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EXAMPLES OF MOTIVIC COHOMOLOGY OF CLASSIFYING
SPACES (II)
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1. INTRODUCTION

Let G be a compact Lie group. Taking complexification, we can identify the
group G = G¢ as the reductive algebraic group over the complex number field C.
The main result of this paper is the computation of the mod p motivic cohomology
H** (BG;Z /p) of the classifying spaces of algebraic groups (over C) corresponding
Lie groups G. We compute H*’*'(BG;Z/Z) for G = O,, SO,4, Qg and Dg.

2. THE MOTIVIC COHOMOLOGY OF BZ/p

In this section we consider the relation between the motivic and the usual ordi-
nary cohomologies. Let R be Z or Z /p. The motivic cohomology has the following
properties ([6],[7],[9]).

(Cl) H**(X;R) is a bigraded multiplicative cohomology theory in (some
good) category Spc of pointed (algebraic) spaces (the cohomology of a space means
the reduced cohomology of a pointed space); For any map f : X — Y in the
category Spc, we have the cofiber sequence X — Y — Y/X, which induces the
long exact sequence

« H""(X;R) « H""(Y;R) « H""(Y/X : R) « H*""" (X;R) ¢ ...

(In particular, we get the Mayer-Vietoris, Gysin and blow up long exact sequences.)
(C2) There are maps (realization maps)

te" : H™™(X;R) - H™(X(C); R)
which sum up té’*l = @m,nte" the natural ring homomorphism.
(C3) There are ( the Bockstein, the reduced powers ) operations
B: H""(X;Z[p)— H"*"" (X;Z/p)
P H™ (X2 /p) — H* =i+ =D X, 7, /p)

which commutes with the realization map tc.
(C4) For the projective space P™, there is an isomorphism

H**(X A (P"/P"1);R) = H**(X; R){y'}

with deg(y') = (2n,n) and tc(y') # 0.
(C5) For a smooth X, if H™"™(X; R) 20, then

m<n+dim(X), m<2n and m > 0.
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For an element z € H™"(X;Z/p), we define the (weight and difference degree)
w(x) =2n-m, d(z)=m-n
Hence for smooth X, w(z) > 0, and d(z) < dim(X) for nonzero z € H**(X;Z/p).

Remark. For ' € H*(X(C);Z/p), we can define the weight degree w(z') which
is the least number of w(z) such that tc(z) = z'.

Lichtenbaum deﬁned the similar cohomology H[™ (X; R) by using the étale
topology, while H*’ *'(X; R) is defined by using N1snev1ch topology. Since lenev1ch
covers are some restncted étale covers, there is the natural (cyclic) map cl® v
H**(X;R) - H} *'(X; R). We say that the condition BL(n,p) holds if

BL(n,p) : H™™(X:Z) = H'"™(X;Z(,) forallm<n+1

(hence H™™(X;Z/p)= H""(X;Z[p) for all m <n)
and all smooth X. The Beilinson-Lichtenbaum conjecture is that BL(n,p) holds
for all n, p. It is proved that the BL(n,p) condition is equivalent the Bloch-Kato
conjecture (BK) for degree n and prime p. Recently, V.Voevodsky proved the
Bloch-Kato conjecture [10]. Hence BL(n,p) holds for all n and p.
Moreover Suslin-Voevodsky proves H "(X;Z[p) = HJ}(X; u®").
From the dimensional condition (C5) and the above isomorphism, we have iso-

morphisms
H™"(Spec(k); Z/p) =

H™"™(pt; Z/p) = HZ (pt; py") = Hp (pt;Z2/p)  if m<n
and H™"(pt;Z/p) = 0 otherwise. Let 7 € H%!(pt;Z/p) be the element corre-
sponding a generator of HY,(pt; up) = Z /p. Then we get the isomorphism

H*’*’(Spec(k)- Z[p) = H},(Spec(k); Z[p) ® Z /p|r]
since 7 : H} (pt; p®™) = HZ (pt; #®(n+ ))
H** (Spec(R); Z/2) = Z/2[p, 7], H** (Spec(C); Z/p) = Z/pr].

Next we compute the motivic cohomology of P> and BZ/p. By the cofiber map
P*~1 5 P - P*/P"~! and (C4), we can inductively prove that

H** (P~;Z/p) = H** (pt.;Z/p) ® Z/ply]

with deg(y) = (2,1). The Lens space is identified with the sphere bundle associated
with the line bundle. This induces the ring isomorphism for p = odd

H** (BZ/p; Z/p) = Z/ply] ® A(z) ® H"* (pt; Z/p)
with deg(z) = (1,1). However note that when p = 2, we see ([8])

For examples, with deg(p) = (1,1),

x2=yT+:1:p

where p € HY(pt; Z /p) = k* /k** represents —1.

