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RELATIVE PROJECTIVE COVERS AND THE BRAUER
CONSTRUCTION OVER FINITE GROUP ALGEBRAS

MEEHERF)IE BRI #E (TETSURO OKUYAMA)
HOKKAIDO UNIVERSITY OF EDUCATION, ASAHIKAWA CAMPUS

Some properties of relative projective covers of modules in the modular representation
theory of finite groups will be discussed. Especially, we study effects of the Brauer con-
structions for relative projective covers of p-permutation modules. We also discuss some
use of our results to investigate derived equivalences in the principal block algebras of
finite groups with Sylow p-subgroup isomorphic to M,1(p), p odd.

In my lecture, we only talked on the sections 1 and 2 below. We include the sections
3 and 4 which provide some results for proofs of theorems in sections 2. Section 5 is also
included to give another examples with finite groups with Sylow p-subgroups M,.1(p).

Let k£ be an algebraically closed field of characteristic p > 0.

1. Mn4i(p)

Let p be odd and n be an integer with n = 2. The p-group M,+1(p) = P of order p™*!
is presented by

Mnpy(p) =P ;= (z,y |y =1=2", ayz ' =y ")
P has a unique maximal elementary abelian p-subgroup ( z, ¥*" " ). Set

Q=(y), R=(z)

We fix an integer s € Z which has multiplicative order p—1 in the residue ring Z/p"Z. No-
tice then that s has multiplicative order p—1 in Z, = Z/pZ also. P has an automorphism
to of order p — 1 which sends z — z, y — y° so that we have a group .

-1

Px(to);={(z,yto|y" =1=2aP, zyz™' =y 4P =1, ty 'ato = 7, to yto = y°)

In the following discussion, fix a positive divisor e = 2 of p — 1 and set t = t,f where
-1
¢ = pT. And set
H=Px(t)=XPxZ

1.1. Some Complexes of kH-modules. kH has e simple modules S(z), i € Z/eZ (all
of dimension 1). We can name the simples so that the following facts hold.

Extl, (S(i),SG+1)) #0, S(0) = kg

Let denote a projective cover of S(z) by P(z).
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By a result of Okuyama and Sasaki [7], we have a (chain) complex X*(1) of kH-modules

(1.1)

X : - — S(1) — P(1) —-PQL)®PA)—Q*S1)—>0—---

Xp(1) ¢ - = Q7 D(S(1)) — P(1) @ P(1) — P(1) ® P(1) » Q(5(1)) - 0 — -
S(2)

satisfying H;(X2(1)) = Hz(Xp(1)) = S(E—l) and Hy(Xp(1)) = H3(X3(1)) = 0 for each
S(0)

1 £ k £ ¢ where the last nonzero terms are in degree 0.

1.2. Richard’s Tilting. Let A be an arbitraly symmetric algebra over k and { S(3) ; 7 €
I } be the set of simple A-modules. Let P(i) be a projective cover of S(z).

Take a (nomempty proper) subset Iy of I. For each ¢ € I, construct a complex P*(i) €
C®(P(A)) of projective A-modules as follows.

. . Aj . .
P*() s --—>0->R@y) — PG —-0—---  jél
P@): --->0->Pli) — 0 —-0—>--- i€l

where for j & Iy, R(j) X, P(j) is a minimal one satisfying that
(1). R(j) is a direct sum of P(3), i € Ip
(2). Composition factors of Cok A; are S(k) for some k ¢ I

Set
Pl)=0) P

Then in the homotopy category K®(P(A)) of complexes of projective A-modules,

P*(Iy) is a tilting complex for A

Set
B = Ende(p(A))(P.(Io))

so that B is a derived equivalent algebra to A. B is also a symmetric algebra and simple
B-modules are also parametrized by the set I. Let Q(%) be a projective indecomposable B-
module corresponding to the summand P*(i) of P*(l,). Let T'(2) be the simple B-module
corresponding to T'(¢). There is a (A, B)-bimodule M(Ip) (with no bimodule projective
summand) constructed from the complex P*(Ip) satisfying the following.

(1). Both of 4M (Iy) and M(1Iy)p are projective and a functor

Fy=F(ly) :mod-A - mod-B, V—V ®4 M(lH)

gives a stable equivalence of Morita type between mod- A and mod- B.

(2.1). For j ¢ Io, Fo(S(5)) = T(j) for j ¢ lo.

(2.2). For i € Iy, let Soc P(i) C W(i) C P(i) be the largest submodule of P(z) such that
all the composition factors of W(2)/S(i) are S(k) for some k ¢ Iy. Then Fo(P(2)/W (7)) =
T(‘l) fori e Io.



We call the procedure above the Richard’s Tilting with respect to the set Iy C I. The
functor Fp given above is called the associated functor of the tiltng. The dual argument
to the above discussion is also valid which we call the dual Richard’s Tilting.

1.2.1. Ezamples. For kH, apply Richard’s tiltings with repect to the set { 1 } twice. .
First do the Richard’s tilting with respect to the set { 1 }. And then for the resulting
new algebra, do the Richard’s tilting with respect to the set { 1 }.

Let A, be the resulting algebra and let S(7); (resp. P(i)2) be a simple ( resp. projective)
Ag-module corresponding to S(z), ¢ € I. Let F? : mod- kH — mod- A, be the associated
functor. Then by the existence of the complex X7(1) in (1.1), we have

Lemma 1.1.
F2(8(d)) = S(i)e, i # 1, F*(S(1)) = Q*(S(1)2)

The existence of comlexes X2(1) (1 < k& < ¢) implies the following. For each k with
1 £ k £ ¢, do the Richard’s tiltings with repect to the set { 1 } 2k times.

