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Abstract

This paper is based on my talk given at the Symposium on Cohomology Theory
of Finite Groups and Related Topics held at Kyoto University, Japan, 29 August
to 2 September 2011. In this paper, we consider quiver algebras A4 over a field k
defined by two cycles and a quantum-like relation depending on a non-zero element
g in k. We determine the ring structure of the Hochschild cohomology ring of Aq
modulo nilpotence and give a necessary and sufficient condition for A, to satisfy the
finiteness conditions given in [4].

Introduction

Let A be an indecomposable finite dimensional algebra over a field &. We denote by A¢
the enveloping algebra A®y A% of A, so that left A°-modules correspond to A-bimodules.
The Hochschild cohomology ring is given by HH*(A) = Ext}. (A, A) = ®n>0Ext (A4, A)
with Yoneda product. It is well-known that HH*(A) is a graded commutative ring, that
is, for homogeneous elements n € HH™(A) and 8 € HH"(A), we have nf = (—1)™"6n.
Let N denote the ideal of HH*(A) which is generated by all homogeneous nilpotent
elements. Then N is contained in every maximal ideal of HH*(A), so that the maximal
ideals of HH*(A) are in 1-1 correspondence with those in the Hochschild cohomology
ring modulo nilpotence HH*(A)/N.

Let ¢ be a non-zero element in k£ and s,t integers with s,t > 1. We consider the
quiver algebra A, = kQ/I, defined by the two cycles Q@ with s+t — 1 vertices and s+ ¢
arrows as follows:

a(3) <—a(2)

A TN
AN

as—l I 1

and the ideal I, of kQ) generated by
Xsa’Xsyt _ thXS, Ytb

for a,b > 2 where we set X:=a; +ags+---+as and Y:= 31 + B + - - - + B;. We denote
the trivial path at the vertex a(i) and at the vertex b(j) by eq(;) and by ey;) respectively.
We regard the numbers ¢ in the subscripts of e,(;) modulo s and j in the subscripts of
ep(;) modulo t. In this paper, we describe the ring structure of HH*(A4,)/N.



In [19], Snashall and Solberg used the Hochschild cohomology ring modulo nilpotence
HH*(A)/N to define a support variety for any finitely generated module over A. This
led us to consider the structure of HH*(A)/N. In [19], Snashall and Solberg conjectured
that HH*(A)/N is always finitely generated as a k-algebra. But a counterexample to
this conjecture was given by Snashall [18] and Xu [23]. This example makes us consider
whether we can give necessary and sufficient conditions on a finite dimensional algebra
A for HH*(A)/N to be finitely generated as a k-algebra.

On the other hand, in the theory of support varieties, it is interesting to know when
the variety of a module is trivial. In [4], Erdmann, Holloway, Snashall, Solberg and
Taillefer gave the necessary and sufficient conditions on a module for it to have trivial
variety under some finiteness conditions on A. In the paper, we show that A, satisfies
the finiteness conditions given in [4] if and only if ¢ is a root of unity.

The content of the paper is organized as follows. In Section 1 we deal with the
definition of the support variety given in [19] and precedent results about the Hochschild
cohomology ring modulo nilpotence. In Section 2, we describe the finiteness conditions
given in [4] and introduce precedent results about these conditions. In Section 3, we
determine the Hochschild cohomology ring of A; modulo nilpotence and show that A,
satisfies the finiteness conditions if and only if ¢ is a root of unity.

1 Support variety

In [19], Snasall and Solberg defined the support variety of a finitely generated A-module
M over a noetherian commutative graded subalgebra H of HH*(A) with H° = HH?(A).
In this paper, we consider the case H = HH*(A).

Definition 1.1 ([19]). The support variety of M is given by
V(M) = {m € MaxSpec HH*(A)/N| AnnExt% (M, M) C m'}

where AnnExt% (M, M) is the annihilator of Ext® (M, M), m’ is the pre-image of m for
the natural epimorphism and the HH*(A)-action on Ext} (A, A) is given by the graded
algebra homomorphism HH*(A) 2% Ext’, (M, M).

Since A is indecomposable, we have that HH°(A) is a local ring. Thus HH*(A)/N
has a unique mazimal graded ideal mg, = (rad HH*(A), HH='(A))/N. We say that the
variety of M is trivial if V(M) = {mg}.

In [18], Snashall gave the following question.

Question ([18]). Whether we can give necessary and sufficient conditions on a finite
dimensional algebra for the Hochschild cohomology ring modulo nilpotence to be finitely
generated as a k-algebra.

