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Abstract

The author considers stochastic volatility models and introduces a new
scheme for pricing Bermudan options under stochastic volatility models.
His approach is the asymptotic expansion method which is based on Malli-
avin calculus.

1 Introduction

The valuation of Bermudan options is very important problem in option pricing
theory. The values of Bermudan options in stochastic volatility models are
calculated with the regression method developed by Longstaff and Schwartz [3].
This method is not suitable for parallel computing.

In this paper, we introduce a new scheme for pricing Bermudan options.
This scheme is very universal and can be applied to problems we can not develop
recombining trees. For example, we can apply to evaluations of derivatives under
SV models.

Our scheme has two keys. One is to derive an approximate formula of the
Joint distribution function of stochastic processes using the asymptotic expan-
sion method. The other is to develop recombining tree with the idea of binning
[2] using the approximate joint distribution function. Using the recombining
three, we evaluate derivatives like Bermudan options under stochastic volatility
models. Our scheme is suitable for parallel computing.

The structure of this paper is as follows. The next section reviews the
stochastic volatility models which are widely accepted in financial industry and
applies the asymptotic expansion method to the model. The 3rd section de-
scribes how to derive our approximate formula of the joint distribution functions
with the asymptotic expansion method, while the following section derives the
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joint distribution function of SABR model. The 5th section presents numerical
results of our new scheme. The final section concludes.

2 Stochastic volatility model

2.1 Definition of stochastic volatility model

Let (Q, F,P, {ft}OStST) be a complete probability space satisfying the usual

hypotheses and T € (0, 0o) denotes some fixed horizon of economy. Let (W (t) , W2 (t)),
0 <t < T, be a 2-dimensional correlated Brownian motion with correlation
given by p: [0,T] — [—1,1] such that

d Wy, Wa), = p(t) dt. (1)

We consider the following stochastic differential equation for X and Y:

dX (t) = B(t,X(¢),Y () dWi(?), (2)
dy (t) = M(t,Y (t) dt+D (¢ Y (t) dWa(t), (3)
(X(0),Y(0)) = (z0,%)€RxR, (4)

Suppose B, M and D satisfy some regularity conditions.

2.2 Asymptotic expansion of stochastic volatility model

We consider an perturbed stochastic process defined as the following stochastic
differential equation:

dX¢(t) = eB(t,X(t),Y*(t) dWi(t), (5)
dye(t) = M(t,Ye(t) dt+eD(t,Y(t)) dWa(t),  (6)
(X€(0),Y*(0)) = (zo,y0) ERxR. (7)

We want to calculate an approximate solution of this model by using the
asymptotic expansion approach. By results of [5], we have the following lemma.

Lemma 2.1. X¢(t) and Y¢ (t) have following approzimate solutions as € — 0
respectively.

N

X(T) = Y éXi(T)/il+o("), (8)
=0
N

Y(T) = > €Yi(T)/it+0(N), (9)

=0



where
_ d'Xe(T)
X)) = —gz— (10)
e=0
_ d'Ye(T)
W)= | (1)

fori=0,1,...,N.

Here, we can calculate X; (T') and Y;(T) analytically. Examples of Y; (T)
are as follows:

YI(T) = M(T) /OTM(h)‘lD(tz,%(tz)) dWa(i:) (12)
YS(T) = M(T) /OTM(h)'lH(tz)zMy,y(tz,%(tz))dtz,

+ 2M(T) /OTM(tI)_l Yi(t:) Dy(ts, Yo(t1)) dWa(t:)  (13)
Y$(T) = M(T) /OTM(tJ)"IYl(tz)3My,y,y(tz%(tz))dtz,

+ 3M(T) /OTMuz)‘l Yi(t:) Ya(t:) My,y(4s, Yo(t:)) dty,

L 3M(T) /OTM(tI)_I Y1(81)2 Dy o (i1, Yo(t2)) dWalts),

+ 3M(T) /OTM(t,)-l Ya(t:) Dy(ts,Yo(t1)) dWa(ts)  (14)

where

N T
M(T) = exp (/0 My(tg,Yo(to))dto>. (15)
(16)
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And examples of X; (T') are as follows:

X (T) =
Xi(T) =

X;(T) =

X3(T)

+

Lo

/ " B (1o, Yo(to), Xo(to)) dWi (o)

2 [ " Xu(t0) B o, Yolto), Xo(to)) dWa (t0)

> [ ¥i(10) Balio, Ya(t0), Xa(t0) Wt
3/OTXl(t0)2By,y(to,Yo(to),Xo(to))dWl(tg)

3 /OTXg(to)By(tg,Yo(to),Xo(tg)) dWi(t9)

6 /OTxluo)n(towx,y(to,%(to),xouo))dwl(to)
5 [ Yato)? Buao, Yoo}, Xolto) Walio)

T
3 / Ya(to) B(to, Yo(to), Xo(to)) dWi (o)

(17)
(18)

(19)
(20)
(21)
(22)
(23)
(24)

(25)

3 Approximation formula of the joint distribu-
tion function

We have to calculate conditional expectations to derive an approximate formula
of the joint distribution function. The next theorem is very useful to calculate
conditional expectations.

