = 0 we have both View¥(z,w) # 0 and the Levi form

L)(z,w) > 0. We write out this last condition:

& o, Py oy O O,
Lplzw) = 5l 50 U - {aza—araw}Jrawa-w"a_z'

>0 ony(z,w)=0. (3.2)
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We may assume

#(0,0)=0 and %(o,o);éo

so that ¥ (0, w) = 0 is a C*—smooth simple arc in A, passing through w = 0.
We set S := 0D N A,

D(z) :={w € Ay : (2,w) € D} C A,; and
S(z) :={we Ay: (2,w) € S} C Ay,

so that D = U,ea,(2,D(2)) C A and & = U,ea,(2,5(2)) € A. Taking
r1,T9 > 0 sufficiently small we can insure that

(i) for each z € A;, D(z) is a non-empty domain in A, and S(z) is a
C¥—smooth open arc in A, connecting two points a(z) and b(z) on
0Ay;

(i) 0 € S(0).

We also need the following condition:

(i1)|  (2,0) # 0 in A;, hence, for any disk §; = {|2| < r} C A;, there

exists 2o € §; with 0 & S(zo).

S(z)

/ a(2) 5(0)

A A,

Under these conditions we have the following.
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Lemma 3.2. For any disk 6; = {|z| < v} C A, there exists a disk
9y = {|w| < r'} C Ay with

L S(2) > D(0) N 6,.

2€0;

The proof of Lemma 3.2 is in Appendix B. This result will be used in proving
Lemma 4.1.

4 Construction of the plurisubharmonic ex-
haustion function —\[z,w] on D

Let (o, B) € C* x C*. If we define
(. B): [z,w] € H = [oz, fu] € H,

then (c, B) is an automorphism of H. Thus C* x C* acts as a commutative
group of automorphisms of # with identity element e = (1, 1). Although C*x
C* is not transitive on #, it is transitive on H*. Hence H* is a homogeneous
space with Lie transformation group C* x C*. For any [z, w] € H* the isotropy
subgroup I, of C* x C* is

Iw : = {(a,8) € C* x C*: (o, B)[2,w] = [z, w]}
={(a"b0") e C*xC*":neZ}
=7 in (2.3),

and thus is independent of [z, w] € H*. We have

H* = (C* x C*)/T.

In what follows we consider the restriction to C* x C* of the Euclidean
metric ds® = |dz|? + |dw|? on C?, and we fix a positive real-valued function
c(z, w) of class C* on C2.

In this section we always assume that D C ‘H is a pseudoconvex domain
with C¥—smooth boundary in H. We note, as observed at the end of section

2, that
if D> T, or D> T,, then D is not Stein. (4.1)
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We define
D*:=Dn{zw# 0} CH

(see (2.1)). The distinction between D C H and D* C H* will be very
important. Since (z,w) € C* x C* defines an automorphism of #, for [z, w] €
D we can define

D[z,w] = {(a,B) € C* x C* : (e, B)[2,w] € D} C C* x C*.

Equivalently, using the notation D N'T, = [D,,0] and D N'T, = [0, D),
D[z,w] = (1 1)D xZ if [z,w] € D
Z, Wt = Z, w ’ )
Dlz,0] = (%Da, CYxI  if [2,0]€ DNT,;
1
D[O, w] = ((C*, ED(,) xZ if [O, ’LU] eDnN Tb-
We note the following:

(1) Dle] = D\ {zw =0} = D*; [z,w] € D if and only if e € D[z, w];

(2) For each [z,w] € D, D[z, w] is an open set with C* boundary 0D|z, w]
but it is not relatively compact in C* x C*. We have

(i) D[z,w] = D[z,w] x T,
(ii) For [z,w] € D* we define

D*[z,w] = {(e,B) € C* x C* : (o, B)[2,w] € D*}.
- Then D[z,w] = D*[z,w].
(3) (i) For [z,w] € D* we have
11

D — D*x (=. — 4.2
feyu] = DF x (5, 2) (42)
and for [z, w], [¢/,w'] € D*
, z w
Dl w'l = (3, =)Dz, w]. (4.3)
In particular, the sets D[z, w] for [z, w] € D* are biholomophic in

C* x C*.



(ii) For any two points [z,0],[2/,0] € DNT,

2 1)Dlz,0].

ZI

D[Z’, 0] = (
In particular, the sets D[z, 0] for [2,0] € D* are biholomophic in
C* x C*. :

(3) Fix [2,0] € DNT, and let [z,,w,] € D* (n=1,2,...) with [2,, w,] —
[20,0] as n — oo in H. For 0 < r < R, consider the product of annuli

A(r,R) : {r < |z| < R} x {r < |w| < R} C C* x C*.
Then
lim 0D|z,, w,] N A(r, R) = D[z, 0] N A(r, R) (4.4)

n—co

in the Hausdorff metric as compact sets in C* x C*.
We set

D:= |J (lzw], Dz w). (4.5)

[z, w]eD

This is a pseudoconvex domain in D x (C* x C*) which we consider as a
function-theoretic “parallel” variation

D:[z,w] € D — D[z,w] C C* x C*.

Since e € D[z, w] for [z,w] € D, we have the c-Green function g([z, w], (£, 7))
with pole at e and the c-Robin constant A[z, w] for (D[z,w],e) with respect
to the metric ds? on C* x C* and the function c(z,w) > 0. We call [z, w] —
Alz, w] the c-Robin function for D.

We have the following fundamental result.

Lemma 4.1.

1. =Xz, w] is a plurisubharmonic function on D.
2. We have the following:

(a) For any |29, wo] € OD*, imyp, ) [20,we] AlZ, W] = —00.
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() If 0 # 0D N'T, # T, then for any [20,0] € 9D N'T, we have
lim; (20,0 A[2, W] = —o0 (and similarly if T, is replaced by T).

3. If0D 2 Ta and 0D 2 Ty, then —A[z,w] is a plurisubharmonic ez-
haustion function for D.

Proof. Note that 3. follows from 1. and 2. We divide the proof of 1. into
two steps.

1% step. —\[z,w] is pseudoconver on D*.

Fix [¢o] = [20,wo] € D*. Let a € C?\ {0} with ||al| =1 and let B = {J¢| <
r} C C; be a small disk such that the complex line l : t € B — [((¢)] =
[2(2), w(2)] = [{o] + at passing through [(o] is contained in D*. It suffices to
prove that —\(¢) := —A[2(¢), w(t)] is subharmonic on B, i.e.,

A2\(t)
— < .
o = 0 onB

For brevity we write

D(t) : = D[¢(t)] c C* x C* for t € B;
9(t, (z,w)) : = g([{(®)], (z,w))  for (z,w) € D[(()]-

By (4.3) we have

| '_\

D(O) = DO) KO = Dlol (S 5) €T (49

w(t)
We thus have the parallel variation of domains D(t) in C* xC* with parameter
eE Dlp:te B — D(t) C C* x C*.
We write
Dlp:= ¢, D®); 6D|s=|J(t6D() inBx(C*xC*),

teB teB

where again we identify the variation with the total space D|g. By (4.5), D|5
is a pseudoconvex domain in B x (C* x C*) such that 0D|p is C¥ smooth.
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Using the notation ¢ = (z,w) € C* x C* and g(¢,¢) = g(¢, (z,w)), we have
the following variation formula from Theorem 3.1 of [1]:

PA(t) 2
() Sy = o Ks(t, Ol Ve g(t, OlI*dS,

? 0?g(t, Q) 2)
-~ = d
4o //D(t)( Bt(?z +’ Otow I v
dg(
~2e [[ et Ee v
D(t)

Here ¢y is the surface area of the unit sphere in C?; dV; is the Euclidean
volume element in C2;

Ka(t, Q) = L(t,¢)/IV (2, )P
where L(t, () is the diagonal Levi form defined by

Y 2 oY O 0% | 0y 8% AT
L0 = gz IVl _2%{&(@2 8t8z+8w8t6w)} 157 1" Acvs

and (¢, () is a defining function of D|g. The quantity K(¢,{) is indepen-
dent of the defining function ¥(¢,() (cf., Chapter 3 of [1]). Since D|p is
pseudoconvex in B x (C* x C*), we can choose 9(t,() so that K5(¢,{) >0

on 0D|p, and hence aa’\(t) < 0 on B, proving the first step.
Since c(z,w) > 0 in C* x C*, the variation formula immediately implies
the following rigidity result which will be useful later (cf., Lemma 4.1 of [1]).

Remark 4.1. If g:a’\t( ) =0, then %00, (2,w)) =0 on D(0), i.e

99([Co] + at, (z,w
9([Co] +8t ( ))|t=0 = 0 on D[¢)-

2" step.  Plurisubharmonic extension of —\[z,w] to D.