With respect to sufficient condition, it is shown that HH*(A) /A is finitely generated
as a k-algebra for various classes of algebras by many authors as follows:

(1) In [6], [22], Evens and Venkov showed that HH*(A)/N is finitely generated for any
block of a group ring of a finite group.

(2) In [7], Friedlander and Suslin showed that HH*(A)/N is finitely generated for any
block of a finite dimensional cocommutative Hopf algebra.
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(3) In [11}, Green, Snashall and Solberg showed that HH*(A)/N is finitely generated
for finite dimensional self-injective algebras of finite representation type over an
algebraically closed field.

(4) In [12], Green, Snashall and Solberg showed that HH*(A)/N is finitely generated
for finite dimensional monomial algebras.

(5) In [13], Happel showed that HH*(A)/N is finitely generated for finite dimensional
algebras of finite global dimension.

(6) In [17], Schroll and Snashall showed that HH*(A)/A is finitely generated for the
principal block of the Heche algebra H,(Ss) with ¢ = —1 defined by the quiver

a
Q: (1 —2 e
and the ideal I of kQ) generated by
= 2 2

€, Qe EQ,E° — O, E° — Q.

(7) In [20], Snashall and Taillefer showed that HH*(A)/N is finitely generated for a
class of special biserial algebras.

(8) In [14], Koenig and Nagase produced many examples of finite dimensional algebras
with a stratifying ideal for which HH*(A)/N is finitely generated as a k-algebra.

(9) In [18] and [23], Snashall and Xu gave the example of a finite dimensional algebra
for which HH*(A)/N is not a finitely generated k-algebra.

Example 1.2. ({18, Example 4.1]) Let A = kQ/I where Q is the quiver

a

).

1——2

O

b

and I = (a?,b%,ab — ba, ac). Then Snashall showed the following in [18, Theorem
4.5].

k @ kla,bb if char k = 2,

k & k[a®,b%]6? if chark # 2.

(b) HH*(A)/N is not finitely generated as a k—algebra.

(a) HH*(A)/N = {

Xu showed this in the case char k = 2 in [23].

2 Finiteness conditions

In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer gave the following two condi-
tions (Fgl) and (Fg2) for an algebra A and a graded subalgebra H of HH*(A).

(Fgl) H is a commutative Noetherian algebra with H° = HH?(A).
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(Fg2) Ext’(A/rad A, A/rad A) is a finitely generated H-module.

In [4], under the finiteness conditions above, some geometric properties of the support
variety and some representation theoretic properties are related. In particular, the fol-
lowing theorem hold.

Theorem 2.1 ([4, Theorem 2.5]). Suppose that A satisfies the finiteness conditions.

(a) A is Gorenstein, that is, A has finite injective dimension both as a left A-module
and as a right A-module.

(b) The following are equivalent for an A-module M.
(1) The variety of M is trivial.
(ii) The projective dimension of M is finite.
(ili) The injective dimension of M is finite.
There are some papers which deal with the finiteness conditions as follows.

(1) In [2], Bergh and Oppermann show that a codimension n quantum complete in-
tersection satisfies the finiteness conditions if and only if all the commutators g;;
are roots of unity.

Definition 2.2. A codimension n gquantum complete intersection is defined by
k{z1,...,zn)/1
where I generated by
Tt x5z — gz for 1 <i<j<m,a;>2,q;€ k.
(2) In [5], Erdmann and Solberg gave the necessary and sufficient conditions on a
Koszul algebra for it to satisfy the finiteness conditions.

Theorem 2.3 ([5, Theorem 1.3]). Let A be a finite dimensional Koszul algebra
over an algebraically closed field, and let E(A) = Ext}(A/rad A, A/rad A). A
satisfies the finiteness conditions if and only if Z,(E(A)) is Noetherian and E(A)
is a finitely generated Zg, (E(A))-module.

(3) In[9], Furuya and Snashall provided examples of (D, A)-stacked monomial algebras
which are not self-injective but satisfy the finiteness conditions.

Example 2.4. (]9, Example 3.2]) Let Q be the quiver

2
|s
3

«
—_—

S
_ =

<’y—
and I the ideal of k@) generated by
aByéaB, ydaByo.

Then, A = kQ/Z is not self-injective but satisfies the finiteness conditions.