By the above cofiber sequence, we can easily see that P> and BZ/p satisfy the
Kunneth formula for all spaces (while Kunneth formula does not hold for general
X,Y in the mod p motivic cohomology). In particular, we have the ring isomor-
phisms

H** ((P*)*;Z/p) = Z/plys, .- yn] ® H*™ (pt; Z [p)
H** ((BZ/p)n; Z/p) = Z/p[yl’ SA) yn] ® A(xl, ) xn) ® H"* (pt; Z/p)
( when p = 2, 22 = y;7 + z:p).
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This fact is used to define the reduced power operation P? in (C3). Since a
Sylow p subgroup of the symmetric group S, of p-letters is isomorphic to Z /p, we
know the isomorphism

H**(BS,;Z/p) = H*" (BL/p;Z/p)"* = Z/p[Y] ® A(W) ® H"" (pt; Z/p)
with identifying ¥ = y?~! and W = zyP~2. If X is smooth (and suppose p is
odd to simplify arguments), we can define the reduced powers (of Chow rings) as
follows. Consider maps

H?**(X;Z[p) —— H?*#*(X? xg, ES,) —— |
H***(X x BSp; Z[p) = H**(X; L/p) @2+ (pz/p) H*** (BSp; L /p)
where %, is the Gysin map for p-th external power, and A is the diagonal map. For
deg(z) = (2n,n), the reduced powers are defined as

Ati(z) =Y Pz) @Y™+ pPi(z) e WYL,

Hence note deg(P*) = deg(Y?) = deg(y*P~1) = (2i(p — 1),i(p — 1)).

Voevodsky defined ¢ for non smooth X also. By using suspensions maps, he
defined reduced powers for all degree elements in H**(X;Z/p) for all X [8]. Thus
we get the operations in (C3).

Moreover Voevodsky defined the motivic Milnor operation such that Q; =

[Qi—1, PP mod(p) (for details see [8])
Qi i H* (X;Z/p) —» H* ' ~1"+7' ~1(X, 7. /p)

which is derivative, Q;(zy) = Qi(z)y + zQ:(y) if p = 0. For the case p # 0 see [14]
or [7].

3. MOTIVIC COHOMOLOGY OF BO,, AND BSO,.

The motivic cohomology of the classifying space is defined as follows. Let G be a
linear algebraic group over k. Let V be a representation of G such that G acts freely
on V — S for some closed subset S. Then (V — S)/G exists as a quasi-projective
variety over k. According to Totaro ([?]) and V.Voevodsky ([6]), we define
H**(BG;Z/p) = I H**((V - 8)/G;Z/p).
(BG;Z/p) dim(Vy. o s (V= 8)/GiZ/p)

We still know the motivic cohomologies of BG,, and BZ/p. Since BGL, is
cellular, we have

H*’*'(BGLn; Z[p) = Z[plci,....,ca] ® H*’*'(pt;Z/p)

where the Chern class ¢; with deg(c;) = (2¢,4) are identified with the elementary
symmetric polynomial in H2**((P*~)";Z/p). So we can define the Chern class
p*(ci) € H***(BG;Z /p) for each representation p : G = GL,.

Hereafter we assume k = C throughout this paper.

The mod 2 cohomology of the classifying space BO, of the n-th orthogonal
group is

H*(BO,;Z/2) = H*((BZ/2)™ Z/2)5" = Z/2[wn, ..., wy]

where S, is the n-th symmetry group, w; is the Stiefel-Whiteney class which re-
stricts the elementary symmetric polynomial in Z/2[zy, ..., z,]. Each element w? is
represented by Chern class ¢; of the induced representation O(n) C U(n). Let us
write w? by c;.
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Since Qi—1...Qo(w;) # 0, we see each w(w;) = i. However even the module
structure of gr* H*(BO,;Z/2) seems complicated. W.S.Wilson ([11},[1]) found a
good Q(z) = A(Qo, ..., @;)-module decomposition for BO,, namely,

H*(BOn; Z/2) = @i=_1Q(i)Gi with QO---QiGi € Z/2[C1, ...,Cn].
Here G_; is quite complicated, namely, it is generated by symmetric functions
Ea:fi‘“...xii"“xiﬁl...wiifq, k+qg<mn,

with 0 <4 < ... <ip and 0 < j; < ... < jq ; and if the number of j equal to j, is
odd, then there is some s < k such that 2i, 4+ 2° < 2j, < 2i, +2°+1. We can prove
w(G;) =1+ 1 and hence ;

Theorem 3.1. An element x € H*(BO,;Z/2) is w(zx) = s if and only if s is the
mazimal number such that Q;,...Q;, (z) # 0 for some (i1,..,is). Moreover we have
the isomorphisms

H** (BO,;Z/2)= H** (BZ/2);Z/2)%" = Z/2[r] ® (6Q(3)G:).

