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1 Introduction

We consider the Cauchy problem for the following semilinear heat equation:
Ou
— = Au+ v?, (z,t) € R™ x (0, 00),
ot (1)
u(z,0) = ¢(z) >0, z€R",

where A is the n-dimensional Laplacian, n € N, p > 1, and ¢ is a bounded

continuous function on R".

Existence and nonexistence results for time-global solutions of (1) are

well-known. Here, we put pr = 1+ 2/n.

e Let p € (1, pr]. Then every nontrivial solution of (1) blows up in finite

time.
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o Let p € (pr,0). Then (1) has a time-global classical solution for small
initial data ¢, and has a blowing up solution for large or slowly decaying

initial data ¢.
e Let p € (0,1). Then the solution of (1) exists globally .

For slowly decaying initial data, in [7] Lee and Ni showed a sufficient

condition for finite time blow up on the decay order of initial data.
Theorem 1.1 ([7]). The solution of the equation (1) blows up in finite time
if
lim inf |z|¥®~Vg(z) > ,ui/(p‘l),
—o0
where pg is the first Dirichlet eigenvalue of —A in the ball Bpg.

We put Q = {(r,w) € (0,00) x S"1; r > R, d(w,wp) < cr~*} for some
R>0,¢>0,w € S}, and 0 < p < 1, where d(-,-) denotes the usual
distance on the unit sphere S®~1. Mizoguchi and Yanagida [8] showed a
sufficient condition for finite time blow up on the decay order of initial data

in §2.

Theorem 1.2 ([8]). Assume that initial data ¢ is nonnegative. Suppose that
¢ € L*®(R") satisfies

¢ > K™ in Q for some a > 0 and K; >0,

with 0 < a < 2(1 — p)/(p — 1). Then the solution of (1) blows up in finite

time.

We remark that from the theorem, in particular, for nondecaying initial
data the solution of (1) blows up in finite time, and that the slow decay of

initial data in all directions is not necessary for finite time blow up.
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2 Known results for life span

In this section, we introduce several known results for the life span of solutions

for (1). Here, we define the life span Tiax as
Tmax := sup{T > 0| The problem possesses a unique classical solution in R" x [0,T)}.

First we introduce the results for the life span for the équation with large
or small initial data. we consider the following Cauchy problem:
g—;‘ = Au + uP, (z,t) € R™ x (0,00), @
u(z,0) = Mp(z) >0 z € R,
where n € N, p > 1. Let 9 be a bounded continuous function on R™ and A
be a positive parameter.
In [7], Lee and Ni showed the asymptotic behavior of the life span Tiax(A)

for (2) as large or small .

Theorem 2.1 ([7]). Assume that ¢ is nonnegative.

(i) There exist constants C; > 0 and Cz > 0 such that C1A\'™P < Tpax(A) <
Co AP for large M.

(ii) If liminfy 00 ¥(x) > 0, then there exist constants C; > 0 and C; > 0
such that CyA'™ < Tax(A) < CoA17P for small M.

In [6], Gui and Wang obtained more detailed information of the asymp-
totics for (2). The following result indicates that for large A the supremum
of initial data ¢ is dominant in the asymptotics, and that for small A the
limiting value of ¢ at space infinity is dominant.

Theorem 2.2 ([6]). Assume that ¢ is nonnegative.
(i) We have

1
. -1 _ - 1-p
}gg) Tmax(A) - AP = p—1 ”1/)||L°°(Rﬂ)
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(i) If limpz) oo ¥(z) = oo > 0, then
1
i B Y e 2 S 4
}\m(l) Tmax(A) - X — 1¢°° .

"The proof of the theorem is based on Kaplan’s method, and the assump-
tion limy, o0 ¥(2) = ¥ plays an important role in the proof.
Next, we discuss the life span for the equation with large diffusion. We

shall consider the following Cauchy problem:
Ou
— = DAu+ |ufP~lu, (z,t) € R™ x (0, 00),
ot ) ) (3)
u(z,0) = A + ¢(x) z € R",
where D >0,p>1,n>3,A>0, and ¢ € L°(R™) N L}Y(R™, (1 + |z|)?dz).
In (1, 2] Fujishima and Ishige obtained the asymptotics of the life span
Tmax(D) of the solution of (3) as D — co. We prepare the following notation:

Al-
M@) = [ po)tn, 50) = [ wole)i, 5= 2
Rn R" p—=

Theorem 2.3 ([1, 2]). (i) Assume M($) > 0. Then Tyax(D) < Sy for any
D >0, and

Sx — Tmax(D) = (478\) "2APD™/2[M(¢) + O(D™)]

as D — oo.
(ii) Assume M(¢) =0. Then Tpax(D) < Sy for any D > 0, and

471.5/\)-11,/2

53~ Toma(D) = ¢ /265, DE=DE(g) + O(D7V2)]

as D — oco.
(iii) Assume M(p) < 0. Then Tpax(D) < Sy for any D > 0, and

Sy = Toax(D) = O(D7%71)

as D — oo.