Theorem 3.1. Let f € L2(T") forn > 1, ¢} € L(T) for 1 < j < m. Let

{Wi}ic1,...n be an n-dimensional correlated Brownian motion and {Z;},_,

yeens M

be an m-dimensional correlated Brownian motion. We denote (t1,t2,...,ts) ’by

(t).

EUOT/Oh.../Ot"'If(t) AW (ta) -+ dWa (t2) dW: (1) |

T T
{/ g1 (t) dZ1(t),---,/ q7" (t) dZm(t)} ={C1,.--,cm}}
0 1]

T t1 tn—1 R
=/ / / F(8) Ha (1 (8), £ (5)) dbn - - - dto dty,
0 0 0

(26)
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where

d(W;, Z;) = pijdt,

T
% = { / 0 (£) 45 (¢) dt} ,

%,j=1,....m

S®) = {03t )} it et

pt) = SV,

S() = -Z@E)ZIME®),
m(&u(t),T(t) = exp(u(t)+1/2T(t)%),

)
Hu(u(t),2(t)

) d"m(&; u(t), X (t)) !
£=0

dfl dfn

Let X& (T) = (X (T) — Xo(T)) /e and Y& (T) = (0°(T') — 00 (T)) /e.

(27)
(28)
(29)
(30)

(31)
(32)

(33)

We

want to derive the joint distribution function of X¢ (T') and Y§ (T'). Let px4,ve :

R x R — R be a characteristic function of X§ (T) and Y4 (T).

Proposition 3.1. ¢x y has an approximate expression as follows:

N i g [ex — . _ E
oxovs (€,6) = D5 d'E [e p(\/—lflxd(zi’)m/_lgzy (T))]

i=0

fO'f‘ (61752) e RxR.
In case that N = 2,

oxors E08) = BN+ Y E (60X (1) + &% (1) N (7))

VASY:

6
2

~SE|[@Xe (1) + &Y (1)’ N (D)) +0(&)

+ E[(&1X3(T) + &Y (T)) N (T))

where

N (T) = exp (V=1&X1 (T) + V-1&Y: (T)) .

(35)

(36)

By using the inversion formulas of characteristic functions, we get an approxi-
mate formula of the joint probability density function of X§& (T") and Y (T)).

Proposition 3.2. X§ (T') and Y§ (T) have a 3rd order approzimate joint prob-
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ability density function fxg;,y,; as follows:

Proto @) = e,y )~ 3o (B e (D] n(e, 03 D)} - 54 (B (D] n(e i D))
54 (X (Dl n(e 15D} — G5 (B0 (Dl ey D)
2L e @) aen D)+ 15 (B L)) nen D)
4l djfiy {E° (%, (T) n(a, ;D)) Y2 (D)}, (37)
for (z,y) € R x R, where
B[] = E[{a@, @) =@y), (38)
nEy®) = e (- (el T o), (39)

_ [EE[XI (@]  EX @YD) )

X @%@ EY @]

Then, X< (T) and Y¢ (T') have a 8rd order approzimate joint distribution func-
tion Fx,y as follows:

z—Xo(T) py—-Yo(T)
Fxy (@y) = / / Fxo.vs (v,w) dwdv (a1)
0 0

We can calculate conditional expectations in the above lemma by using The-
orem 3.1.

4 Pricing Bermudan options

We introduce a new scheme for pricing Bermudan options under stochastic
volatility models in this section. In order to clarify the dependency of the
variables, we use notations as follows:

Fxy (zo,y0,T,,Yy)
=P (X(T) <2,Y(T) <y|X (0) = 20,Y (0) = 0) - (42)
Px.y (2o, Y0, T bz, Uz, by, uy)
=P (L < X (T) S0, by <Y (T) < 4| X (0) = 70, Y (0) = %0)(43)
We approximate Px y (zo, %0, T, lz, Uz, ly, uy) using results of Section 3. First,
we have an approximate joint distribution function of X and Y by Proposition

3.2. Second, we calculate conditional expectations in the approximate joint
distribution function using Theorem 3.1. Then we have an approximate formula

of Px,y (o, Y0, T, Lz, Uz, by, uy).
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4.1 Bermudan options

Let T be [Ty = 0,71, T%,...,Tp,00] for n > 1 and 7 be a set of stopping time
7: 80 — T. We want to calculate a value V (¢) that is defined as follows:

V() = swE|[C(rX(n),Y(n)|7]. (44)
TE
We consider this option in this section.