We fix a point of D N [(T, x {0}) U ({0} x T3)]), e.g., [20, 0] with 2y # 0. Let
(2, wp] € D* (n=1,2,...) with [2,, w,] — [20,0] as n — co. By (4.4)

1im (9((zm, w2, 0. 8) ~ (20, 0], (@, ) = 0
uniformly for (o, ) in K € Dz, 0] € C* x C*.
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It follows that lim,_yeo A[2n, wn] = A[20,0], i.e., A[z,w] is continuous and
finite at [20,0]. Hence A[z,w] is continuous and finite-valued on D. Since
DNT, is a complex line, it follows from the first step that —\[z, w] extends
to be subharmonic from D*NT, to D N'T,. Hence —\[z, w] extends to be
plurisubharmonic on D. O

We divide the proof of 2. in two steps; the first step is 2 (a).
1% step. Fiz [2',w'] € OD*. If [z,w] € D — [Z,w'] in H, then \[z,w] —
—00.
Since [2/,w'] € dD*, we have 2’ # 0 and w’ # 0. If [z,w] € D* tends to
[2',%'] in H, then 8D[z,w] C C* x C* tends to the single point e in the sense
that if we define d[z, w] = dist(0D|z,w],e) > 0, where

dist(0D[z, w], e) := Min {\/|€6 — 1|2+ |n — 1}2: (§,7) € 8D[z, w]},

then d[z, w] — 0 as [z, w] — [/, w]. Indeed, let [z, w] € D approach [2/,w'] in
‘H. By slightly deforming the fundamental domain F C C* x C* if necessary,
we may assume (2, w’), (z,w) € F. Since

)
8Dz, w] = {(=

,g)eC*xC*: [a, B] € D}

and {2/, w'] € dD*,

k4 w
d[z,w] = dist(0D]z,w],e) < \/liz_ — 12+ I—J —1J2

which clearly tends to 0 as [z, w] — [#/,w']. Since 0D[z,w] is a smooth real
three-dimensional hypersurface, it follows by standard potential-theoretic ar-
guments that —A[z, w] = +o0. O

It remains to prove 2 (b). Thus we assume @ # 0D N'T, # T,.
2™ step. Fliz [0, wo] € D N {zw = 0}. Then
Alz, w] = —o0.

m
[z,w]—[20,wp], [z,w]€eD

For the proof of this step we require Lemma 3.2. Fix py = [20,wo] €
0D N {zw = 0}. We want to show

1m )‘[z’ w] = —3.
[z,w]—[z0,w0), [2,w]€D
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We may assume py = [20,0] and we take a sequence {[z,, w,]}, C D which
converges to pg in H. We show

lm  Alz,, w,] = —o0. (4.7)

n—oo

From continuity of A[z, w] in D, it suffices to prove (4.7) for [2,, w,] € D*.
Moreover, since 0D|z,, wy| is smooth, as in the end of the first step, we need
only show

ILm dist (0D*(zp, wn],€) = 0. (4.8)

We digress to explain the subtlety of the problem.

Wl (a], o)
Fund. domain
Model picture
e=(1,1)
|2|
Do = anO)

.....................................................................................

This is a “model” picture since, e.g., (|a|, |]) is a real two-dimensional torus while (1, 1)
is a point; similarly, the |z|-axis is a complex line w = 0, while [ is a real three-dimensional
surface.
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Real picture of 0D

o0(z,)
Zn 0D 20
e onth ) )7
z
Wy,
1 1
Z=z[z, 1W=w/’wn

0D|z]

0I)[z,]
2/ Dlz]
) . ZO/zn
- 0
1 7I
any distace > 1 in this case

Real picture of 8Dz, wy]

We write D(z) for the slice of D C H over z and we write D[z] C CZ for the
slice of D[z, w] C C* x C* over z. In this picture, [z, w,] = po as n — oo
but we do not have the property dist (0D|z,, wy|,e) — 0. Thus (4.8) does
not hold.

Using Lemma 3.2 and pseudoconvexity of the domain D in #H, we
prove (4.8). We may assume that po = [20,0] € 9D lies in the fundamental
domain F and we take a sufficiently small bidisk A = A; x A, with center
(20,0) so that A C F. Let 9(z,w) be a defining function of D in A, i.e.,
Y(z,w) € C¥(A) with DNA = {¢(z,w) < 0} and DN A = {¢(z,w) = 0}.
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Since 0D is smooth in H, we have two cases:
. oY . L
Case (c1) : 5 Z 0 on A; Case (c2) : 5 Z 0 on A.
Apriori, we also have two cases relating to the behavior of 1(z,0) on A;:

Case (d1): (2,0) #0 on A;; Case (d2): %(z,0)=0 on A;.

However, the hypothesis 0D 7 T, in 2 (b) and 3 of Lemma 4.1 together
with the real-analyticity of 0D imply that Case (d2) does not occur. Thus
it suffices to prove (4.8) assuming that ¥(z,0) # 0 on A;.

Proof of (4.8) in Case (c1).

In this case, by taking a suitably smaller bidisk A if necessary, [(0) :=
{¥(2,0) = 0} is a C*—smooth arc in A; passing through z = 2 and 1(0) x
{0} CIDNA. For w € A,

(w) ={z€A;:(2,w) € DN A}

is a simple C*—smooth arc in A;.
Fix ¢ > 0. Since 25 # 0, we can find a disk §; C A, with center 2, such

that

lz” ll<e forall #,2" € 6.

Now we take d; : |w| < r < £ in A, so that each arc I(w) passes through
a certain point ((w) in ;. For sufficiently large ng, if n > ng we have
(2n,wy) € 61 X 03. Since w, € 8, we have C(wn) € l(wn) N d; so that
(C(wp), w,) € 8D in H. Hence, (C(Z"),wn) = ( “’”) ,1) € 0D[zp,wy] in
C* x C*. Thus

dist (0D[zn, wn), e )<dlst(( ( ") ,1)e )~—|( n) —1] <e for forn > ny.

Proof of (4.8) in Case (c2).

In this case, by taking a suitably smaller bidisk A if necessary, S(zp) :=
{#(2,w) = 0} is a C¥—smooth arc in A; passing through w = 0 and
{20} x S(29) CODNA. For z € A,

S(z) :={we Ay: (z,w) € DN A},
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is a simple C*¥—smooth arc in As.
Fix é; := {|z— 2| < r1} € D(2). Case (dl) corresponds to the condition

(#42) | in Lemma 3.2, thus this lemma implies that there exists a disk d; :=
{lw| < ro} such that

Uzes;S(2) D D(29) N d2. (4.9)
Fix € > 0. Taking r; sufficiently small, we can insure that
zl
|= —1|<e forall 2, 2" €4d.
z

Take a disk 6, C A, satisfying (4.9). For sufficiently large nyg, if n > no we
have (z,,w,) € d; x d;. We divide the points w, € d; into two types:

Case (i) : w, € 6N D(2p); Case (ii): w, € 62\ D(20)-

In Case (i), using (4.9) we can find 2* € 6, with w, € S(2*) so that
(2*,w,) € OD in H (see wy, 2*,0D(z*) in the figure below). Thus, (f}l, o)
(Z,1) in 8D[z,, wy) in C* x C* and hence

Zn?

dist (0D|z,, wy],e ) < dist ((j—, 1),e) = |—j— —1|<e forall n>ny.
In Case (ii), let £ = [2,, 20] be a segment in d;. We can find 2* € £ with
w, € 8D(2*). Indeed, as z goes from z, to z, along ¢, the arcs dD(z) N J,
transform from 8D(z,) N d; to OD(2) N J3 in a continuous fashion. Since
[2n, wn] € D*, we can find 2* € £ with w, € 8D(z*).
Thus (2*, w,) € OD*, so that (2*/2,,1) € dD*|z,, w,], and hence

E 3

dist (DD [zn, wa], e ) < dist ((-j-, 1),e) = |j— ~1|<e forall n>no,

n

which is (4.8). This completes the proof of 2 (b) and 3'in Lemma 4.1. O



Picture of the real three-dimensional set 0D

0D(z,)

0D(zp)
/

Picture of the real three-dimensional set 0D|zy,, wy).
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We next relate the possible absence of strict plurisubharmonicity of the
c-Robin function A[z, w] on a pseudoconvex domain D in ‘H with existence
of holomorphic vector fields on H with certain properties. This is in the
spirit of, but does not follow from, Lemma 5.2 of [1]. Recall that in the case
p is rational and 7 is rational, we defined o, := {w = cz’}/ ~ to be the
integral curve (29, wo] exptX,, with ¢ = wo/z§ # 0,00 of X, := (log|a|) z £ +
(log b)) w -

Lemma 4.2. Let D be a pseudoconvex domain with C¥—smooth boundary in
H and let Az, w| be the c-Robin function on D. Assume that there exists a
point po = [0, wo] in D* at which —A[z,w] is not strictly plurisubharmonic.

(1) There exists a holomorphic vector field X = az%dz + ﬁwg%dw # 0
on H such that if [z,w] € D* (resp. OD*), then the integral curve
Iz, w] := [z,w]exptX in H is contained in D* (resp. OD*).