We remark that the problem with large diffusion is equivalent to the
equation with small initial data by changing variable.
At last, we discuss the life span for the following parabolic equations (cf.
3, 4, 5, 10, 11]):
Ju
ot
u(z,0) = ¢(z) >0, z€R"

= Au+ f(u), (z,t) € R" x(0,00),

(4)

where ¢ is a bounded continuous function on R". Suppose that

(

f is locally Lipschitz function in [0, 00),
f&)>0 (£>0),

\/1“7‘%@0.

From the comparison principle to (4), we easily see

> g
Tma.x 2 v
/”'¢||L°°(Rn) f(g)

When f(u) = uP, we always have

N

1 1—p
Thax 2 ])__'III¢IIL°°(R")

A solution u to (4) with initial data ¢ is said to blow up at minimal blow-up
time provided that

T = / &
[[#ll Loo (rm) f(f)

We put p(z) i= e1/(fun eWdy) and A,(5;9) == [gn ply — £)$(y)dy. Tn
[3], Giga, Seki and Umeda obtained the necessary and sufficient conditions

of initial data ¢ for blowing up at minimal blow-up time.
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Theorem 2.4 ([3]). Let u be a solution of (4). Assume that there exist
constants §o > 0 and p > 1 such that f(£)/&P is nondecreasing for & >
- Then u blows up at minimal blow-up time iff one of the following two

conditions for initial data ¢ holds:

There exists a sequence {z,} C R™ such that

|Zn] — 00 and ¢(x + z,) = ||¢|lLo@n) a.-e. in R™ as n — oo;

sup Ay(z; ) = ||@|| Lo (mm).-
zeR™

3 Main results

In this section, we shall show an upper bound of the life span of positive
solutions of the Cauchy problem for a semilinear heat equation:
ou
— =Au+ f(u), (z,t) € R™ x (0,00),
ot (5)
u(z,0) = ¢(z) >0, z€R",
where n € N and ¢ is a bounded continuous function on R*. We assume

that F'(u) satisfies
f(u) > u? foru >0,

with p > 1.
We prepare several notations. For ¢ € S*71, and § € (0,v/2), we set
neighborhood Sg (6):

Se(8) == {n € 8" | — & < 6}.
Define
My := sup { ess.inf (lim inf c/)(rx')) } .

gresn1,550 €8y (8) \ r=+oo
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Theorem 3.1 ([9, 12, 13]). (i) Let n > 2. Assume that My, > 0. Then
the classical solution for (5) blows up in finite time, and the blow up time is

estimated as follows:
1
Tomax < ——M_JP.

-1 >

(ii) Let n = 1. Assume that

T—H—X

max {lim inf ¢(z), léllli{.lof' qb(x)} > 0.

Then the classical solution for (5) blows up in finite time, and the blow up

time is estimated as follows:
1 1P
Tmax < — (max {1;51 inf ¢(z), lim inf ¢($)}) :
Corollary 3.1. (i) Let n > 2. Suppose that

Then the solution u blows up at minimal blow-up time.

(ii) Let n = 1. Suppose that
o {lmint 6(0), liminf #(s) | = o=
Then the solution u blows up at minimal blow-up time.

Idea of the proof of Theorem 3.1 (i). For ¢ € S*! and § > 0, we
first determine the sequences {a;} C R™ and {R;} C (0, 00) as follows:

e |aj| = oo as j — oo,
e a;/|a;| = ¢ for any j € N,

® Rj = (6\/4 - 62/2)|(L_7|
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For R; > 0, let pg; be the first eigenfunction of —A on Bg,(0) = {z €

R"; |z| < R;} with zero Dirichlet boundary condition under the normaliza-

tion || Br. (0) PR; (z)dr = 1. Let pg, be the corresponding first eigenvalue. For
J

the solutions for (1), we define
w;(t) == / u(z + aj,t)pr,(z)dz.

Now we introduce the following two lemmas for the life span of w; and

for the asymptotics for w;(0).

Lemma 3.1 ([12]). The blow up time of w; is estimated from above as fol-
lows:
lOg (1 - Nij;_p(O))

—(p — Duxg,

T, <
for large j.
Lemma 3.2 ([12]). (i) We have

. . . > i oo',-
B 0) 2 et 4 =)

(ii) We have

lim log (1 — uijjl-'p(O))

=1.
300 pugyw} ?(0)

From the definition of w;(t), Tmax < T,,, holds for large j. Hence, we

obtain

Tmax < limsup T,
j+—o0 d

log (1 — pp w; P(0 1-p
< L lim o8 ( “R{iu’ ©) (li,minfwj(O))
p—1j-+c0 — IR, W, ?(0) =400
< —LMI—P.D

p—1 %
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