(4) In [17], Schroll and Snashall show that the finiteness conditions hold for the prin-
cipal block of the Heche algebra Hy(S5) with ¢ = —1.
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3 Hochschild cohomology ring of quiver algebras defined
by two cycles and a quantum-like relation

In this section, we consider the quiver algebras Ay = kQ/I, defined by the quiver Q as
follows:

3)6——(1 62

/ AN / \
S \W

T ast 1

and the ideal I, of kQ generated by
Xse Xsyt _ qytxs Ytb

for a,b > 2 where we set X:=a; +as+---+asand Yi= 5y + 02+ ---+ (3, and ¢
is non-zero element in k. Paths are written from right to left. We will determine the
Hochschild cohomology ring of A, modulo nilpotence HH*(A4)/N and show that A,
satisfies the finiteness conditions if and only if q is a root of unity.

First, we note that the following elements in A, form a k-basis of A,.

X ey for2<i<s,0<l<a-1,0<U<s-1,

Y+ ey for <j<t,0<I<b-1,0<U<t—1,

XoHytuH for0<i<a-1,0<j<b-11<1<s-10<UI'<t—1,
Xsyt+ for1<i<a-1,0<j<b-10<U'<t-1,

xsiytixt for0<i<a-1,1<j<b-11<1<s-1,

YV x5yt for1<i<a—-1,0<j<b-11<I'<t-1,

YYXSYUX! for0<i<a-1,0<j<b-1,1<I<s-1,1<<t~1,
Xy x"  for0<i<a-1,1<j<b-1,1<Ll/<s-1,
YiXsiytutt  for1<i<a—-1,0<j<b-1,1<lI'<t-1.

So we have dimy, Aq = ab(s +t — 1)2.

3.1 Projective resolution of A,

For n > 0, we define left A7-modules, equivalently A4-bimodules

2n

Py, = H Aq61 &® elAq D H Aqea(z) ® ea(z)Aq & H Aqeb(]) ® eb(J)Aq’
1=0 1=2 j=2
2n

Py = H A €1 ® €1A S5 I_I A q€a(i+1) ® eq z)A D H Aqeb(.7+1) ® eb(J)Aq’
=1 i=1 j=1

where ]_[l_ Age1 ®e1Ag =0. The generators e1®ey, ea(,) ® €4(;) and €b(j) ® ep(j) of Pon
are labeled ¢ an for 0 <1< 2n, &2 () for 2 < i < s, and Eb( ) for 2 < j <t respectively.
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Similarly, we denote the generators e; ® e1, €,(i+1) ® €4(i) and ep(j+1) ® €p(j) of Pany1 by
5?”""1 for 1 <[ < 2n, 62"2.'*'1 for 1 <i<s, and ezn."'l for 1 < j <t respectively. In [15],
we give the minimal projective bimodule resolution of A, as follows.

Theorem 3.1 ({15, Theorem 1.1]). The following sequence P is a minimal projective
resolution of the left Aj-module Ay:

dan+1

P — Py 25 Py Py Py 2 p B T4 0,

where m: Py — Aq is the multiplication map, and we define left A°-homomorphisms

don+1 and dapy2 by

dont1
(
63(7;;_1 — Eb(]+1 Y — Yab for1<j<t,
E?/?_H —
_ Zb q] (al+1) Ytjggn Yt(b 1-3) _ Xsé'g? + qb(n—l)eg?Xs
< ifl" =214+1 for0<I<n-1,
al Yt€2l’+52l’Yt+Zr~ qz(bn =U')+1) x s(a—1- z)€2n Xsi
if 1" =2 for1 <1 <m,
2n+1
(Eati) € a(H—l)X Xe?n a(h) for1<i<s,
don+2 :
( 2 2 r .2 -
n+ — Zl—o l’—O Ytl+l b(7:t+l)Yt(b 1-0)+t-1 1
sg(r;-)n > Sl sl el §8+11 ll)yt(b 1-0)+t— l-1 for2<j<t,
€§n+2
th 2n41 _ 5?n+1yt _ ;_=1 Xsyt—jgzzzj—)l-lyj—l + qbn+1 Z;':l Yt—]€§8+1YJ le
512/7+2 —
zb—O qaljytj€§?+lyt(b—l—j) un Z:l;ol qib(n—l+1)Xs(a—l—-i)sg?j-llxsi
J if 1" =2l for1<l1<n,
qal'+lyt€g$ii _ €2l/+lyt Xs¢e 2n+1 + qb(n—l’)+1€§?+1Xs
ifl" =241 for1<l'<n-1,
2n+2
€2nil ™
an+1 s t xs—ig2n+l yi-1 s—ig2ntl yi—-1yt _ ysg2n+l 2n+1 ys
EzlYX oty X' T = im Xy XTI = X%ean ™ + ges, T X,
3?1-)!—2 — Zl—o Xsl—H’ gz+ll )Xs(a 1-)+s—l'—1 for2<i<s,
2n+4-2 ! 2n+1 l U~
ettt e st

forn > 0, where in the case n = 0, 81,, and el,/ vanish, and the image of 8 by do is