Let Ay be the resulting algebra and let S(i)ay, (resp. P(i)ox) be a simple ( resp. pro-
jective) Agk-module corresponding to S(i), i € I. Let F?* : mod- kH — mod- Ay be the
associated functor. Then

Lemma 1.2.
F?*(S(i)) = S(i)ak, 1 # 1, F*(5(1)) = Q%%¢(S(1) )

The discussion above is valid for any fixed i € I.

Lemma 1.3. Let iy € I and k be an integer with 1 S k < L.

(1) There exists an algebra B derived equivalent to kH satisfying the following. Let
T(i), ¢ € I be the set of simple B-modules and F* : mod-kH — mod- B be the
associated stable equivalence. Then :

F*(8(1) =T(), i #d0,  F*(S(io)) = Q*(T(40))

(2) There exists an algebra C derived equivalent to kH satisfying the following. Let
U(i), i € I be the set of simple C-modules and F, : mod-kH — mod-C be the
associated stable equivalence. Then

F(S()=U(), i #d0,  Fu(S(i0)) = Q7%(U(40))
1.3. Relative Projective Covers. Set
K=Rx{(t)=(z)x(t)CH
and
Pr(i) = (8(3) Lk) 17= Pr(0) ® S(3)
Then we have a canonical surjection and a canonical injection
Pr(0) & $(0) =0, 0— S(0) = Pr(0)

 is so called an (relative) R-projective cover of S(0) = ky and v is an (relative)
R-injective hull of S(0) = kg.
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For any kH-module V, an R-projective cover (R-injective hull) of V' is obtained as a
summand of the sequence obtained by tensoring with the above sequences. Let Qg(V)
(resp. Qr~}(V)) be the kernel (resp. cokernel) of an R-projective cover (resp. R-injective
hull) of V. In particular, we have the following short eaxact sequences,

0 — Q&(S(0)) — Pr(0) & S(0) — 0,  0— 5(1) = Pa(0) = 2r7(5(0)) — 0
The heart Hg(0) of Pr(S(0)) = Pr(ky) is defined by
Hg(0) = Kerp/Imv

1.3.1. Ezamples. By a result of Okuyama and Sasaki [7], we have
Qr(5(0)) = Q~*¢"D(5(1))
Actually, we can show that an R-projective cover of Qg(S(0)) has the form
0 — Q72P=1(5(1)) — P(1) @ Pa(1) — Q&(5(0)) — 0

so that we have the complex X of kH-modules of the form
(1.2) X >0 Q2 0(5(1)) —» P(1) @ Pr(l) — Hp(0) > 0 — - --
which satisfies that

Hi(X5) = 5(0),  Ha(Xg) = 0= Ho(Xy)
where Hp(0) is in degree 0 term. Set

F.(1) = Q7'Qr(Hg(0))

Then by the sequence (1.2), we have the complex X* of kH-modules of the form

X* o> 0—- Q2 I(5(1) - PL) @ P(1) = Fu(1) 50— -+
which satisfies that

H(X*) = 5(0), Hy(X®) =0= Hyp(X®) and

F.(1) c P(-1) @ P(1)

(1.3)

where F,(1) is in degree 0 term.

Assume that e = 2. Do the Richard’s tiltings with repect to the set { 1 } p=2k+1
times.

Let Ay be the resulting algebra and let S(¢)o (resp. P(2)o) be a simple ( resp. projective)
Ap-module corresponding to S(i), i € I. Let F: mod- kH — mod- Ag be the associated
functor. Then by the existence of complexes X2(1) in (1.1) and X*® in (1.3), we have the
following lemma.

Lemma 1.4. Assume that e = 2. Then in the notatios above, we have

F°(S(0)) = S(0)o, i #1,  F°(F.(1))=S(1)o



2. EXAMPLE SL(2,q)

The example here is one discussed by Holloway-Koshitani-Kunugi [4].

Let ¢; be a prime power and p be an odd prime such that p divides ¢; + 1. Write
q+1=p" 0 (p,¢)=1,n22 Setq=qP. Then g+ 1 = p"¢ for some positive integer
¢ with (p,¢) = 1.

Set

Go = SL(2,9), Co = SL(2,q1). R=G(GF(q)/GF(q1))=(z), G=RxGo

Let By = Ty x Up be a Borel subgroup of Gy where |Ty| = (¢ — 1) and |Upy| = g. We have
an R-invariant subgroup Fy D Z(Gy) of order g + 1 such that Fy N Cp is of order g; + 1
and B() N F() = Z(G())
Let Py C Fp be a Sylow p-subgroup of G and set P = Rx Py. We have that P = M, ,(p).
We use notations introduced in the beginning of the talk.

So Q = Fy. Set H= Ng(Q) = Ng(P). Then H/Oy(H) is our H with e = 2. Set
Ho = NGO(P()) = Hﬂ GO.

2.1. By(kGo). The principal block algebra By(kGy) of kG, has a cyclic defect group and
is well understood. It is known that By(kGo) and the principal block By(kHy) are derived
equivalent. A two sided tilting complex for By(kGy) and By(kH,) due to Rouquier is
given as follows. Set

A = BQ(]CGQ), B = Bg(k’Ho)

By(kGy) and By(kHy) have two simple modules
Bo(kGo) : ¢o =kg,, ¢1, dimpéy =q—1

Bo(k'H()) . T() = kHoy Tl, dlmk T1 =1
B = By(kH)) is a symmetric Nakayama algebra of length p”.