4.2 New scheme

Let X be [z1,Z2,...,zn5] and Y be [y1,y2,...,ym] for N > 1 and M > 1
respectively. We define a; for 0 < i < N and b; for 0 < j < M as follows:

—oo i=0

a = {(zi+mi41)/2 i=1,2... ,N—1, (45)
0 i=N
—0 i=0

b = S (zi4wip1)/2 i=1,2,....M—1. (46)
00 i=M

We calculate the value V' (k, 4, §) of the option at time Ty and (X (T%) Y (Tkx)) =
(z:,y;) as follows:
when k = n,

V(k,4,5) = C(Tk zi95), (47)

otherwise,

N,M
V(k’Z’J) = max (C(Tkaxi,yj)a Z V(k+1,fa3)lp(z’]ak+17%',3))a
i=1,j=1

(48)
where
P (iaja k+ 1,;5) =P (xi7y’iaTk+l - Tkaa%_lj aiabj’_l, b_;) . (49)

Derivatives are valued in this scheme by the usual backward induction method.
Since a direct construction of a multidimensional tree would not lead to recom-
bining nodes, the computational effort would grown exponentially in the number
of time steps. However, the computational effort is n x N x M in our scheme.



Table 1: Parameter

To Yo a B p € r
@ 100 03 03 1.0 02 1.0 001
() 100 03 03 05 02 1.0 001

5 Numerical result

To test the validity of the new scheme, we consider Bermudan and European
put option under the SABR model as follows:

dXe(t) = €eY(t) X< (t)® awy (t), (50)
dY<(t) = eaY*(t) dW, (), (51)
d(Xe,Y¢), = pdt, (52)
(X<(0),Y(0)) = (zo,%)€R* xR", (53)
S(T) = exp(rT)X*(T). (54)

Let execution times of Bermudan options be T = {1.0,2.0,3.0,4.0} and the
maturity of European option be T = 4.0. We calculate following values.

Putger = E [exp (—T) (K - § (T))+] : (55)
Putger = supE [exp (-r7) (K — S(T))+] , (56)
T€T

where 7 is a set of stopping time 7: Q — T and K is strike.
In the test of the new scheme, we set N = 100 and M = 50, and define z;,
TN, %1 and yr as follows:

21 = E[X¢(T)]+5E (X‘ (T) — Xo ( T))2]1/2 (57)
v = E[X*(I)] - 5E [(X*(T) - Xo (T))2]1/ ’ (58)
w = EX @) +5E[x @) - Xom)]” (59)
e = E[Y<(D)]-5E [ (1) - Xo@)?] " (60)

(61)

The model parameters used in the test are given in Table 1. We use a 4th order
asymptotic expansion for the joint distribution function and an approximate
cumulative bivariate normal probabilities[1].

We use values which are calculated in Monte Carlo simulations as bench-
marks. In the simulations, we use Ninomiya-Victoir scheme[4] as a discretization
scheme with 8 time steps per a year and generate 107 paths in each simulation.

Results are in Table 2. We compare our estimations of values by an asymp-
totic expansion with forth order to the bechmarks.
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Table 2: Numerical results