= X XY ey VIl 4 g3, Vi Tey , VITIXS
a3 YIX e ) X = 3 X ey ) XY

3.2 Hochschild cohomology group of A,

Next, we give a basis of the n-th Hochschild cohomology group HH"(4,) := Ext’}lg (Ag, Ag)
for n > 0, using the minimal projective Aj-resolution given in Theorem 3.1. Now we
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consider the case s,t > 2. In the case s = 1 or t = 1, we can give a basis of HH"(A4,) by

the same method.
Now, we consider the vector space structure of HH"(A,) for all n > 0. By the
definition of P,, we have isomorphisms

2n s t
Ugp - HomAg (Pan, Aq) = H e1Aqe1 @ H €q(i)Aqa(s) @ H ev(j)Aqen(s)s
1=0 i=2 j=2

2n s

t
U2n+1 - HomAg(P2n+1, Aq) > H e14qe1 @ H ea(i+l)Aqea(i) @ H eb(j+1)Aqeb(j)’
=1 i=1 j=1

where I_[?=1 e1Aqer = 0. We denote the k-modules Im u2, and Imug,4y by Py, and
Py, . respectively. We see that the dimension of P, is given by

dimy P, = nab+ ab(s+t —1).

The elements e1, eq(;y and ey(;) of Py, are labeled el for 0 < 1 < 2n, eg?i) for2<i<s
and eg("j) for 2 < j < t respectively. Similarly, we denote the elements e;, €,;;) and

epj) of Popiq by ef"“ for 1 <1< 2n, ei’(?)” for 1 < i < s and e;‘:”.*'l for1 <j <t

respectively. These labels correspond to that of generators of P,. Using the maps
Uon, U2n+1,d2n+1,dont+2 for n > 0, we obtain the following diagram:

0 —— Homgug(Po, 4;) —2— Homus(Py, 4) —25 Homue(Py, 4g) — 2

Nluo ~lu1 ~luz

di * d; " d3

0 —— P(’)" _ ]31 —c P2 —_— -,

where we put d, = Hom g¢(dn, Aq), d7, = Undnu,l, for n > 1. Hence we have the
complex

d; b
Pro—P e e
See [16] for the homomorphism d},. Now, we denote some elements of P, as follows:
e For n=0:

s , ¢ . . .
:Fl,l’ = Xxslytl 68 + Zj=2 Yyi-1xslyt 1)+t J-Heg(j)
+30 ., Xs(l‘l)“"lYtl'Xs‘”leg(i) for1<l<aand1<Ul'<b,

e Fornodd,n > 1:

U&l’ll = YXletlleZ‘(l) for 0 S { S a—1land O S l, S b— 1, _
Uiy = Xy¥e? forl<m<n-1,0<i<a—-1and0<I'<b-1,
U",u/ = XSI+1YU'€Z(1) for0<!<a—-1land0<!U<b-1,

n



e For n even, n > 2:

W(;fl,l’ e Xslytl’eg + Z;=2 Yj—lelyt(l’—1)+t—j+leZ(j)
for0<!i<a-1and0<! <b,

W(?:Zb—l = Xslyt(b——l)eg. + bz;:2 Yj_1X32Yt(b_2)+t_j+1e?(j)

+ (qb(n/2—1)+1 _ l)XS(H_l)e? for0<l<a-1,

W =Xy er for1<m<n-1,0<i<a—1and0<!'<b—1,

WT?,l,ll = Xslytl’eg + Ef:z Xs(l~1)+z‘—1Ytl’Xs—i-l-leZ(i)
for0<!<aand0<!'<b-1,

W::,Z~—l,l’ - aXs(a—l)ytl’e:lL + az;?‘:z Xs(a—2)+z'—lytl’Xs—i+leZ(i)

n (qa(n/2—1)+1 _ 1)Yt(l'+1)e2_1 foro<l'<b-1.