Let P(¢;) (i = 0, 1) be a projective cover of ¢; and P(T;) (i = 0, 1) be a projective
cover of T;. ‘

Aisa (A, B)-bimodule (a (kGo, kHy)-bimodule). As usual, we can regard A as k[G x H]-
module. Let M, be a Broué-Puig indecomposable (A, B)-summand of A. As a
k|G x H]-module, M, is a Scott module with vertex AP = { (a,a); a € P, } C Gox Hp.
Actually, for the group GL(2,q), My = A. Notice also that 4My, Mp are both projective.

A functor

F:mod-A —»mod-B, V—V®4M,
gives a stable equivalence of Morita type between mod- A and mod- B.
We can see that a AP,-projective cover of k = kg py has the form

MOL:IC—’O

and Top Ker m = ¢} ®; T'(1) where ¢; = Homy(¢1, k) is a left kGp-module. Let P(¢;)* ®y
P(Th) 2 Kerm — 0 be a projective cover of Kern and consider the following complex

M?* of (A, B)-bimodules.
(2.1) M* - 50— P(¢) @ P(T1) > My —0— - -
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The complex M* satisfies the following conditions.
M*®p M** = Al0) & Z°, M** ®4 M* = Bl0] o W*
in C®(mod- A°? ® A) and C®(mod- B”® ® B), respectively where Z* is a contractible com-

plex of projective (4, A)-bimodules and W* is a contractible complex of projective (B, B)-
bimodules.

T
Tp
F(¢o) = To, F(¢p1) =1 ®aMy= : of length p" —2
Tp
T
and
¢0®AM. : —"0—->0——>T0—>0_>
& Q4 M* -..—>O—>P(Tl)ﬂ~>F(Tl)_>[)_.+...

where P(Ty) = F(T}) — 0 is a projective cover of F(T}).
As a complex of projective B-modules, My is a complex obtained by the Richard’s
tilting for the algebra B with respect to the set Iy =1 C I = {0,1}. We have

P(¢o) ®a M* : ---—0— P(Ty) = P(Tp) > 0— -+
P(¢1)®AM. . —"0’—>P(TI)——>O——)O—).

“and
Mg = P*(0)® (¢ - 1)P*(1)

2.2. Let I’ = (Go x Hy)AR C G x H. M§ = M, so that My is a kI'-module and has a
vertex AP. M = M, 1¢*H is a Broué-Puig indecomposable (By(kG), Bo(kH))-module.
There exists a p-permutation kI-module X, with vertex AR such that Xo loxua=
P(¢1)* @ P(T1). So it is natural to ask whether we can construct a complex X* of
kI'-modules of the form

X -~~—-+0—->X0ﬁ>M0—>0——>---

TGXH

such that X* [g,xn,= M*®. If such a complex exits, then X* gives a twosided tilting

complex for By(kG) and By(kH).

However, we can no have such a complex.

2.3. Recall that Cy = SL(2,q1) = Cg,(R) and Ng(R) = R x Cp. The principal block
algebra, By(kC;) has a cyclic defect group Qo = Cg(R) and the structure of By(kCp) is
described in the entiely same way as in By(kGp). Bo(kCy) and Bo(kNcg,(Qo)) have two
simple modules

B()(kCO) . 00 = kco, 01, dlmk 01 =q — 1
Bo(Neo(Qo)) : Ty = kngy@or Thr dime T} =1
By(kC)) and By(kN¢,(Qo)) are derived equivalent. Let Ny be a Broué-Puig indecompos-
able module for them and let N§ be the twosided tilting complex for them so that Ng has

the form
Ny : = 0> P6)@P(T]) > Ng—0— ---



Using the isomorphism (Cy x N¢,(Qo))A(R)/AR = Cy X N¢y(Qo), we can lift N3 to a
twosided tilting complex N* for By(kNg(R)) and By(Ng(R)).

(2.2) N : . 250-2Y—>N->0—--

N is a Broué-Puig indecomposable (Bo(kNg(R)), Bo(kNg(R)))-module. The Brauer
costructions for M with respect to AR is N. If we set X = X; 1¢*# then X(AR) =Y.
And we can construct a complex of (By(kG), Bo(kH))-bimodules X*® of the form

(2.3) X o0 XEM 00—
such that X*(AR) & N*. X*(AR) satisfies the following conditions.
X* R By (kH) X BO(kG)[O] S A X** R Bo(kG) X' Bo(kH)[O] e We

in C®(mod- By(kG)® ® By(kG)) and C*(mod- By(kH)® ® By(kH)), respectively where
Z"* is a complex of projective (By(kG), Bo(kG))-bimodules and W* is a contractible com-
plex of projective (By(kH), Bo(kH))-bimodules. A way of construction of X® by Y* is a
(verry special type of) gluing methods of Rouquier.
If we take a suitable projective (Bo(kG), Bo(kH))-bimodule X’ and a map X' 5 M
such that
XoX 22 M 0 (exact)

Then the complex
(2.4) X*: 50X X M0

has the same properties as for X* where the complexes Z* and W* have homologies
concentraited in degree 0. In particular, if we set

M, = Q" Y(Ker(u ®v))
, then A functor
F1 : mod- B()(k'G) — mod- Bo(kH), VeV ®Bo(kG) Ml

gives a stable equivalence of Morita type between mod- Bo(kG) and mod- By(kH). We
have the following lemma.