(2) The form of the vector field X in (1) and the domain D are determined
as follows:

(i) ifOD T, and 0D P Ty, then X = cX, for some c # 0 with X,
in (8.1). If p is irrational or p is rational and T is irrational, D is
of type (al) in Theorem 1.1. If p is rational and T is rational, D is

of type (b2) in Theorem 1.1. In all cases, we have 9DN(T,UT}) =

0.
(i) if 0D DT, and 8D P Ty, then we have two cases:

(ii-a) X = cX, for some ¢ # 0 and D is of type (b2). We then
have D = U5 0, where § is a domain in P! = CU {oo} with
smooth boundary 06 which contains 0 but not co.

(i--b) X = czb% for some ¢ # 0. Then D is a domain of “Ne-
mirovskii type”: 2 b> 1 and D = C x {Au + Bv < 0}/ ~,
where A, B € R with (A, B) # (0,0) (here w = u+ iv).

(i1’) if 9D D Ty and D P T,, we have the result analogous to (ii).

(i) If 3D D T, U Ty, then D is of type (b2): D = Uces 0. where §
is a domain in P! with smooth boundary 86 with 0,00 € 34, and
X =cX, for some c.

2 Nemiroviskii’s theorem in [2]: Let a > 1 and let H = Hyo. Let D = C, x {Rw >
0}/ ~ C H. Then 9D is Levi-flat and D is Stein.
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Proof. Since A[z,w] is plurisubharmonic on D and is not strictly plurisub-
harmonic at py = [z, we] € D*, we can find a holomorphic vector field
X = azé‘%dz + ﬁwg%dw # 0 on H such that

O*A poexptX ]

| = 0. 41
otor T (4.10)

We shall show that this X coincides with X in (1). Since py € D*, we can take
a small disk B = {|t| < r} with ppexptX C D* for t € B. We set D(t) =
DlppexptX] C C* x C* so that D(0) = D[po]. We let g(t, (z,w)) (resp.
A(t)) denote the c-Green function g([poexptX], (2, w)) (resp. the c-Robin
constant A[pg exptX]) for (D(t),e) and t € B. We set D|p = Usep(t, D(t)) C
B x (C* x C*) which we consider as the variation

Dlp: t € B— D(t) = D[ppexptX] C C* x C*.
By (4.3) we have

D(t) = Dlpo exptX] = D[z, wo] exptX]
= D20, wo] exp(—tX) = Dlzp, wo] (e™*,e™*) in C* x C*.

Using the same reasoning as in the first step of the proof of Lemma 4.1
together with Remark 4.1 we see from (4.10) and the real analyticity of
0D|p = Usep(t,dD(¢)) in B x (C* x C*) that

99(t, (z,w)

=0 on D[z, wp| UID|z, wp)- (4.11)
ot o

For a fixed t € B we consider the automorphism
(2, W) = (2,w) = F(t,(Z,W))

of C* x C* where

1 1 Ze ot We Pt
F(t W) = WHi(—, — — = .
(,(2,W) = (2,W) (2, 30) expl—t30) = (Zo—, )
Then

(z,w) = (Z,W) = F7\(t,(Z,W)) = (zzoeo‘t, wwoeﬁt).
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By (4.2) we have

D(t) = D* (Zlo Zu%) exp(—tX) = D* (e

e~ Pt
, —) in C* x C*,

w
so that D(t) = F(t, D*). We note that D* C C* x C* is independent of
t € B. We set

G(t,(Z,W)) = g(t, (z,w)) where (z,w) = F(¢t,(2,W)), (Z,W)€ D~.

Since
g(t, (z,w)) = G(t, F~(t, (2,w)) = G(¢, (220€™, wwee??)),

we have
dg
5?(157 (27 ZU))

= a—G-(t (Z,W)) + aG(t (Z,W))azze™ + oG (t, (Z, W) Bwwoe”

aG % oc °c
=5 (L2, W) +aZom(t, (2, W) + bW o

where (Z, W) = F~1(t, (z,w)). Since, for each t € B,

(¢, (2, W))

G(t, (Z,W))=0 ondD* (4.12)
we have

oG

ot
It follows from (4.11) that

oG 8G
0Z (&, (2,W)) + BW

Together with (4.12), this says that the holomorphic vector field

0 0

2t (2,W))=0 ondD*

aZ— —(t,(Z,W)) =0 on &D*.

on C* x C* is complex tangential on the boundary &D*. Hence X coincides
with that in (4.10).



99

Thus, for any (z,w) € &D*, the integral curve (z,w)exptX C 8D* for
all t € C. It follows that for any (z,w) € D*, the integral curve (z, w) exp tX
is contained in D*: '

f):‘exth = Ek, for all t € C.
This implies
D[z, w]exptX] = D[z,w] C C* x C*, for allt € C (4.13)
if [z, w] € D* since |
DIz, w]exptX] = D (1, l) exp(—tX) = D* (l, ~1—) = D[z, w].
z w z'w
But for [2,w] € D* (resp. 0D*) it is clear that
[z, w]exptX C D* (resp. 8D*) in H
if and only if
(2,w) exptX C D* (resp. 8D*) in C* x C*,
which proves (1) of Lemma 4.2.
To prove assertion (2) we first observe by (4.13)
Alz, w] = A[[z, w]exptX], for all ¢t € C

for any [z, w] € D*. In case (2)(i) in Lemma 4.2, from 3 in Lemma 4.1, the
Robin function —A[z, w] is an exhaustion function on D, and it follows that

{[z,w]exptX : t € C} € D for [2,w] € D*. (4.14)
We also need the following conclusions from Lemma 3.1:

(a) If pin (1.1) is in case a or (b1) in Theorem 1.1, i.e., either p is irrational
or p is rational and 7 in (1.2) is irrational, then

= U fwl=clsp z€ © ) u(mUTy

c€(0,00)

and this is a disjoint union. Here ¥, := {|w| = c|z|* : z € C*} is the
closure of the integral curve o[z, wo| = [20, wo] exp t X, with ¢ = |wq/25|-
in H; X is a real three-dimensional Levi flat hypersurface in H (and
hence ¥, € H*). We set 0g = T, and 0o, = T} so that H = Uce[o,oo] Oc.
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(B) If pin (1.1) is in case (b2) in Theorem 1.1 so that 7 in (1.2) is rational,

then
H= (U {w= cz"}) U (TeUTy)
ceC

and this is a disjoint union. Here o, := {w = cz”} is the integral curve
[20, wo] exp tX,, with ¢ = wy/28; 0. is a compact curve in H (and hence
in H*) which is equivalent to the one-dimensional torus Tu/»(= Ty/q)-
We note that T, = [29, 0] exptX, where zg # 0 and T, = [0, wo] exptX,
where wg # 0. We set 09 = T, and 04 = T so that H = U epr 0.

We now prove (2) (i). First we show that X = c¢X, for some c # 0. If not,
ie., if X & {cX, : c € C*}, we take [2,w] € D* and let 0 = [z, w] exptX be
the integral curve of X passing through [z, w]. From Lemma 3.1 part 2 (2),
the closure ¥ of ¢ in H contains T, or T}, which contradicts the hypothesis
0D 2 T, and 8D 2 T, of (2) (i) in Lemma 4.2. Thus X = cX, for some
c#0.

By (4.14), for [z,w] € D* the closure of the integral curve I[z,w] :=
[z, w]exptX, is compactly contained in D and hence lies in D*. Using (o)
and (B) it follows that

(¢*) D* = U{lwl = c|z|?}, where [ is an open interval in (0, c0); or
cel
(B*) D*= U{w = cz”}, where ¢ is a domain in C*.

cE€d

We next show that if D N'T, # @ then D D T,, contradicting the hy-
pothesis in (2) (i). We work in the case (a*); the case (5*) is similar. Thus
let [z9,0] € DN'T,. Let U,V be sufficiently small disks such that

(20,0) €U x V € DN E,

where recall E; = {1 < |2| < |a|} x {|w] < |b]} € F. Take ro > 0 with
(20,70) € U x V. Note that (29,tro) € U x V &€ D for all 0 < £ < 1. Define
c; by the relationship trg = c;|2|?. Then for 0 < t < 1, {|w| = ¢|2|°} C D
by the properties of D; i.e.,

t’l‘o

wl=——|zIPCc Dfor0<t<1.
{lul = o1=1) <
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Setting R := | - we have

U{le = c|z|’} C D* where J = (0, R).

ceJ

It follows that D contains the set
G:={(z,w)€Ey:1<|z|<a, 0<|w| <R}

Suppose D 2 T,. We use the pseudoconvexity of D to derive a contradiction.
Observe that D(0) := DNT, is a domain in T, whose boundary [ consists of
smooth real one-dimensional curves. Fix 2’ € D(0) near I. Let D(w) denote
the slice of D corresponding to w for 0 < |w| < R. We consider the Hartogs
radius r(w) for D(w) centered at 2. Clearly r(0) < r(w) for 0 < |w| < R.
Since DN E; is pseudoconvex in Fs, this contradicts the superharmonicity of
r(w). A completely similar argument shows that if DNT, # @ then D O T.
Thus either D = D* as in (a*) or (8*) or D\ D* consists of T,, T}, or
T, UT, with D* as in (o*) or (5*). We verify that D \ D* = T, cannot
happen; entirely similar proofs show that D\ D* = Ty and D\ D* = T,UT,
cannot occur. Indeed, if D\ D* = T,, then 8D = T,, which is a complex
line. However, 0D is assumed to be smooth; hence it must be a real three-
dimensional surface. This completes the proof of (2) (i).