In the following results we use the complex P* to compute a basis of the Hochschild
cohomology group HH"(4,) = Kerd},_,/Imd} of our algebra A, for n > 0. First, we
consider the case where ¢ is an r-th root of unity for integer r > 1. Now, we set Z is the
remainder when we divide z by r for any integer 2. Then we have 0 <z < r — 1.

Theorem 3.2 ([15, Proposition 3.3] and {16, Theorem 2.1)). If q is an r-th root of unity
forr > 1 and s,t > 2, then the following elements form a basis of HH™(A,).

(1) Basis of HH®(A,):
(a) 14 =¢€d+ Z;=2 epi) T Doim2 €ali)’
(b) Tip for1<1<a-1,1<I'<b-14fl=0=0,
(c) Tip for1<l<a-—1,
(d) Top for1 <U'<b-1,
(2) Basis of HH?"(A,) forn > 1:
(2) WgGy forO<U <b—1ifl =bn,
(b) WPy for1<1<a—1,1<U<b-1ifl=0,7=0n,
(c) W2, for1<1<a-1ifl=0,bn—1)=0, charklb,
0,l,b
(d) Wgn_1pfor0<U<b-1lifa=1bn-10#0,
(@) W&’}’};_l for0<I<a-1 ifz:O,b(n—l)—Fl;éO,cha,rk’[b,
W2 10 for0<1<a—2ifl=0,b(n— 1)+ 14 0,chark|p,
(f) W12,7+1,1 for1<li<a—-2ifl=0,bn—-1)#0,
Wgﬁ_l’u, for1<1<a-1,1<lI'<b-1 ifcharkta,charktb,
W1y for 1<1<a—1,0<1'<b—1 if chark { a, char k|b,
W3ih_1 0 for0<1<a—1,1<U'<b—1 if charkla,chark {b
ngf,_l,l,l, for0<1<a—-1,0<1l'<b-1 if chark|a,charklb,
for1<U"<nifl=a(l"-1)+1,U" =b(n—1") +1,

(8)




szﬁ,l,l' for0<1<a-2,0<l'<b-2ifcharkta,chark{b,
Wi, for0<1<a—2,0<1' <b—1 ifchark{a,charkfb,
Wg[b,l’,, for0<l<a-1,0<0'<b-2ifcharkla,charktb
W2217'1',l,l' for0<l<a-1,0<!' <b-1 if chark|a,charkl|b,
for1<l"<n-1lifl=al",I'=bn-1"),
(i) W2n_y pyy Jor1<U<b-24T =0, a(n—1)#£0,
0 {Wg{;z pp for0<U <b-1 U7 =0a(n—1)+1+#0,chark{a,
w2an orsr for0O<U <b-—2 if I’ =0,a(n — 1) + 1 # 0,char k|a,
(k) Wgr o for0<i<a-1ifl=man,
1) Wgr,, for1<i<a-1,1<U<b-14U=0,1=an,
(m) W. 2nal' for1<l'<b-1ifl' =0, a(n—1) =0, charkla,
(n) W, ) for0<i<a-—1 z'f5=1 an—1#0
(o) Additionally in the case of ¢ =
i. Wgp, for0<i<a-1 zfan—O b=0,1=1,
ii. Wf?0f0r1<l<a—lsz=0 =0,
iii. W2i_) g0 for 1 <" <nifa= b=0,
iv. W o 1y Jor1<l"<n—-1ifa=b=0,
v. W op for1<U <b-1lifa=0,0=0,
vi. W2r,, for0<U'<b-1ifa=0,bn=0,T=1,

(h)

(3) Basis of HH?"*1(A,) for n > 0:

a) U for0<i<a-1,1<U<b-1ifl=bn,1=0,
Vo1

(b) UZtl, for 1<V <b-lifa=1bn—0#0,

(c) Uity for0<i<a-1i4fl=0,bn—-1)+1#0,

@ { UZetl if bn = 0, chark 1,

U2t for 0 <1< a—1ifl=0,bn=0,charkl,

(e) Uf’l‘illofOTOSZSa— ifl=0,bn #0,

(UZnth, for0<1<a-2,1<I'<b—1ifchark{a,charktb,

() J 22,',3%, for0<l<a-1,1<!U'<b-1 ifchark|a,chark1b,
UZnth, for0<1<a—2,0<U'<b—1if charkta,charkl,