Lemma 2.1.
Fi(po) = S(0),  Fi(p1) = Q7'Qg(S(0))

Thus by Lemma 1.4, the following result follows.
Corollary 2.2 (Holloway-Koshitani-Kunugi [4]).
Bo(kG) and By(kH) are derived equivalent.

The procedure of Richard’s tilting in the previous section implies that the resulting
twosided tilting complex has the following form

—>O—>Xp—->Xp_1——~>—>X2-—>X1€BX{—>M—)O—->

The results in this section are obtained through the discussions with Koshitani and
Kunugi.
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3. RELATIVE PROJECTIVE COVERS AND BRAUER CONSTRUCTION

3.1. Relative Projective Coveres. Let G be a finite group and X be a nonempty
family of subgroups of G. For a kG-module M, a short exact sequence M ; 0 — N —
X — M — 0 of kG-module is called X-projective cover of M if it satisfies

(1) X is X-projective,

(2) the sequence M is X-split.
For a kG-module M, a minimal X- projective cover of M exists and is uniquely determined
up to isomorphism of exact sequences. An arbitraly X-projective cover contains a minimal
one as a summand of exact sequences. If the above sequence M is minimal, then we denote
N by Qx(M). M is X-projective if and only if Qx(M) = 0. For kG-modules M and M’,
Qx(M & M) = Qx(M) & Qx(M).

Let H be a subgroup of G andset 9 = XCNH ={ ANH ;9€ G, A€ X }. Then
the short exact sequence of kH-module M |g ; 0 > N |g— X |[pg— M |g— 0isa
9)-projective presentation of a kH-module M |p, not necessarily minimal even if M is
minimal.

3.2. Brauer Construction.

3.3. Let G be a finite group and @ be a p-subgroup of G. Then a functor called the
Brauer construction with respect to @ ;

—(Q) : mod(kG) — mod(kN¢(Q)/Q)
is defined by
M(Q) = M®?/()_ Trro(M™)
RCQ
The canonical epimorphism from M? — M(Q) is denoted by Brg and is called the Brauer
homomorphism with respect to Q.
If M and N are kG-modules and f : M — N is a kG-homomorphism, f induces a
kNg(Q)/Q-homomorphism f(Q) : M(Q) — N(Q). We denote f(Q) by Brg(f). The
Green correspondence with respect to (G, Ng(Q), Q) gives a bijection between the set
of isomorphism classes of indecomposable p-permutation kG-modules with vertex ¢ and
the set of isomorphism classes of indecomposable projective kNg(Q)/@Q-modules. If X
is an indecomposable p-permutation kG-modules with vertex @), then the corresponding
indecomposable projective kNg(Q)/Q-module is the Brauer construction X(Q).

Lemma 3.1. Assume that M |g is a permutation kQ-module. If M(Q) has a projective
kNg(Q)/Q-summand U, then M has a Q-projective summand V with vertex Q) such that
V(@) =U.

Proof. kNg(Q)-module M |y, @) satisfies the assumption in the lemma for the group

Ng(Q) and a p-subgroup @ of Ng(Q). Thus by a theorem of Burry-Carlson, we may
assume that ¢ is normal in G. Let

XLM—-)O 0o-MLyY

be a Q-projective cover and a @-injective hull of M, respectively. As M |g is a per-
mutation module, X and Y are Q)-projective, p-permutation kG-modules. In particular,



X(Q) and Y(Q) are projective kG/Q-modules. As the sequence above are @Q-split, we
have exact sequences,

X@ X% M@ -0, 0-MQ) L2 vQ

There exists a primitive idempotent e € kG such that e[Q]kG = U. Thus there exists an
element m € M@ such that me = m and MmkG = U where m € M(Q) is the image of
m € M@ in M(Q). We can take an element z € X such that f(z) = m and ze = .
Write X = Xo @ X; where Xy is a projective kG/@-module and each indecomposable
summand of X has a vertex properly contained in Q). And write z = zo+z; with z; € X;.
Then zoe = z, z1e = z; and 21 € Y g Trro(XY). Thus M = f(zo) and f(z0)kG 2 U.
As X, is a kG /Q-module and zge = e, TokG is a homomorphic image of [Q]ekG and we
can conclude that 20kG = [Q]ekG = U. Set V = zokG. Then V is a direct summand
of X, (and of X). Thus we have proved that we have a direct sum decomposition of
kG-modules

X=VeoV
such that V = U, f(Q)(V(Q)) = U C M(Q) and f(Q) lvw): V(Q) — M(Q) induces

isomorphisms
Qv : V(@) —-U

Write Y = Yy, @ Y; where Y} is a projective kG/Q-module and each indecomposable
summand of Y; has a vertex properly contained in Q. And write g(m) = yo + y; with
y; € Y. Then yoe = yo and ¢(Q) () = Yo € Yo(Q). By the similar argument as above, it
follows that yokG = [Q]ekG = U and we have a direct sum decomposition of kG-modules

Y=W ¢ W

such that W = U, ¢(Q)(U) = W(Q) C Y(Q).

Let A\:V — X, u:Y — W be the injection and projection with respect to the above
decompositions and consider the maps f' = fol:V — M and ¢ = pog: M — W. Then
F(Q) = f(Q) o A(Q) and ¢'(Q) = u(Q) o g(Q). By the discussions above, the composite
9(Q)of(Q): V(Q) — M(Q) — W(Q) is an isomorphism. As (¢'0 f')(Q) = ¢'(Q)o f(Q),
it follows that the map ¢’o f : V — M — W is an isomorphism and that V' is isomorphic
to a summand of M. o

Lemma 3.2. Assume that M | is a permutation kQ-module and let 0 — N — X —
M — 0 be a Q-projective cover of M. Then 0 — N(Q) — X(Q) » M(Q) — 0 is a
minimal projective cover of a kNg(Q)/Q-module M(Q).