To prove (2) (ii), we note that under the condition 6D D T, and oD 2
T4, from Lemma 3.1 we have either X = cX, withc# 0 or X = az— with
a # 0. Using the same reasoning as in the proof of 2 (i) we conclude that D
cannot be of the form a nor of the form (b1) in Theorem 1.1.

It X = cX, with ¢ # 0, then D* is of the form (8*). Since 8D D T,
and 0D 5 Tb we arrive at the conclusion in (2) (ii-a). On the other hand,
if X =azi a with a # 0, we first observe from the facts that 8D > T, and
0D is C*—smooth, for any 2o € C* the slice of 0D over z = 2z is a C¥ curve
C(z) C C,, passing through the origin w = 0. We can find a sufficiently
small disk V' := {|w| < o} so that C(z) divides V into two parts V' and
V" with {20} x V' C D and {z} x V" c D°. We set C(zp) := C(z0) N V
By (1) in Lemma 4.2 we conclude that C* x V/ ¢ D and C* x V c D".
Thus C* x C(2) C 8D, which implies D N (C* x V) = C* x C(z) and
DNC*xV)=C*x V"

We use this geometric set-up to show that b must be a positive real
number (hence b > 1). To see this, fix a point wy € C(z) (resp. V)
with wo # 0. Since (29, wo) € 8D (resp. V'), we have C* x {wo} C 9D
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(resp. D). In particular, (a"z,wp) € 0D (resp. D) for any n € Z. Hence
(20, wo/b") € OD (resp. D) for any n € Z. Since |b| > 1 we can take N
sufficiently large so that wo/bY € V. It follows that wo/b" € C(z) (resp.
V') for any n > N.

We first show that b is real. If not, let b = [ble’® where || > 1 and
0 < |¢| < 7. We set wp = |wole?. Let ng = € be a unit normal vector
to C(2) at w = 0 pointing in to V”. Since C(z) is smooth, we can find r;
sufficiently small with 0 < 7, < 7o so that the sector e := {re? : 0 < r <
T1, |0 — 6| < 2m/3} is contained in V”. For any N’ € Z, it is clear that there
exists n’ > N' satisfying

[(po — n'@) — bp| < 2m/3 modulo 27. (4.15)

We take N’ > N so that |wo|/|b|Y" < 71, and then we choose n' > N’ with
property (4.15). Then wo/b" € e C V", which contradicts the fact that
wo/b" € C(20). Thus b is real.

We next show b is positive. If not, we have b < —1. We take w; € V'\ {0}
close to 0. Then (z,w;) € D for all z € C. In particular, (a®zp, w;) € D for
any n € Z; hence (29, w;/b") € ({20} x V) N D for n sufficiently large. In
other words, for n > N we have w;/b" € V'. Since b < —1 it follows that
{wy/b" : n > N} lies on a line L passing through w = 0. Moreover, if we
take a sufficiently small disk Vg := {|w| < ro} C V, then L NV}, intersects
the smooth curve C (29) transversally. At the point z = 0, LNVy divides into
two segments L' and L” with L' = (LN Vo) NV and L”" = (LN V) NV".
Since b < —1, for n sufficiently large, if w,/b" € L' then w;/b"t! € L”. This
contradicts the fact that w;/b™ € V' for all m sufficiently large. Thus b > 1.

Consequently,

w € C(2) (resp. V') — w/b"l € C(z) (resp. V') forn=1,2,....

It follows from the smoothness of C(2) and the fact that b > 1 that C(zo)
is a line Au + Bv = 0 passing through w = 0, proving (2) (ii-b).

For (2) (iii), similar arguments to those used in the proof of 2 (i) (which
we omit) show that X = cX, for some ¢ and D = U5 0. for some domain
5 C PL o

Given a pseudoconvex domain D in H with C¥—smooth boundary, under
the various cases of (2) of Lemma 4.2, depending on the relationship between
the tori T,, Tp and 0D, we want to show that either D is Stein or D is



the appropriate type of non-Stein domain in Theorem 1.1. We proved in
Lemma 4.1 that under certain hypotheses on 0D the function —\[z, w] is a
plurisubharmonic exhaustion function for D. The next step is to show that
if 0D hits, but does not contain, one of the tori T, or T}, and D does not
contain the other one, then D is Stein.

Lemma 4.3. Let D be a pseudoconvexr domain in H with C¥—smooth
boundary. If) # ODNT, # T, and D % Ty, then D is Stein (and similarly
if Ty and Ty, are switched).

The condition D 2 T} separates into the following three cases:
(Cl) oDNT, =0, (02) (2)746D0Tb#Tb or (03) ODNT, =T,.

" Before giving the proof we recall the following general result from [1]:

Let D:t € B — D(t) C M be a smooth variation of domains D(t) € M
over B C C where M is a complex Lie group of dimension n > 1. Here D(t)
need not be relatively compact in M but D(t) is assumed to be C®—smooth.
Assume each domain D() contains the identity element e. Let g(¢,z) and
A(t) be the ¢-Green function and the c-Robin constant for (D(t), e) associated
to a Kéahler metric and a positive, smooth function ¢ on M. We have the
following rigidity result:

(x1) Assume that the total space D = Uep(t, D(t)) is pseudoconvez in

B x M. [fgt%(O) =0, then aLgtﬂ]t:OE 0 on D(0).

Let (t, 2) be a C®°—defining function of D in a neighborhood of 8D =
User(t, 0D(t)). Since &D(t) is smooth, we have %’Zﬁ(t, z) # 0for (t,2) € 9D =
{¥(t,z) = 0}. We have a type of contrapositive of (x1):

(¥2) Assume that D is pseudoconvex in B x M. If there exists a point
2g € (9D(0) with

% (0.20) #0 (4.16)

2(_
then £22(0) > 0.

Proof of (x2). For simplicity, we give the proof for M of complex dimension
one; the general case is similar. We set 2y = zo+iyo; 2 = z+iy and t = t;+it,.

103
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We may assume (0 z9) # 0. In a sufficiently small neighborhood By x V
of (0, zg) we can erte dD(t) in the form

y =y(t,z) = co(t) + c1(t)(z — 20) + cat)(z — 70)% +

where cg(0) = yo. Using (4.16) we may assume 6t # 0 in By x V. Thus,
g—;ﬁl #0on By. We set A= g%ll( ) # 0. It follows that

y(tlv .’II) - y(()’ .’E)
= (co(t1) — o(0)) + (c1(t1) — c1(0))(z — mo) + (c2(t1) — c2(0))(z — To)* + - - -

— 4 ([A +O@t)] + [A1 + O(t)](z — o) + [Az + O)](z — o) + .. ) .

We can find a sufficiently small interval I := [—r,7] on the z-axis and a
sufficiently small interval Jy = [zo — 7o, Zo + 7o) on the ¢;-axis such that

A
ly(ts, z) — y(0, $)| 2 D) |t1]  on Iy x Jo.

Using this estimate, it follows from the boundary behavior of the c-Green
function g(¢, z) and standard potential-theoretic arguments that ag(t 2) | im0

8%(=
0, and hence a(taf\) (0) > 0. O

Remark 4.2. We give an ezample of a variation D which does not satisfy
(4.16) of (x2). Let B = {|t| < 1/2} and

D= {|t]? + |2|* < 1} N (B x C,).

Here ¥(t, z) = {1—|t|*+|2|? } is a defining function of D and D(t) = {Izl2
—|t|2} fort € B. We have & 22(0,2) =z # 0 on 8D(0), and 2£(0,2) =t =
on 0D(0).

Proof of Lemma 4.3. We first want to show that if —A[z, w] is not strictly
plurisubharmonic in D, then there is point py = [z0,wo] in D* at which
—\[z,w] is not strictly plurisubharmonic; then we show this cannot occur
so that D is Stein. Let [z, w] be a defining function for D defined in a
neighborhood of 8D. We divide the proof of the lemma in two cases.
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1°* case.  Assume there exists [z9,0] € 8D N'T, with zy # 0 such that
neither g—f nor % vanishes at (zp,0) and assume case (C1) or (C2).
Using (x2), we first prove the following fact in this 1% case. Assume
1,0) € DNT,. Then —\[z,w] is strictly subharmonic at [1, 0] in the direction
a=(0,1),ie,
0*(-)
oroT
To see this, we take a small disk d := {|7| < r} C C, and consider the
variation of domains

D: 17€d— D(r):=D[1l,7] C C}, x Cy.