2,',‘,*;1[, for0<1!<a-1,0<! <b-1 if chark|a,chark|b,

fo7'1<l”§n ifl=al", " =b(n—1") +1,
U%’,’,’j‘rll”, for1<1<a-1,0<U'<b-2ifcharkta,chark?b,

U22[,’,+11”, for1<1<a-1,0<! <b-1 ifchark{a,chark|b,

{
&) U2217'l':1111' for0<l<a-1,0<10'<b-2 ifchark|a,chark{b,

U2[}f:_11”, for0<l<a-1,0<!'<b-1 ifchark|a,chark|b,

for0<l"<n-1i4fl=al"+1,I=bn-1"),




(h) Upnl for0<U'<b-24fU =0,an #0,

(1) Uggill,l,l'forlSZSG—I,OSl/Sb—l if =0, [ =an,

() Ugmit sy for0<U <b—14T7=0,an—1)+1#0,

(k) UQZTTLL:II,l,b——l for1<l<a-1ifb=1an—1+#0,

(1) U221?j—-11,0,0 ifan = 0,chark { q, B
Ul for0 <1 <b-1ifl’ = 0,an = 0, char k|a,

2n+1,0,l

(m) Additionally in the case of ¢ = —1:

i.
ii.
iii.
iv.
V.

vi.

U for0<l<a-1ifaln—1)=0,5=0,1=1,
Upit, for1<1<a-14fb=0,1=0,
Ugitl opoy for L< U <nifa=b=0,

Ugith 1o for1<1"<nifa=b=0,
UZzTZ—tll.-l-l,l’ for1< '<b-1 ifa=0, T’:O’

Ugitloy for0<U<b-1ifa=0,bn—-1)=0,7 = 1.

In the case q = 1, q is a first root of unity. Then Z = 0 for any integer z. Hence if g =1
then a basts of HH"(A,) is formed by the elements of (1), (2)(a),(b),(c),(g),(h),(k),(1),(m)

and (3)(a), (d), (f), (g), (i), (1).

Next, in the case where g is not a root of unity, we give a basis of HH" (Aq) for n > 0.

Theorem 3.3 ([16, Theorem 2.2]). If q is not a root of unity and s,t > 2, then the
following elements form a basis of HH™(Ay).

(1) Basis of HH°(A,):

(a) 14, = el + 23'22 eg(j) + 22 eg(i)’
(b) Tip for1 <i<a-1,
(c) Top for1 <1<b-1,

(2) Basis of HH*"*1(4,) for n > 0:

(a) U(},l+1,b—1 for0<i<a-2ifn=0,

(b) Ugghiss

(C) U(:)I’O’O an = 0,
(d) U]:.l,a—l,l’+1 fOTOSl Sb_3 Zf’n=0,
(e) Uzzgill,a—l,o;

(3) Basis of HH?""2(A,) for n > 0:

(a) WPy, ifn=0,
(b) Wigh2,

2n+2
(c) Wz#rz,Z—l,o-

51
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3.3 Hochschild cohomology ring of A,

In this section, we determin the Hochschild cohomology ring of A, modulo nilpotence.
Now we recall the Yoneda product in HH*(A) (see [8]). For homogeneous elements
n € HH™(A) and § € HH™(A) represented by n: P, — A and 6: P, — A respectively,
the Yoneda product n € HH™*"(A) is given as follows: There exists a commutative
diagram of A-bimodules

dn+ dny2 dni1
S m+n‘—ﬁ>"' . Pn+1 = Pn
|- NN
d d d
Pm m . 2 Pl 1 PO w A 0,

where o; are liftings of §. Here we see that such liftings always exist but are not unique.
Then we have n8 = no,, € HH™"(A). We note that 56 is independent of the choice of
representation 7,8 and liftings o; (0 < ¢ < m). See [16, Proposition 3.1| for the liftings
of the basis of HH"(A,) (n > 0). In the case where ¢ is a root of unity, by the liftings
given in [16, Proposition 3.1], we see that HH"*2"(A,) is generated by the elements in
HH"(A,) and that in HH*"(4,) for n > 2r. By corresponding Yoneda product of the
basis elements of HH*(A4,) := ®n>oHH"(A,) given in Theorem 3.2, we now have the
generators of HH*(A,). In this paper. we consider the case where s,¢t > 2 and a,b+#0.
In the other cases, we have similar results to the following theorem and corollary. See
[16] for the other cases.