Proof. As the sequence 0 - N — X — M — 0 is Q-split, the resulting sequence
0 — N(Q) — X(Q) — M(Q) — 01is exact and a projective presentation of a kNg(Q)/Q-
module M(Q). We also have that N |¢ is a permutation module. By Lemma 3.1, N(Q)
has no projective kNg(Q)/Q-summand and the lemma follows. O

The results in this section are obtained by joint works with Kunugi.
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4. FINITE GROUPS WITH SYLOW p-SUBGROUP M,,,1(p)

Let p be an odd prime and n 2 2 be an integer. Consider the p-group M, ,,(p) = P of
order p™*! given in Section 1. We use notations in Section 1. And set

Po=(y) 2;=¢y" =gy, Z;=(z)
R=(z), Z(P)=(y), Q;=Cp(R)=Rx Z(P)

For an integer ¢,
()P =y®?
Thus
Qp(P)=(z, z), z~pzz, 0SiSp-1, Z(P)=(y")
and it follows that a nontrivial subgroup S of P contains Z or is conjugate to R in P.

Let G be a finite group with Sylow subgroup P = M,1(p) such that there exists a
normal subgroup Gy satisfying that

G=RD(G0, GonPZPO

Set
H= NG(PO) =R KX NGO(PO), NGO(P()) = Ho
Then Ng(P) C Ng(Py) = H and H/O,(Cg(P)) isomorphic to a subgroup of { ¢y ) x P.
Set
e=|H/PCg(P), H=(t, PCg(P))

so that t¢ € Oy (Cg(P)) and H/Op(H) is the group H in Section 1.

In this section, we shall be concerned with the principal block algebras By(kG) and
By(kH) of kG and kH.
Notice that G and H have the same p-local structure.

4.1. p-Locals. Let M be a Broué-Puig indecomposable k[G x H|-direct summand of
of By(kG) with vertex AP. As we are working on the principal block case, M is a
Scott k|G x H]-module with vertex AP. We investigate Brauer constructions M(AS) for
nontrivial subgroups S of P.

4.1.1. Z. By a theorem of Burnside, Cg,(Z) is p-nilpotent and therefore so is Cg(Z). In
particular,

Ng(Z) = Op(Cs(Z))Nu(Z)
and M(AZ) = By(kCs(Z)) = Bo(kCu(Z)).
4.1.2. SO Z. Let S C P with S D Z. Then Ng(S) C Ng(Z) because Z C SN Gy and

SN Gy is cyclic.
Thus M(AS) = By(kCgs(S)) = Bo(kCu(S)).



4.1.3. R. We can see that
Ng(R) = R x Ng,(R) = R x Cg,(R) = Cg(R)
Set C = Cg(R) and Cy = Cg,(R). Then Q = R x Z(P) is a Sylow p-subgroup of C and
Z(P) is a Sylow p-subgroup of C;. We also have that
Nu(R) = Cy(R) = R x Cy,(R)
Set Ko = Chy(R). Then N¢,(Z) = KoOp(Ce,(Z)) by the following facts.
Citn(R) € Nay(Z(P)),  Neo(Z(P)) = Cuay( R)Op (Noy( Z(P)))
Noo(Z(P)) C Neo(Z2) = (1, Cao(Z) ), Neo(Z) = Neo(Z(P))Op(Ceo(2))

As (kCy, kN¢y(Z))-module, By(kCy) = N’ @& proj. where N’ is a Broué-Puig module for
By(kCy) and By(kNg,(Z)). Thus by the result above, as (kCy, kKj)-module,

Bo(k‘Co) = NO & pI'Oj.

where Nj is indecomposable and has a vertex AZ(P) (Actually, in the situation here,
Ny = N'). N, gives a stable equivalence between By(kCj) and By(kKp). By a result of
Rouquier, there exists a two terms Rickard complex Yo for Bo(kCp) and Bo(kKp) of the
following form,

Yo;  -—0—-Yy >Ny—>0— ---

where Y is a projective k[Cy x Kg|-module. If Qg %, Ny — 0 is a projective cover of Ny,
then Y, can be taken from a direct summand of @y and vy = v ly,. We know that
By(kC) = Bo(kCq(R)) = kR ®r Bo(kCo), Bo(kCy(R)) = kR ® Bo(kKo)
Thus as k[C x Cy(R)]-module,
By(kC) =N & AR-proj.
where N is a Broué-Puig module for By(kC) and By(kCy(R)). As Nexg(AR) = Cg(R) X
Cy(R), we have M(AR) = N.

The complex Yg can be lifted to a Rickard complex for By(kCs(R)) and By(kCy(R))
as follows. By the canonical epimorphism AR(Cy x Kp)/AR = Cy x Kp, the inflated

complex Yo of k[AR(Cy x K)y)]-modules of Yg can be constructed.
./va’ ...-)0.-)%&)]/%_)0_.)...