[1,7]}r—0 > O.

Note that _
D*x (1,1/7) if 7e€éd\{0};
by = { DX 1) \ (0}
DaxCz, if =0
(recall D N'T, = [D,,0]). We let A(7) = A[1, 7] denote the c-Robin constant

for (D(7),(1,7)). We set D := U,¢5(7, D(7)) and 0D = U,¢5(7, 8D(7)). For
7 € 6§\ {0}, we consider the automorphism

Fr: (zw) €CxCL — (Z,W)=(z,§) € C x Cly.

From the definition of D(r), we have D(7) = F,(D*). We let ¢(z,w) be
a defining function for D in H; to avoid notational issues we also regard
¥(z,w) as a defining function of D. For 7 € ¢ \ {0} we set

O(1,(Z,W)) :=o(Z,7W)

which is a defining function for 0D |s (3. Setting ®[0, (Z, W)] := 9(Z,0), we
see that ®[r, (Z, W)] becomes a smooth defining function for the entire set
09. We focus on the special point (z,1) in dD(0). Then

0 09 oY oY
V(Z,W)q)l(o,(zo,1)) = (B—Z—’ W)l(o,(zo,l)): (5’ Sw 7_)I(O,(z'o,l))

- (6_1&(%, 0),0) # (0,0) by the condition of the 1% step.

0z
Similarly,
od oy
-57'(0,(,20,1)) = 51; W|(07(z011))
o

= b—w—(z(), 0) #0 by the condition of the 1% step.
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It follows from (%2) that a;;;\) [1,7}|r=0 > 0, as desired.

On the other hand, it is easy to see that —A[z,w] in D is strictly sub-
harmonic at [1,0] in any direction a = (a;,az) € C?\ {0} with ||al| =1 and
a1 # 0. Thus —\[z,w] in D is strictly plurisubharmonic at [1,0]. A similar
argument shows that —A[z, w] in D is strictly plurisubharmonic at any point
[2,0) € DNT,.

In case (C2), if there exists [0, wp] € D N T, with wy # 0 such that
neither £ nor 22 vanishes at (0, wo), a similar argument shows that — [z, w]
in D is strictly plurisubharmonic at any point [0,w] € D N'T,. Hence we
conclude that if —\[z, w] is not strictly plurisubharmonic in D, there exists a
point po = [20, wp] in D* at which —A[z, w] is not strictly plurisubharmonic.
This fact is trivially true in case (C1).

Now since 0D 2 T, and 0D 2 T, we are in case (2) (i) of Lemma 4.2.
Hence we have 8D N (T, U Tp) = 0. This contradicts 8D N'T, # 0; thus D
is Stein. O

2" case. Assume there exists [29,0] € OD N T, with 2y # 0 such that
neither %’f nor g—:ﬁ vanishes at (zp,0) and assume case (C3).

Recall D D T} holds in case (C3). Here we need the function U[z, w] on
H* defined in 2. of section 2. Using 2 (b) of Lemma 4.1, i.e., for [zp, wo] €
0D \ T,,

—Az,w] > 00 as[z,w] € D — [20, wo],

and property 2. (2) of U[z, w] we see that
[z, w] := max{—A[z, w], U[z, w|} (4.17)

is a well-defined plurisubharmonic exhaustion function for D. In order to
prove D is Stein, we use a result from § 14 in [3]: it suffices to show that
for any K € D there exists a Stein domain Dg with K € Dg C D. To
construct Dy, we take m > max(; wjex | — A[2, w]| and consider

v[z, w] := max{—A\[z, w] + 2m, eU[z, w]}

where £ > 0 is chosen sufficiently small so that v[z, w] = —A[z, w] + 2m on
K. Again from property 2. (2) of U[z,w], v[z, w] is a well-defined plurisub-
harmonic exhaustion function for D. We take M > 1 sufficiently large so
that

K @ D(M) := {[z,w] € D : v[z,w] < M} and § # 0D(M)NT, # T,.



Note that D(M) € D so that Ty N D(M) = (; also D(M) is piecewise
smooth. We now have

OD(M)NTy =0 and § # 6D(M)N'T, # T,. (4.18)

We consider the c-Robin function [z, w] for D(M). Although dD(M) is
not smooth, by the construction of A\y[z, w] and the fact that OD(M) 2
Ty, Ty, it follows that —Ap/[z, w] is a smooth plurisubharmonic exhaustion
function for D(M).

Let D(M,M') := {[z,w] € D(M) : —Ay[z,w] < M’} and take M’ > 1
sufficiently large so that

D(M,M') > Kand 0 # 0D(M, M")  T..

Note that D(M, M) is a pseudoconvex domain in H with smooth boundary
and we have

OD(M, M"Y N'Ty, = 0 and 6 # dD(M, M) 3 T, (4.19)

It follows from the 1st case assuming (C1) that D(M, M’) is Stein, so that
D is Stein.

3™ case.  Assume one of 512, gw vanishes identically on D N'T, and/or

one of ad’, g’/’ vanishes identically on 0D N T,.

For simplicity, we assume —%92 = 0 for all [2,0] € 9D N T,; other cases
are similar. In this case, using the fact that —A[z, w] is a plurisubharmonic
exhaustion function on D from Lemma 4.1, for M > 1,

Dy = {Az,w]< M} &D

is a pseudoconvex domain. For sufficiently large M, we claim that 8D, N
T, # (0 and 9Dy satisfies the conditions of the 15 or 27¢ case. To see this, we
observe that —A[z, 0] is a subharmonic exhaustion function for D, := DN'T,
and we take zy € D, at which —)[z, O] attains its minimum value on D,.

Then 2[2,0] = 0 and we can find 2’ near zy such that & <2[2/,0] # 0 and

5z
22[2/,0] # 0. Using the real analyticity of A[z,w] in D we can choose
M > 1 so that D), satisfies the appropriate conditions.
From the 1% and 2™ cases, we conclude that D), is Stein. In this way we

can find an increasing sequence of Stein domains Das(n) in D with Dpy1) €
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D2y € -+ and limp00 Dpn) = D. Since D admits a plurisubharmonic
exhaustion function, it follows from § 14 of [3] that D is Stein. O

Next we deal with the case where 0D contains one of T, or T} but not
both.

Lemma 4.4. Let D be a pseudoconver domain in H with C*—smooth
boundary. If (i) 0D D T, and (i) 0D N'Ty # Ty, then

(1) D is Stein or

(2) D is of type (b2) in Theorem 1.1. In fact, D = |J 50 with 0 € 96
and 0o & 00.

(and similarly if T, and Ty are switched as well as 0 and 00).

The condition (ii) separates into the following two cases:

(C1) 0#£0DNTy# T, or (C2) DDOT,.

Proof. We first treat the case (C'1). We assume that D is not of type (b2)
as in (2) and we show D is Stein. Here we need the function Uz, w] on H*
defined in 2. of section 2. Using 2 (b) of Lemma 4.1, i.e., for [2, wo] € D\T,,

—Az,w] > 00 as [z,w] € D — [z, wo),
and property 2. (2) of U[z, w] we see that
[z, w] := max{—A[z, w], —U[z, w]} (4.20)

is a well-defined plurisubharmonic exhaustion function for D. In order to
prove D is Stein, we again appeal to § 14 in [3]: we show that for any K € D
there exists a Stein domain Dg with K € Dg C D. To construct Dy, we
take m > max(, yjek | — A[2, w]| and consider

v[z, w] := max{—A[z, w] + 2m, —eU[z, w]}

where € > 0 is chosen sufficiently small so that v[z,w] = —A[z,w] + 2m on
K. Again from property 2. (2) of U[z, w)], v[z,w] is a well-defined plurisub-
harmonic exhaustion function for D. We take M > 1 sufficiently large so
that

K € D(M) .= {[z,w] € D : v[z,w] < M}.



Note that D(M) € D so that T, N D(M) = §; also dD(M) is piecewise
smooth. Indeed, from the construction, we now have in case (C1)

8D(M)N'T, =0 and § £8D(M) N'Ty # T, (4.21)

We consider the c-Robin function Ap[z, w] for D(M). Although 8D(M) is
not smooth, by the construction of Aj[z,w] and the fact that dD(M) 7
Tq, Ty, it follows that —Aps[z, w]| is a smooth plurisubharmonic exhaustion
function for D(M).

Next we take M’ > 1 sufficiently large so that

D(M,M') :={[z,w] € D(M) : =Ay[z,w] < M'} 3 K.

Note that D(M, M’) is a pseudoconvex domain in H with smooth boundary:;
moreover by (4.21),

8D(M,M')N'T, = 0 and 0 # dD(M, M") 3 T (4.22)
It follows from Lemma 4.3 that D(M, M) is Stein, and hence so is D.

We next treat the case (C2), so that D D T, and D D T,. In this
setting we shall show that conclusion (2) in Lemma 4.4 holds.