Case | Strike | Value Value Value | Imp.Vol. Imp.Vol. | Error | Prob(ITM)
Putger Putgyr Putgyr Putgyr Putgyr
(AE) (AE) (M.C) (A.E.) (M.C.) (bpt)
(i) 50 29812  2.7406  2.6002 0.3220 0.3168 51.620 0.17
(i) 55 3.9393 3.6815  3.5629 0.3171 0.3136 | 35.840 0.22
(i) 60 5.1114  4.8334  4.7367 0.3137 0.3112 24.720 0.27
(1) 65 6.5411 6.2400 6.1324 0.3120 0.3096 | 23.860 0.31
(i) 70 8.1883 7.8583  7.7558 0.3106 0.3086 20.170 0.36
(i) 75 10.0547 9.6885  9.6075 0.3096 0.3082 14.460 0.41
(i) 80 12,1385 11.7289 11.6842 | 0.3089 0.3082 7.340 0.46
(i) 85 14.4529 13.9930 13.9778 | 0.3088 0.3085 2.330 0.50
(i) 90 17.0126 16.4966 16.4789 | 0.3095 0.3092 2.570 0.54
(i) 95 19.7618 19.1804 19.1749 | 0.3102 0.3102 0.760 0.58
(i) 100 22.6899 22.0339 22.0528 0.3111 0.3113 -2.530 0.62
(i) 105 | 25.7867 25.0463 25.0984 [ 0.3120 0.3127 | -6.820 0.65
(i) 110 29.0496 28.2181 28.2975 0.3131 0.3141 -10.210 0.68
(i) 115 32.4811 31.5532 31.6370 0.3147 0.3157 | -10.640 0.71
(i) 120 36.0408 35.0061 35.1040 0.3162 0.3174 | -12.310 0.74
(i) 125 | 39.7158 38.5677 38.6868 | 0.3176 0.3191 | -14.930 0.76
i) 130 43.4977 42.2293 42.3748 0.3191 0.3209 -18.250 0.78
@) 135 47.3857 45.9889 46.1573 0.3206 0.3227 -21.180 0.80
(i) 140 51.3770 49.8482 50.0250 0.3224 0.3246 | -22.360 0.81
(i) 145 55.4463 53.7786 53.9694 0.3240 0.3265 -24.320 0.83
(1) 150 | 59.5876 57.7742 57.9833 | 0.3257 0.3283 | -26.930 0.84
(ii) 90 0.0544  0.0526  0.0548 0.0359 0.0361 -2.310 0.02
(ii) 92 0.0996 0.0944  0.0968 0.0344 0.0346 -1.603 0.04
(ii) 94 0.1857 0.1697 0.1724 0.0331 0.0333 -1.148 0.06
(ii) 96 0.3515  0.3050  0.3077 0.0321 0.0321 -0.773 0.09
(ii) 98 0.6701  0.5431  0.5442 0.0313 0.0313 -0.226 0.16
(ii) 100 1.2559  0.9389  0.9379 0.0308 0.0308 0.164 0.26
(ii) 102 2.2185 1.5514 1.5494 0.0307 0.0306 0.264 0.38
(i) 104 3.5703 24210  2.4205 0.0308 0.0308 0.064 0.52
(ii) 106 5.2187  3.5534  3.5547 0.0314 0.0314 -0.171 0.65
(ii) 108 7.0428 49166  4.9182 0.0322 0.0322 -0.229 0.76
(ii) 110 8.9550 6.4566  6.4591 0.0331 0.0332 -0.435 0.84
(ii) 112 10.9065 8.1231 8.1269 0.0342 0.0343 -0.821 0.89
(ii) 114 12.8745 9.8757  9.8807 0.0353 0.0355 -1.380 0.93
(ii) 116 | 14.8495 11.6856 11.6913 | 0.0365 0.0367 | -2.028 0.95
(i) 118 [ 16.8276 13.5330 13.5391 | 0.0377 0.0380 -2.860 0.97
(ii) 120 18.8071 15.4045 15.4111 0.0388 0.0392 -4.078 0.97
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A Proof of Theorem 3.1

A.1 preliminaries

Lemma A.l. Fized T € (0,00). Let T = [0,T)], p be the Lebesgue measure,
fn € L2(T", 0 (T)",u™) forn > 1 and (W1, Wa,...,W,,) be a n-dimensional
correlated Brownian motion. We denote by &, the set of elementary functions
of the form

k
f (t) = Z cil"'in 1Ai1 x...xAin (t) (62)
irerin=1
where Aj,...,Ar are pairwise-disjoint sets belonging to o (T), and the coeffi-
cients c;,...;, are zero if any two of the indices iy,...,1, are equal. Then there

erists a sequence { f,(ll) }leN € &, such that f,(ll) /" fn and

E

[ T T
[ [ i aw ) aws (n)[g} -
| 0 0

E

[ T T
/0 /0 fn (t) AW, (t,) - - - AW (t1) lg} (a.s.), (63)
where G C o (T).

A.2 Proof

We use symbols in Lemma A.1. We set G as follows:

T T
g= {(/0 q; (t) le(t),...,'/0 g (¢) dZm(t)) =(c1,...,cm)}. (64)

Then we have

. [/OT . ,./OT D (t) AWy (tn) - - - AWy (£1) ‘g}

k

T T
= Y cuE [/0 1a, () AW (2) - - /0 14, () dWl(t)lg]

2140.0y8n=1

T T k R
- / / 3 ChinLag xoene, (6) Ho (1 (8), 5 (8)) db -+ dty
0 0

11yeenyin=1

= /T.../Tf,(})(t)ﬁn(u(t),Z(t))dtn---dt1 (65)
0 0
T T

i R A ACEAACRIO)E A (66)
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We define f, (t) as follows:
fn (t) = 1{tn5---5t1} (t) f (t) ’ (67)

then we have Theorem 3.1.
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