Then the induced complex Y = Yo 1Cc(RxCu(R) ig ‘the desired Rickard complex for
By(Cg(R)) and By(Cg(R)). The degree 0 term of Y is Ny 1¢6(®)*Cr(R) and is isomorphic
to N = M(AR). Thus Y has the form

Y; - --0—=Y5SMAR —-0—---

where Y = Y, 1Cc(R)xCu(R)

Let Qo 2, Ny — 0 be a projective cover of Ny as before so that Qg = Yo ® Zy for some
projective k[Cy x Kp]-module and vy = 1 |y,. Set

Q= @VO 1Ca(RXCr(R) y _ ¥ 1Ce(RIXCu(R) 7 _ 7 1Ca(R)xCu(R)
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Then the resulting sequence @ Y N—0isa AR-projective cover of N = M(AR), Q =
Y®dZandv =1 ]y.

By our construction, each indecomposable summand of Y has a vertex AR. Let X’ £
M — 0 be a AR-projective cover of M. Then its Brauer construction X'(AR) —
M(AR) — 0 is a AR-projective cover of kNgxn(AR)-module M(AR). Thus we have a
decomposition X' = X @®W of k[G x H]-modules such that each indecomposable summand
of X has a vertex AR and X(AR) =Y. Now set 4 =y’ | x and set

X; 200 XL5EM-0----

Then by our construction we have X(AR) =Y. And for S C P with S D Z, we have
X(AS) = M(AS).
Now a result of Rouquier says the following fact.

Lemma 4.1. The complez X induces a stable equivalence of Rickard type between By(kG)
and By(kH).
4.1.4. Stable Equivalence. Let W be the (By(kG), Bo(kH))-bimodule given in the pre-
vious subsections. And let P 25 W — 0 be a projective cover of W so that we have an
exact sequence of (By(kG), Bo(kH))-bimodule

XEBPA»M—AO(exact)

where A = (u,v o0 X) with v = ¢/ |w. Set Mp = Q7 !(Ker \) so that we have an exact
sequence of (By(kG), Bo(kH))-modules of the form

0-X—-M @Po—*Mo'—)O
where P, is a projective (By(kG), Bo(kH))-bimodule.

0 — KerhA — X®P -2 M 5 0
|
0 —— KerA — PP My 0

Lemma 4.2. The functor — ®pykc) Mo : mod- By(kG) — mod- By(kH) gives a stable
equivalence of Morita type between Bo(kG) and Bo(kH).

Set A = By(kG) and B = By(kH).

For a nonprojective indecomposable A-module V', Let F(V) be a nonprojective B-
summand of V ® 4 M, so that F(V) is indecomposable and V ® 4 My = F(V') & proj.

Assume that V' | g is a permutation kR-module and is not R-projective. Notice that a
kCy-module V(R) has no projective summand by Lemma 3.1. Assume, furthermore that
V(R) is simple. Then a B-module F(V) is obtained by the following way.

Set Ay = By(kCs(R)/R) = By(kC,) and By = Bo(kK,). Then by a result of Puig-
Rickard [11],
(V®a M)(R) = V(R)®4, M(AR) = V(R) ®4, No
and
(V ®a X)(R) = V(R) @4, X(AR) = V(R) ®4, Yo
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as By(kKp)-modules. Thus
(V®aX)(R) = V(R)®4, Yo

By the discussion on p-locals, we can write V ®4 M = F'(V) @ U’ where F'(V) is
indecomposable and U’ is R-projective. Then

F(V)(R)oU'(R) = (V®aM)(R)=V(R)®4, No

As we are assuming that V(R) is simple, V(R) ® 4, Ny is indecomposabe. In particular,
U'(R) = 0 and U’ is projective. If we set U = V(R) ® 4, No, then by a result of Rouquier
[13, 14], one of the following occurs.

V(IR)®4, Yo : - —0— 0— U—>0—.-- (x.1)

V(R)®4 Yo : -+ —=0— QU)LH U—0—-- (*.2)

where Q(U) 2 U — 0 is a projective cover of a By(kKjy)-module U.
We have proved the following lemma.

Lemma 4.3. Let V be an indecomposable Bo(kG)-module such that V | g is a permutation
kR-module and is not R-projective. Assume, furthermore that V(R) is simple. Then
F(V) =V ®pywe)y M or F(V) = Q7 'Qr(V ®p,e) M) according to the case (x.1) occurs
or the case (x.2) occurs.

Corollary 4.4. Let V be a By(kG)-module satisfying the conditions in the Lemma and
assume that Homy(V, k) @, V = kg @ V'’ for some R-projective kG-module V'.
Then

Homy(F(V), k) ® F(V) = ky @ Vi
for some projective kH-module V. In particular, F(V) |p is an endo-trivial kP-module.
Proof. By our construction of the functor F', we can write

Homy(F(V), k)@ F(V) =kg & V,

where Vj is an R-projective p-permutation kH-module. Thus it suffices to show that
Vo(R) = 0. We use the notations in the discussion before the lemma.
By a result of Puig-Richard,

koo @ Vo(R) = (Homy(V, k) & V)(R) = Hom(V(R), k) ®« V(R) (%)
as kCp-modules. Then for U = V(R) @4, No,
kc, ® Up = Homy(U, k) @, U
as kCp-modules where U, is a projective kKy-module. As kCy(R)-modules, we also have
kcyry ® Ui = Homi(QR(U), k) Qi Qr(U)

where U, is an R-projective kCy(R)-module. By (*), we can see that a source of By(kCp)-
module V(R) is kzpy or Q(kz(p)). By properties of Roquier’s complex Yy, the case (*.1)
occurs if a source of V(R) is kz(py and the case (x.2) occurs if a source of V(R) is Q(kz(p)).
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If the case (*.1) occurs, then U is a simple By(kCn(R))-module. If the case (*.2) occurs,
then an R-projective cover Qg(U) of U as kCy(R)-module is a simple Bo(kCh(R))-
module. Notice that simple By(kCy(R))-modules are one dimensional. Thus Uy = 0 in
the case (x.1) and U; = 0 in the case (*.2). O

5. EXAMPLES

We shall give some examples of groups G with Sylow p-subgroup M,.;(p) where we
could check that simple By(kG)-modules V satisfy the assumption in Lemma 4.3.