Since T, is compact in D, we can find a neighborhood V of T} in D
such that Ty € V € D. Since ¥, := {|w| = ¢|z]°} (or o, = {w = c2*})
approaches T in ‘H as ¢ — oo, it follows that for ¢ sufficiently large, the
Levi flat hypersurface X, satisfies X, € V @ D (or the compact torus o,
satisfies 0. € V € D) . But —\|z,w] is a plurisubharmonic function on
D (although not necessarily an exhaustion function); hence —\[z, w] is not
strictly plurisubharmonic at any point in ¥, (or o.). From Lemma 4.2, we
conclude that D is given as in case (2) (ii) of that lemma.

For simplicity, we complete the argument if ¥, € V @ D. We claim that
p is of case (b2) (p rational and 7 rational) in Theorem 1.1 and hence D is
of the form in case (2) (ii-a) of Lemma 4.2, completing our proof. For if p is
of case (a) (p irrational) or of case (bl) (p rational and 7 irrational), then
from the proof of Lemma 4.2, we have (recall (a*))

D =JZe = Jllw| = clef)
cel cel

where I = (r, R) is an open interval in (0, co) because D* is connected. Since
D>Ty D= Uce(r,00)22c. However, since 0D D T,, we must have r = 0.
Thus D = H \ T, which contradicts the smoothness of OD. O
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Note in particular we have proved that the Nemirovskii-type domains in
(2) (ii-b) of Lemma 4.2 are Stein. An entirely similar proof, which we omit,
deals with the case where 0D contains both T, and T,.

Lemma 4.5. Let D be a pseudoconvé:c domain in H with C¥—smooth
boundary. If 0D D T, U Ty, then

(1) D is Stein or
(2) D is of type (b2) in Theorem 1.1. In fact, D = |, 50, with 0,00 € 06.
We can now easily conclude with the proof of our main result.

Proof of Theorem 1.1. Let D be a pseudoconvex domain in H with
C%—smooth boundary which is not Stein. We consider three “symmetric”
cases depending on the nature of 9D N'T, or 0D N T,.

1% case: 8D D T, (or 8D D Ty).

If 8D D T,, we can have either 9D N'Ty # Ty or 0D D Ty If ODNTy #
Ty, from Lemma 4.4, D = | J, .5 0c with 0 € 86 and co & 4. If D D T, this
means 8D D T,UT,; hence Lemma 4.5 implies D = | J, 5 0. with 0, co € 86.

27 case: IDNT, =0 (or 9D N'T, = 0).

If 6D N'T, = P, we can have either 0D N'Ty # Ty or 0D DO Ty. If
8D D Ty, we are done by the 1% case. If 3D N'T, # Ty, either

(I)dDNTy=0 or (II) D #O8DNT, # To.

Note that if 9D N'T, = @, then 0D N (T, U Tp) = 0.

Let A[z,w] be the c-Robin function of D. From Lemma 4.1 we know
that —\[z,w] is a plurisubharmonic exhaustion function on D. We shall
prove that we can find a point [zp, wo] in D* at which —\[z, w] is not strictly
plurisubharmonic. We give the proof when p is irrational since the other
cases are completely analogous.

In this setting we have three possible situations for D: (i) DN(T,UT,) =
0; (ii) DNT, = 0 and D D T, (or the symmetric case with T,, T switched);
and (iii) D D T, UT,. In case (i) we are done since D = D* so that, by
the assumption D is not Stein, there is a point [z, wg] in D = D* at which
—A[z,w] is not strictly plurisubharmonic. By (2) (i) of Lemma 4.2, D is of
type (al). In case (ii), since T} is compact in D, we can find a neighborhood



V of Ty in D such that T, € V € D. The Levi flat hypersurface &, :=
{lw| = c|z|?} approaches T} as ¢ — oo; hence X, € V € D for ¢ sufficiently
large. Since —A[z,w] is a plurisubharmonic function on D, —A[z,w] is not
strictly plurisubharmonic at points of X.; thus we can find such a point in
D*. The conclusion of Theorem 1.1 in the case where 8D N (T, UT;) = 0
now follows from (2) (ii-a) of Lemma 4.2. In case (iii), similar reasoning as in
case (ii) shows that D D X, for some co # 0, c0. It follows that D = |J,, Z.
where [ is an interval in [0, 0o]. Since D D T, U T, we have I = [0, o0}, i.e.,
D = H, which is absurd. This finishes the proof of case (I).

In this 2" case, where 0D N'T, = 0, it remains to deal with case (II),
ie,0DNTs=0and @ #0DNT, # Ts. We separate 0D NT, = 0 into

two cases:
(1) DD T, and (c2) D 5 T,.

In case (cl), using the argument in case (ii) above we can find a neighborhood
Vof T, in D such that Ty, €@ V € D and hence . € V € D for ¢ > 0
sufficiently close to 0. Thus we obtain points in D* at which —A[z,w] is not
strictly plurisubharmonic. We now appeal to case (2) (i) of Lemma 4.2.

Finally, case (c2), cannot occur, since the assumptions () % dDN'T, £ T,
and D 2 T, imply from Lemma 4.3 that D is Stein.

3 case: O #£ ODN T, # T, (or § #ODNT, # Ty).

If0 #90DNT, # T,, from Lemma 4.3 we must have D D T,. Thus
0D N'T, = 0 and we are done by the 2™¢ case.
This completes the proof of Theorem 1.1. a

5 Appendix A: Proof of Lemma 3.1

We give the proof of Lemma 3.1. Assertion 1. follows from property (3) of
Ulz,w] in Ueda’s remark. To see this, X, has integral curve {w = 2°}. Since
p is a real number, we have |w| = |z|? on the integral curve; this is the same

as
log|z| log|w|

Ulerul = g tal ~ Togfo] =

Since Ulz, w] is a pluriharmonic exhaustion function for H*, & := {U[z, w] =
0} in H is a real three-dimensional Levi-flat closed hypersurface in #£*. Thus
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5, C 3. Conversely, fix 2/ = || € C* where 0 < ¢ < 2. We analytically

continue
w = 2P = eP(logl2|+iarg?)

starting at the point 2’ with initial value on the branch of wj = (2’)? such

that
/
wp = |2’ lpewe

Since p is a real number, over 2’ the points in C,, are of the form

w, = wp e?™, nel.
Thus (2/,wy,) € &, for n € Z. Assuming p is irrational, we have {(2',w) €
C*x C* : |w| = ||’} C Xy It follows that {(2,w) € C* x C* : [2] =

|2’|, |lw| = ||’} C ¥, for any 2’ € C*, and hence > C 5,. This proves

Assertion 1.(1) if p is irrational.
We next prove 1.(1) assuming 7 is irrational. We have

oy ={w = kz¥P}/ ~
= Upez{(a"z, k(a"2)"P : z € C*}/ ~
= Unez{(2, Kb ((a"2)?) : 2 € C*}/ ~
= Unez{(2, k2"P(a"?/b)") : z € C*}/ ~
= Upez{(2, kzq/”einz”T) :2€C*'}/ ~ (since p=gq/p= 113§||ZI|)

Since 7 is irrational, we have ¥, = {|w| = |z|°}, i.e., Ulz,w] = 0 on X,
finishing the proof of 1.(1).
We next prove 1.(2). We have
oy ={w = k29P}/ ~
= Upez{(z, k2/Pei™ ™) . z € C*}/ ~
= Upez{(z, k29/Pein?m™/) . 5 € C*}/ ~ .

The points

(a"z, k(@"2)¥?), n=1,...,1—1
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in H* are distinct, while (a'z, k(a'2)?/?) coincides with (z,kz%?). To verify
this last claim, we observe that
(a2, k(a'2)77?) ~ (2, k(a'2)"?) /b
= (z, k»/Pil((a/p) arg a—arg b))
= (2, kz9/Pellm)

= (2, k29Pei?™™) = (2, k29/P).

Thus w = k29/? defines a single-valued function on Ty, so that o, = T/ as
Riemann surfaces. We note T/, =~ T/, by the definition of L.

We now prove 2.(1). Let X = azZ + Bwg & {cX, : ¢ € C} with
o, B # 0. Then the integral curve o = {exptX : t € C} of X with initial
value e = (1,1) is w = 28/ Let 8/a = A + Bi where A, B are real. Then

w = zA—l—Bz — e(A—f—Bz) logz‘

Fix 2’ € C* and let Log 2’ = log || +6' (0 < &' < 2r) be the principal value.
By analytic continuation, over 2’ we have

'LUn(Z,) — e(A+B'£)( Log |2'|+i(6'+2n7))

1107 = ’ : ’
— eA(Log |2'|+i6") 6[ B(¢'+2nm)] ez[A2n7r+BLog|z {]’ neZ.

We assume B # 0, e.g., B > 0. Then
Iwn(z,)l — (IzllAe—Be’) e—2nB7r, ne.