Theorem 3.4 ([16, Theorem 3.2]). In the case where @, b # 0, HH*(A,) is generated as
an algebra by the following generators:

(1) The generators of HH*(A,) in degree O:
La, Lrr, 1hy Tr,l’1 s Tia s Ta,l;
for1<ljlb<a-1,1<l,l5<b-14L =l=0.
(2) The generators of HH*(A,) in degree 1:
e Ubou» Ut1o for0<1<a—-1,0<<b~14fl=0=0,
S Usaory for 1<V <b-1ifa= 1,? #0,
Ul yp for0<U<b-1idfa#1l=0,
Ubjpy for1<U<a-1ifl#0,b=1,
[ ] jasd - -
U(},l,b—l for1<l<a-1ifl=0,b#1,
o Ull,O,l’ for1<U <b—1ifl' =0, charkla,
e Ujjoforil<l<a-—1 if | = 0, char k|b.
(3) The generators of HH*(A,) in degree 2:

2 2 2 2
* Woour Wano Woi, 50 Waag,

fori<ilb<a-1,1<l,lb<b-1lifli=a li=bL=04=0,
{ 2. for0<I<a-1ifl=0,chark{b,
) 30y

W12,l+1,0 for0<1<a-—2ifl=0,chark(b,



Wi 1y for0< U <b—1ifI =0,charkta,
. ) ’ —
W12,0,1'+1 for0 <l <b-—2 ifl' =0,charkl|a,
o Wi,y forO<U<b—1lifa=1T#5b,
o W2, for0<i<a-1ifb=1,1+#a.
(4) The generators of HH*(A,) in degree 2n for 2 < n < r:

W(iﬁ,% if min{bn/|1 <n’' <n -1} > bn,

Wg';l%forl <l<a-1ifl=0,bn#0,min{bn/|1 <n' <n—1} > bn,
om .

P O,a—l,lﬁilé—rﬁ .

ifzz LI +105>r+ 1,0 =min{bn’|]1 <n' <n-1},
lh # b(n — n') where n’ is integer such that 1 <n' <n -1 and

b’ <bn” for anyl <n” <n-1,
W3ts_1 for0<1<a—1if1=0,b(n—1)+1# 0,chark1{b,
[ ] i - —
Wito for0<1<a—2if1=0b(n—1)+13#0,charklp,
WEt for1<i<a-2ifl=0,bn—1)#0,
Wit for 1 <l<a—14fl=1,b(n—1)+1=0,charklp,
WEr oy for 1<V <b-1ifa(n—1)+1=0,I"=1,charkla,
W22l7}'—1,0,0 forl1 <" <n
ifa(l” —1)+1=0b(n—1")+ 1= 0,char k|a, char k|b,
Wir 1y Jor 1<V <b-2if'=0,a(n—1) #0,
Wi L for0<l'<b-1ifl'=0,a(n—1)+1+#0,charkta,
] ’ ’ — O —
W2r  opsr Jor 0 <V <b—2if U =0,a(n— 1) + 1 # 0,charkla,

(Winano o min{an’|l <n' <n-1}>an,

2
W2l ) B
for 1<V <b—14fl'=0,an # 0,min{an’/|1 <n' <n -1} > an,
2n
° 9 W2n,H+E—r,b—l

ifb=1,11 +ly > r+1,I; = min{an/|1 <n/ < n -1},
ly # a(n — n') where n' is integer such that 1 <n’ <n—1 and

[ an’ <an” foranyl<n”" <n-1.

(5) The generators of HH*(Aq) in degree 2n+1 for 1 <n <71 — 1:

o [/2n+1 for0<i<a-1 ifZ:O,min{W!lSn’Sn—l}Z%x

0,l,bn
. ng}:—ll for0<l<a-1ifl=0,b(n—1)+1#0, charklp,
* Uilfio for0<i<a-241=0,bn#0,

Ut for0<i<a-2ifl=a,bn-1)+1=0,
a—2 if chark ta,

a — 1 if chark|a,

ifb(n —1") + 1 = 0, min{al”|1 < I" < 1" — 1} > al”,

if char k|b,

2n+1 " I
o UQZZ,W,O for2<l"<n,0<al"< {
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b—2 if chark 1 b,

b—1 if char k|b,
ifal” +1=0, min{b(n' —I")I"+1<n'<n-1}>bn-1"),
U2"+10l, for0<U'<b-2ifaln—1)+1=0,I' =1,

zfcharkla,

o Upiil for0<U <b-2ifl' =0, an #0,

o Upitlony for 0 <l <b—14fI'=0,min{an’|l <n' <n—1} >an,

o Ut 1y for0<U<b—1ifT=0,a(n—1)+1#0, charkla.