Our groups G are constructed from Gy isomorphic to SL(2,q), SU(3,¢?) and Sp(4, q)
for suitably chosen prime power ¢ such that p | ¢+ 1, p| ¢> — g+ 1 and p | ¢* + 1,
respectively. These groups Go have cyclic Sylow p-subgroups and the Brauer trees of
Bo(kGy) are the following shapes. In the figures, xi is an ordinary irreducible characters
of degree k. See the paper by Fong and Srinivasan [3].

SL(2,9), plg+1 SUB,¢*), p|l?—q+1

(4) (%)
X1 Xqg ¢ Xq- X1 Xq® ¢ stz(q—l) Xq(g-1)
O O- @— O

do ®o &2

(s=g+1)

Sp(4,q), p| ¢ +1
X1 Xgs 03] Xq? Xy2 ¢3 Xaqt
—O O

5.1. SL(2,q). Let r be a prime power and p be an odd prime such that p divides r + 1.
Write r + 1 = p"~ ¢, (p,#') = 1,n 2 2. Set ¢ = rP. Then q + 1 = p™¢ for some positive
integer ¢ with (p,¢) = 1.

Set

Go = SL(2,q), Co = SL(2,7). R=G(GF(q)/GF(r))=(z), G=RxG,

Let By = T x Uy be a Borel subgroup of Gy where |Ty| = ¢ — 1 and |Up| = q. We have an

R-invariant subgroup Fy D Z(Gp) of order ¢ + 1 such that Fy N Cy is of order r + 1 and

Bo N FO = Z(Go)

Let Py C Fp be a Sylow p-subgroup of Gp and set P = Rix Py. We have that P = M, ,,(p).
By (kGy) and By(kCp) have two simple modules

Bo(kGo) : ¢o =kg,, ¢1, dimgor =q—1, Bo(kCp) : o = kgy, 61, dimgb =r-1
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A simple module ¢; is the heart of a projective cover P(¢o) = P(kg,)-
%o

P(¢o) = kg, 1°°  and is uniserial of the form P(¢o) = ¢
%o

The entirely same thing occurs for a projective cover Q(6y) of 6p.
Set B = R x By and Pr(kg) = kp 1. Pgr(kg) is an extension of P(kg) and therefore

is uniserial of length 3 with form

Yo

Pr(kc) = ¢

Yo
where ¢y = kg and ¢; |g,= ¢:1. It is not hard to see that ¢; |g is a permutation
kR-module and

Pr(kc)(R) = Q(kcy), ¢1(R) =6,

5.2. SU(3,4%). Let r be a prime power and p be a prime with p 2 5 such that p divides
r?—r+1 Writer?—r+1=p"", (p,f') =1,n22. Set g=7rP. Then ¢> —q+1=p™
for some positive integer £ with (p,£) = 1.
Set,

Go = SU(3,4¢%), Co = SU(3,7%). R=G(GF(q)/GF(r))=(z), G=RxGs

Let By = Ty x Uy be a Borel subgroup of Gy where |Ty| = (g + 1)(¢ — 1) and |Up| = ¢°.

We have an R-invariant subgroup Fy O Z(Gy) of order ¢ — g + 1 such that F; N Cy is of

order 7> —r + 1 and By N Fy = Z(Gy).

Let Py C Fj be a Sylow p-subgroup of G and set P = Rx Fy. We have that P = M,.,(p).
By(kGp) and By(kCp) have three simple modules

By(kGo) : ¢o = kgy, ¢1, dimpéy = q3 -1, ¢y, dimppr=gq(g—1)
Bo(kCo) : 0y = kg,, 01, dimg0, =73—1, 6;, dimpb; =r(r—1)
Simple modules ¢; and ¢, are described as follows.

5.2.1. ¢;. A simple module ¢, is the heart of a projective cover P(¢o) = P(kg,).
%o
P(¢o) = kp, 1°° and is uniserial of the form P(¢y) = ¢
®o
The same thing occurs for a projective cover Q(6p) of 6.
Set B = R x By and Pgr(kg) = kg 1¢. Pg(ke) is an extension of P(kg) and therefore
is uniserial of length 3 with form
Yo
Pr(kc) = ¢1
Yo
where ¢y = kg and ¢ |g,= ¢1. It is not hard to see that ¢; |gr is a permutation
kR-module and
Pp(ke)(R) = Q(kcy), ¢1(R) =6,
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5.2.2. ¢,. Set B = R x By. By the knowledge of the character tables of Gy and B,
we can see that there exists a simple By(kGp)-module ¢, of dimension g(¢ — 1) and the
restriction ¢’ = ¢ |p, is a simple kBy-module which is R-invariant. ¢’ |z(v,) does not
contain kz,). The block of kB which covers ¢’ has a cyclic defect group R and By is
a p'-group. Thus Alperin-Brauer-Dade-Glauberman theory can be applied. Notice that
Cp,(R) is a Borel subgroup of Cy = SU(3,72).

¢’ has a unique extension ¢’ to B as |B : By| is a p-group. The Brauer-Glauberman
correspondent §’ of ¢’ does not contain Z(Cy,(R)) in its kernel. Thus dimy ¢’ = r(r — 1).