Hence lim, o |wn(2')] = 0 and (2/,0) € X, the closure of ¢ in #. Since
z' € C* is arbitrary, we have T, C X.
Since w = 2z4%5? can be written as
Al+,iB/ A 13 B

Z2=w where AIZ-A2—+-—B—2-, =—m<0,

. . . vy . .
by analytic continuation of z = w+8’ over a given point w’ € C* we have

2 (w/) — 6(A’~{—B’z')(Log |w’|+i(o'+2n7))

I 2 o 4 / 4 N ’ 4 ! !
— 6A (Log |w'|+ig’) e[—B (o +2n7r)]ez[A (¢'+2nm)+B’Log|w I], neZ.
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Thus

: N — I A" —B'¢'\ ,~2nB’' _
lim |z, (w')] = lim (jw[® e™¥)e 0

and (0,w’) € X. Since w’ € C* is arbitrary, we have T, C X. This proves
2.(1) in case B # 0.
In case B=0and A # p,

A Alog 2

w=z%=¢ A(log |z|+i(6+2n)) _ 'zlAeiAOezA2n.

=e
Thus, (z,24) € s implies (2, z4e*4?") € o, n € Z. By analytic continuation
of 24, we have (a*z, (a¥2)4) € 0, k € Z.

Suppose —00 < A < p. By analytic continuation of w(z) = 24 =

eAlloglzl+iargz) — ||AgiAatez glong an arbitrary path [ from z to aFz where
k € Z is arbitrary, we have

w(akz) _ (akz)A _ l&kZ|A6iAargakz.

Thus ' .
D 1= (akz,w(akz)) — (akz’ lakzlAezAa.rga z) € o,

where arg a*z takes all values arg a¥z + 2nr (since the path is arbitrary). In
‘H* the point p; coincides with

(2, |aFz|Aei 428" Bk = (2, Wi (2)) € 0.

log 5]
log |a|’

Fix z € C*. Using p =

@4(2)| = [2]# e oskita),
Since A < p, it follows that limy_,o |Wk(2)| = 0, so that (2,0) € . Since
z € C* is arbitrary, we have ¥ D T,.

Suppose A > p, equivalently, 1/A < 1/p < 1. The curve 0 : w = 2
coincides with z = w'/4. By a similar argument we see that

A

((Fw)Y4, b*w) € 0, k€ Z.
In H* this point coincides with

(bkw)l/A

o yw) = (Zx(w),w) € 0.

(
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Fix w € C*. Then

174 1614
|al*

so that limg ;o |2Zx(w)| = 0, and hence (0, w) € ¥. Since w € C* is arbitrary,
we have 3 D T, which proves 2.(1).

Finally, to prove 2.(2), let X = ozza% # 0. Then the integral curve o of X
passing through (1, 1) is given by (e*,1)/ ~(,4). In the fundamental domain
‘F’

o={0< 2| <lal}, DU{L < |z] < lal}, 1/)U({1 < |2] < [al}, 1/8%) +...,

IEk(w)l = |w| — |w|1/A ekloglbl(l/A—l/p), LeZ

so that
E={lzl <1} 1)UL, ({1 <2 < a]},1/0%) UT,,

proving 2.(2). O

6 Appendix B: Proof of Lemma 3.2

We give the proof of Lemma, 3.2. The lemma is local, hence we may assume
from (i) and (ii) that the unit outer normal vector of the curve D(0) in A,
is (0,1); i.e., dD(0) is tangent to the u-axis at w = 0 where w = u + iv.
Thus, we may assume that ¢(z, w) has the following Taylor expansion about
the origin (2, w) = (2, (u,v)) = (0, (0, 0)):

Y(z,w) =v+po(2) + pr(2)u+ pa(2)u® +... =0 (6.1)
where each p;(z), ¢ =0,1,2,... is a C*—smooth real-valued function and
po(0)=0 and p:(0)=0.

We may further assume that formula (6.1) holds on (z,u) € A; x (=g, 73).
Thus we write

D={v+po(2) + pi(2)u+p2(2)u +... <0: (z,w) € A; x Ag);
S§=0D = {v+po(2) +p1(2)u+pa(2)u® +... = 0: (z,w) € A; x Ay},
or equivalently,

D: v<—(po(z) +pi(z)u+pa(2)u®+...) in Ay x A, (6.2)
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and, for each z € A,

S(2): v=—(po(2) + Pr(2)u+p2(z)u® +...) in A,

By condition | (%iz) | we have

Po(2) #0  on Ay (6.3)

Since (2, w) satisfies the Levi condition (3.2) on (2, w) = 0, using the
notation

—w w+w
v(zw) = Lo 4 poa) + () + () +
we calculate
oy 11
0%y 1
i —2-p2(z) + 3p3(z)u+...
O 0Opo(z) | Opi(z) | Opa(2) o
- 8z o “tTa vt
oY po(z) | Ppi(z) | Opa(2) o
5205 0wz T 0207 T omoz v T
821/) lc?pl(z) Bpg(z)u+
8z8_ 2 8z 0z
Therefore,
N 32170(2) 32?1(3) 5172 2 2
C‘”(Z’“’)‘( 9202 | 020z * 1 9202 ) l“ P12) T pa(2)u

2 0z 0z 0z

« (-2% +5pi(e) +pa(ut . ) }

l Opo(z) = Opi(2) Opa(z) o2
+<2P2(z)+3p3(z)u+...)‘ 5 + o u+ - + ..

Juz 4.
_2%{(18101() 5192(2 )(310 2) Bpl(z) ;. Opa(z) o +>

2
>0

on Y(z,u + ) =
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In particular,

L(z,0 + iv)
= i(l + ( ) ) 8817(29(_2)
_ %3% {3p5£2) 817({;);2) (—1 —l—pl(z))} + % pa(2) (Qp_(;?’ >0

on v+po(z)=0{for z € A,.

Since this expression for L1(z,0 + iv) is independent of v, we have

8%po(2) _2%{0p1(z) Opo(2) (=i + piz ))}

2 ———————
(L+p(2)7) =55 5z

PO(Z)
0z

>0 for z € A;.  (6.4)

+ 2ps(2) ,

This formula will be used later on in the proof.

Claim: To prove the lemma, it suffices to show that for r; > 0 sufficiently
small and é; = {|z| < r1},

(&) there exists z* € §;  such that po(z*) > 0.

Indeed, if () is true, consider the segment [0, 2*] in §; and the set

U SG) c A,

z€[0,2%]

The arc S(z) in A, varies continuously with z € A;. Hence it follows from 0 €
S(0), —ip§(2*) € S(2*), —p(2*) < 0 and (6.2) that there exists a sufficiently
small disk d; C Ay centered at w = 0 with D(0) N J, C s.

Thus we turn to the proof of (). We have two cases, depending on
whether 22(0) vanishes:

Case (i). -5;9(0) £ 0.
Since po(0) = 0, we have
po(z,y) =az+by+ O(|2|*) mnear z=0
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with (a,b) # (0,0). It is clear that there exist z* € §; which satisfies (<).

Case (ii). %p;—o(O) =0.

In this case, we have the following Taylor expansion of po(z) about z = 0:
(1) po(2) = R{axw2’} +a1,2%
+ R {az02® + an 2%z}
+ R {ag2* + a3,2%z} + Q92?72
+ R {as02® + 041 2*Z + a3,2°7°}
+ R {a602° + a512°Z + 0422'7°} + a332°7°
+0(|2|") near z = 0,
where a;; is, in general, a complex number for ¢ # j; while a;; is real.

1%* Step: Since %%(O) = 0 and po(0) = p1(0) = 0, inequality (6.4) reduces to

2
gzg;m) >0, ie, an>0.
If a;; > 0, (1) implies that
&p
azaoz(z) = an + O(|z|)

a
2%>0 near z = 0.

Thus po(2) is strictly subharmonic on a sufficiently small disk ¢} := {|z| <
7'} C §y; hence there exists z* with |2*| = & and po(z*) > po(0) = 0, proving
(©)-
If a;; = 0, then (1) becomes
po(2) = R{azz’} + O(|2)
= |2]* R {axe* + O(|z])} near z =0,

where z = re.

If g0 = |ago| e # 0, for 2* € &) of the form 2* = r*e~%/2 o£ 0 with r*
sufficiently small, we have

() = (0 ((Jawl 400D 2 (077 2l >
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which proves ().
Thus it remains to prove (<»)) when a;; = agy = 0. Here,
(2) po(2) = R{az2® + axn2’z}
+ R {agz* + a312°Z} + 0992272
+ R {as502° + a012*Z + 0322°7%}
+ R {a602® + a512°Z + ag22'7%} + a332°7
+O(|2]") near z = 0.
2" Step: We rewrite the form of po(2) as
po(z) = R{az2® + an2’z} + O(|2[*)
= |2]*R {az0e®® + a21€®} + O(|2|*)
where z = |z|e®.

We have two cases:

Case (1) (a30,a21) 75 (0, 0)

We consider the nonconstant polynomial

w = g(2) = a3z’ + ag1z in C,.