When n = odd, it is well known that there is the isomorphism O,, & SO,, x Z /2.
Hence we have the isomorphism

H** (BSOams1;Z/2) 2 2/2[r) ® (0Q()G}) with G} =i"G;

where i : SO, = O, is the inclusion. (Note p*i*(w,) # wr, € H*(BOy;Z/2) for
the projection p: O, = SO,.)

Since the direct decomposition of BOj is complicated to write, we only write
here that of SO;3 (note O3 = SO3 x Z/2).

H*(BSO3,Z/2) = Z/Q[wl,'IU2,‘lU3]/(w1) = Z/2[w2,w3]

= Z/2[ca, c3|{1, w2, w3 = Qowz, wawz = Qrws}
> Z /2[cs, cs){w2, Qowz, Qrwz, ¢s = QoQrw2} & Z/2[cs]
= 7Z/2[cs, 3] ® Q(1){w2} & Z/2[cy].
Of course, this case w(w;) = 2 and we have
H** (BSO3;Z/2) = Z/2[7] ® (Z/2[cz, c3] ® Q(1){w2} ® Z/2[ca)).-

For n = even, O, % SO, x Z/2. The motivic cohomology seems difficult to
compute. Even n = 4 it seems complicated. In fact, the realization map t¢ is not
injective (i.e., 7 X y2 = tc(y2) = 0 in the following theorem).

Theorem 3.2. The motivic cohomology H** (BSO4;Z/2) is isomorphic to
Z[2[c2, cal{y2} ® Z /2|7, c2] ® (Z/2[c4){1}
DL /2[c3] ® Q(1){w2} & Z/2[ca) ® (Z/2[c3|Q(2) — Z/2{1}){a})

where a is a virtual element so that tc(cza) = wewzwy, tc(Qoa) = wy, tc(Qra) =
wowy and tc(Q2a) = cawe.
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4. MOTIVIC COHOMOLOGY OF BDg AND BQs

In this section, we compute the mod(2) motivic cohomology of BDg and BQg.
At first, we consider the case Qs. The mod 2 (usual) cohomology is well known
(see Theorem 2.7)

H*(BQg; Z/Z) = Z/2{1,x1,y1,x2, yg,w} ® Z/Q[CQ]
where z? = fz; = y; and |w| = 3. The graded algebra gr* H*(BQs;Z/2) is given
by letting the weight degree by
w(y;) = w(cz) = 0, w(z;) = wlw) = 1.
The facts w(y;) = w(cz) = 0 follows from that they are Chern classes. We can
prove that w(w) = 1 (in fact, we can take w € H*>%(BQg;Z/2).)

Theorem 4.1. We have the bidegree isomorphism
H**(BQs;2/2) = Z/2[7|® gr* H*(BQs;Z/2).
Now we consider the case G = Dg. We recall the mod(2) cohomology.
H*(BDs; Z/2) = (Z/2[z1, x2]/(z122)) ® Z/2[u] =

(®2_,Z/2[yi){ys, =, yiu, ziu} © Z/2{1,u}) ® Z/2[c)]
Here we identify, y; = z? and ¢, = u?. The cohomology operations on H*(BDg;Z[2)
is well known, e.g., (see [Te-Ya])

Qo(u) = (z1 +z2)u =€, Q1Qo(u) = (y1 + y2)co-

Lemma 4.2. There ezist u},uy € H>?(BDg;Z/2) with tu} = z;u € H*3(BDg;Z/2)
(so ul =77 z;u).

Therefore we get gr* H*(BDs;Z/2) which is isomorphic to
(@31 Z/2[yl{ys, i, wiul, ui} @ Z/2{1,u}) ® Z/2[c)]

with w(y;) = w(cz) = 0, w(z;) = w(ui) = 1 and w(u) = w(z;u}) = 2. (Note
u,z;u; € CH*(BG)/2, and z;u. = y;u).

Theorem 4.3. We have the the bidegree module isomorphism
H**(BDg;Z/2) = Z/2[r|® gr* H*(BDs;Z/2).
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