We see that dimy ¢’ — dim; @ = q(¢ — 1) — r(r — 1) = 0 (mod p). Thus the extension
¢' of ¢ has a trivial source module and

¢'(R)=¢

¢4 also has a unique extension ¢, to G. Then ¢, | g is an extension of ¢’. Thus ¢y |g= ¢'.
w2(R) is a By(kCp)-module and p2(R) | pnc,= 8. Such a By(kCp)-module must be simple
and

pa(R) = 62
The simple By (kGy)-module ¢, is self-dual and we can see that ¢o®¢2 = kg,® defect 0 blocks.
Thus
vy ® w2 = kg @ R-projective

5.3. Sp(4,q). Let r be a prime power and p be a prime with p 2 5 such that p divides
2+ 1. Write r2 +1 = p" ¢, (p,#)=1,n = 2. Set ¢ = rP. Then ¢* + 1 = p™/ for some
positive integer ¢ with (p,¢) = 1.

Set

Go =5p(4,9), Co=5p(4,r). R=G(GF(q)/GF(r))=(z), G=RxGo

Let By = Ty x Uy be a Borel subgroup of Gy where |Tp| = (¢ — 1)? and |Up| = ¢*. Let

W = Ng(T)/T = { w,, wy ) be the Weyl group of G where w, is a reflection corresponding

to a long root. We have an R-invariant subgroup Fy of order ¢* + 1 such that Fy N Cj is

of order r2 + 1 and By N Fy = Z(Gy).

Let P, C Fyp be a Sylow p-subgroup of Gy and set P = Rix Fy. We have that P = M,,.(p).
By(kGy) and By(kCp) have four simple modules

) 1
BO(kGO) : ¢0 = kG07 ¢1) dlmk d)l = QQ(q + 1)2 - ]-7

: 1 . 1
¢2, dimi ¢ = ¢* — 59(q+ 1)’ +1, ¢, dimegs = Sg(g - 1)°

1
Bo(kCO) : 60 = kco, 01, dimk 01 = 57‘(7‘ + 1)2 - 1,
1 1
0,, dim 8y =1t — 5n(r+ 1241, 63 dimgfs= 5r(r— 1)?

Simple modules ¢;, ¢, and ¢3 are described as follows.



5.3.1. ¢1, ¢2. Let By C K¢ = ( w,, By ) = Lo X V be a maximal parabolic subgroup of
Go. A simple module ¢, is the heart of a projective cover P(¢o) = P(kg,). We have

kKo TGOZ P(kco) D P(;

1
where P’ is a simple projective kGy-module of dimension 5(]((12 + 1). P(¢y) is uniserial

of the form
%o
P (¢0) = ¢
_ %o
The same thing occurs for a projective cover Q(6) of 6.
Set K = R x Ky. Then
ki 1°= Pr(kc) ® P’
where Pr(k¢) is an extension of P(kg). In particular, Pr(kg) is uniserial of length 3 with
form
%o
Pr(kg) = @1
%0
where po = kg and ¢; |g,= ¢;. It is not hard to see that ¢, | is a permutation
kR-module and
Pr(kc)(R) = Q(kc,), ¢1(R) = 6
Write kg, 15°= kg, ® po. po is the Steinberg module of Ko/Vy = Lo = GL(2, q). We have

po 1= P(¢1) © Fy
1
where Fy is a simple projective kGo-module of dimension ~2—q(q2 +1). P(¢1) has the form

(o3}
P(¢1) = ¢0 @ ¢
(o3}

for some simple kGo-module ¢,. The same thing occurs for a projective cover Q(6;) of 6,
and we have a simple kCy-module 6,.

It is not hard to see that py has a unique extension p to K and p is a p-permutaion
module. And we have

p 19= Pr(¢1) ® P"

where Pg(¢1) is an extension of P(¢;). In particular, Pgr(¢;) has the form

¥1
Pr(é1) = @0 ® @2
Yo

where oy = ¢5. It is not hard to see that o, | is a permutation kR-module and

Pr(#1)(R) = Q(61), p2(R) = 6

93
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5.3.2. ¢3. By the knowledge of the character tables of Gy and Ky, we can see that
1 _
there exists a simple By(kGp)-module ¢3 of dimension —2—q(q — 1) and the restriction

¢ = ¢3 |k, is a simple kKo-module which is R-invariant. ¢’ |z, does not contain
kz(s)- The block of kK which covers ¢’ has a cyclic defect group R and Kj is a p’-group.
Thus Alperin-Brauer-Dade-Glauberman theory can be applied. Notice that Ck,(R) is a
maximal parabolic subgroup of Cy = Sp(4,1)).

¢’ has a unique extension ¢’ to K as |K : Kjy| is a p-group. The Brauer-Glauberman

1
correspondent & of ¢’ does not contain Z(Cy,(R)) in its kernel. Thus dim ¢’ = Er(r—- 1)2

1
We see that dimg ¢’ — dimg 6’ = E(q(q — 12 —r(r —1)?) = 0 (mod p). Thus the

extension ¢’ of ¢’ has a trivial source module and
o' (R)="¢

¢3 also has a unique extension 3 to G. Then @3 |k is an extension of ¢'. Thus 3 | k= ¢'.
¢3(R) is a By(kCp)-module and ¢3(R) | knc,= ¢'. Such a By(kCp)-module must be simple
and

p3(R) = 63
The simple By(kGy)-module ¢5 is self-dual and we can see that
@3 ® ¢3 = kg, @ defect 0 blocks

Thus
©5 ® 3 = kg ® R-projective
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