Let C = {|2|] = 1} C C,. Since g(0) = 0, it follows from the argument
principle that the winding number of the image curve g(C) in C, about
w = 0 is at least 1. In particular, g(C) intersects the positive real axis in the
w-plane. Hence there exists 6* € [0, 2n] such that g(e?") > 0. Thus if we
take 2* = r*e¢!®" with r* sufficiently small, then

po(2") = (r")*(® {g(e”)} + O(2"])) = (r*)* =5—= >0,

which proves ({) in this case.

Case (11) (a30,a21) = (0, O)
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In this situation, we have
(3) po(z) = R{awz* + 43122} + ag2?z?
+ R {as02® + a412°Z + a3,2°7%}
+ R {aeo2® + a512°Z + agp2'7} + a332°2°
+0(|2|") near z = 0.

374 Step: We return to inequality (6.4) which we rewrite using the represen-
tation (3) of pp(2). Thus we calculate:

8p0(z) = 1((1,312,’3 + 4 CL—40 -23 + 3 _CE 722) + 20,22_2_22 + O(|Z|4),
0z 2
82
aioa(_;) = %{3&3122} + 4a22z'z‘ + O(|Z|3) (65)

Using p;(0) = 0, we note that for z in a sufficiently small disk ¢’ := {|2| < p'},
we have

p(2)=0el), Piz)=Cy+0(), |22 =0(sf)|

Substituting in (6.4), for z € ¢,
(1+0(|z]?) (?R {3a312®} + 4az027 + 0(|z|3)) —20(|2?) + 20(|2|®) > 0.
Consequently,
(?R {3a3,22} + 4a22z2) +0(]z]?) >0 for z € §'.

We write 2 = ret® # 0 and divide both sides by |z|?> > 0:

R {3a3:€*®} +4axn +O0(|z]) >0 for z=re? €,

ie, ag > —%{z— as1e?®} — O(|z]) on ¥ (6.6)
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We return to (3) and use (6.6): for z =re®,

po(2) = R {awz* + a312%2} + ag2? + O(|2)°)

= |z|* (ER {a4oe4w + a3le2i9} + ag9g + O(Izl))

> |z* (8‘% {auwe™ +aze®} + (—3%{3’; azne?} — O(|z])) + O(|z|)>
= |2|* (?R {ase™ + i azie®®} + 0(121)).

We again consider two cases.
Case (i): (a0, as1) # (0,0).
We consider the nonconstant polynomial

1 .
w = g(2) = agpz* + Zaglzg in C,.

Again let C' = {|z| = 1} C C,. Since g(z) vanishes to order at least 2 at 0,
the winding number of the closed curve g(C) about w = 0 is at least 2; hence
g(C) intersects the positive u-axis in C,,. Thus there exists 0 < §* < 27 with

| -
A:=R {(,7,40641“9 + Z CL31€220 } > 0.
If we choose 7* > 0 sufficiently small and set z* := r*¢®", then
* *\4 * *\4 A
po(=) > ()" (A= 10(="D] ) > ()" 2 >0,

which proves ({) in this case.
Case (11) (a40, a31) = (0, O)
In this case, we let z — 0 in inequality (6.6) to obtain

az > 0.

We divide Case (ii) into two subcases:

Case (ii)-(1) : age > 0.
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By (6.5) we have

82100(2) 2
and hence 52 )
Do\Z 2
_ >
205 = 2o |27 >0

for |z| sufficiently small. As in a previous step, we conclude that po(z) is
a strictly subharmonic function near z = 0 and hence there exists z* with

po(2*) > po(0) = 0.

Case (ii)-(2): as2 = 0.

In this situation we have aq = a3; = ag2 = 0 and we must prove ()
with the following form of po(2):

(4) po(2) = R{aso?® + an12'Z + a322°7%}

5 4=2
+ R {agp2® + a512°Z + a492'7%} + a332°7°

+ O(J2]") near z = 0.

4*h Step: Using an argument as in the 2" step one can show that (<») holds
when (aso, @41, as2) # (0,0,0). It remains to prove (<») in the following case:
(5) p()(Z) = §R{a6026 + a51z52 + a42z422} + a33z3'z'3

+ O(|2]") near z = 0,
5t Step: The proof follows that of the 3" Step. We first prove that () is

true in all cases except when all coefficients a;; = 0 fori+j =6, j =0,1,2,3.

Using (5), for z € 6; = {|z]| < p1} with p; sufficiently small,

)~ (=P,

oz

o?
%3(—;—) =R {5(15124 + 8042237} + 901332232 + 0(|Z|5) (67)

Once again using the Levi condition (6.4), we have

(14 0(l2]%) (R{5asi12* + 8as22°2} + 9a332°Z" + O(|2%))
—20(|2]°) +20(|2|**) > 0 on 4;.
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Setting z = re® # 0, we divide by |z|* > 0 to obtain
R {5a516" + 8aq2e®} +9az3 + O(|r|) >0  for z € 4;.
thus a3 > —% R {5a5164i0 + 8a4ge2io} —O(|r|]) for z € 6;. (6.8)
Letting z — 0, we have
ass > —é— R {5a5164w + 8a4262i9} for 6 € [0, 2x). (6.9)
Substituting (6.9) in the representation (5) of po(z), we have

po(Z) = |z|6 ( §R{ aeoesie + a5164w + a4262i9} + + O(IZI))
> IzIG (%{ a6066i0+a51e4i0 +a42e2i9}
1 . )
—5 §R {5&516410 + 8&426210} + O(IZI))

= |z|6 (§R{ 0606610 + § a5le4“9 + §a4262’0} + 0('2,)) . (610)

We consider two cases.
Case (1) (aeo, asi, a42) 7& (0, O, 0)

The nonconstant polynomial

4 1
w = g(2) := ag 2° + -9-a51 2t + §a42 22

maps the unit circle C to a closed curve g(C) whose winding number about
w = 0 is at least 2. Thus, ¢g(C) intersects the positive u-axis of the w-plane,
so that

36* € [0,2r] such that g(e") > 0. (6.11)
Setting 2* = r*e"" where 0 < r* < 1, we have by (6.10),
po(2*) = (r*)° (9(e”") + O(12*)))

1 o
>3 (r)° g(e”) >0,
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which proves ().
Case (ii): (ago, @51, a42) = (0,0,0).

In this case, inequality (6.9) becomes

azz > 0.

We divide Case (ii) into two subcases:
Case (ii)-(1): as3 > 0.

82]90 (Z)

9257 on 0; becomes

In this case, the representation (6.7) of

po(2
20) g o+ O(2f%) = Jl* (9 + O(2D)

so that
Ppo(z) _ 9
0202 ~ 2
on 8] = {|z| < p}} C &;. Thus po(z) is a strictly subharmonic function on
97 \ {0}, which implies ().

Case (ii)-(2): a3z = 0.

In this case the representation (5) of py(z) reduces to po(z) = O(|z|7) on
A;. By continuing these steps inductively 3 we conclude that () is true
unless po(2) = 0 on A;. Using (6.3) we complete the proof of (), and hence
that of Lemma 3.2. a

> — Q33 |Z|4 >0

3 Assume

2n—2-z- + e + a/n’n—lznzn—l}

po(z) = R{aon-1,02"""" +azn-212
+ O(]2)%™) near z = 0.

Then using an argument as in the 27¢ step one can show that ({) holds when
(@2n-1,0002n-2,2, - - -1 @n.n-1) 7 (0,0,...,0). It remains to prove ({) in the case

(6) po(z) =% {QZn,Oan -+ 61271——1,1»’«’2"‘12 +---+ an+1,n—lzn+13n—1} + an,nlzl2n

+ O(|z)>+1) near z = 0.
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Then, for z € 1 = {|2| < p1} with p; sufficiently small,

apg(Z) _ n—1y.
—5,— = O(=l""™");
0%po(2)

0207
=R {(2n —1)azn-1,122""2 4+ (2n — 2)2a2p, 2222 32 + - -+ (n+ 1)(n — 1)an+1,n_1znz"~2}

+ nzan,nlzl2n—2 + O(‘z|2n—l).

Once again using the Levi condition (6.4), by the similar argument as (6.8) we have
Apyn > —-515 R {(2n - l)a%_l’le(zn—z)e + (2n —~ 2)2a2n‘2,26(2"“4)9
++(m+1)(n- 1)an+1,n_1e29} for 8 € [0, 27].
Substituting this in (6) and puting z = |z]e*, we have
po(2) > lzlzn( R {azn,oe2” 04 A2n-1,1 (1 — 2nn; 1)(3(271»—2) i0

— ) 1 -1 )
+ aon—22 (1 - (_2_7%12_2_)_2) 6(2"_4) i6 .4 an+1,n~1(1 _ (nLZL(;}—).>6219} + O(lzl))

Since the number - .- in each ( . ) is not zero, we reach (<») using the same arguement

as in the 5t* step.