(6) The generators of HH*(Ag) in degree 2r +2n+1 for0<n <r —2:

2n+1 " _ IS
U2[”+10b(n l”)for0<l sn-10<bm l)s{

U2’:,+27,ﬁ+1 forn+1<1"<r0<al” < a=2 4 chark{a,
2",al".0 a — 1 if chark|a,

if min{al™|1 < 1" < 1" =1} > al”,b(n — ") + 1 = 0, char kb,

b—2 if charkt b,

b~ 1 if chark|b,
ifal” + 1 =0,min{b(n’ — IM|I" +1 < n' <r+n—1} > b(n — "), charkla.

2r+2n+1 " m
Uy ooy for 1 s sr—-1,0< b(n —1") < {

It follows from the Theorem 3.4 that 14,, Wo2,6,o and W, , are not nilpotent and
the other generators are nilpotent. Thus we have the following corollary.

Corollary 3.5. If s,t > 2 and @,b # 0, then the quotient of the Hochschild cohomology
ring of A, modulo nilpotence is isomorphic to the polynomial ring of two variables in all

characteristic:
HH"*(Aq)/N = kW50, Waro0l-

Finaly, we consider the ring structure of HH*(A,) in the case where g is not a root
of unity. It follows from the liftings given in [16] that all basis elements except 14, of
HH"(A,) are nilpotent elements for n > 0. Thus we have the following results.

Theorem 3.6. If q is not a root of unity then HH*(A,) is not a finitely generated
k-algebra.

Corollary 3.7. If q is not a root of unity then HH*(Aq) /N = k.

In general, our algebra A, is not self-injective, monomial or Koszul. Moreover A,
does not have a stratifying ideal. Therefore A, is new example of a class of algebras
for which the Hochschild cohomology ring modulo nilpotence is finitely generated as a
k-algebra. For example, in the case where s =2, t =1 and a = b = 2, our algebra 4, is
not self-injective, monomial or Koszul. Moreover A4 does not have a stratifying ideal.

3.4 Finiteness conditions for A,

Finally, we show that A, satisfies the finiteness conditions in the case where g is a root
of unity.

Now we consider the case where g is an r-th root of unity, s,t > 2 and @,b # 0. In
the other case, we see that A, satisfies the finiteness conditions by the same method.
The Yoneda algebra or Ext algebra of A is given by E(Ag) = GnxoExt} (Ag/t, Ag/t)



with the Yoneda product. We use the notation E(Aq)" = Ext} (A q/t, Ag/¢) for the
n-th graded component of E(A,). Then it is easy to see that E( " =~ [l o kel @
j=2 ki) © LT o kel
Let ¢: HH*(Aq) — E(A4) be a homomorphism of graded rings given by ¢(n) =
N®a, Ag/t. Then it is easy to see that the image of <p is precisely the graded ring k[z, y]
where z :=ef" + 3 ', eg(rj) and y := e + 377, €2, in degree 2r.

Proposition 3.8. E(A,) is a finitely generated left k[:z: y]-module with generators:

e? ,eg(’; Z)for0<l<2n2<]<tanal2<z<s
in degree 2n for 0 <n <r—1,
ef"“,ef&“, i’(f)rl for1<i<2n,1<j<tand1<i<s
in degree 2n+1 for0<n<r -1,
27 for 1 <1< 2r—1 in degree 2r,
el T2t for2n +1 <1< 2r in degree 2r +2n+1 for0<n<r —1,
el2r+2”+2 for2an+1<1<2r—1 in degree 2r +2n+2 for0 <n<r —2.
Now we consider the conditions (Fgl) and (Fg2). The element ng),o € HH?"(4,)
is a pre-image of z and the element W37, , € HH* (4,) is a pre—image of y. Let H be

the graded subalgebra of HH*(A,) generated by HH®(A,), Wgh o and W, so that H
is a pre-image of k[z, y] in HH*(A4,). Then we have the followmg immediate consequence
of Proposition 3.8.

Theorem 3.9. The conditions (Fgl) and (Fg2) hold for the algebra A, with respect to
the subring H of HH*(A,).

By [2], Theorem 3.6 and 3.9, we have the necessary and sufficient conditions for A,
to satisfy the finiteness conditions.

Theorem 3.10. A, satisfies the finiteness conditions if and only if q is a oot of unity.
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