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Abstract

We discuss the first-order description of non-commutative quan-
tum 2-tori.

1 Introduction

Quantum tori are geometric objects associated with non-commutative
algebras A, with g generating multiplicative groups. When g is a root
of unity, we have a quantum torus which is a Zariski structure (Zilber’s
result).

On the other hand, when g generates a cyclic group of countable
order we hope to construct new kinds of analytic Zariski structures as
non-commutative quantum 2-tori.

In this note we give the first-order description of the quantum
2-tori given in [Z1].

2 Description of the torus 7;(C)

First we give the description of a quantum 2-torus defined over the
complex numbers C. Consider a C-algebra .Az generated by operators
U, U1, V,V~1 satisfying

VU=qUuV, UU'=UWU=VvVi=Vviv=]



where g = €2 with h € R. Let T'; = ¢% be a multiplicative subgroup
of C*.
In the literature, the C-algebra .A3 itself is called a quantum torus.
In this paper, however, the quantum 2-torus Tq2((C) over C associ-
ated with the algebra .AZ and the group I'; is the 3-sorted structure
(Ug, V4, C*) with the actions U and V satisfying

U : u(yu,v)— yuu(yu,v) (1)
V o u(yu,v) — vu(g vy, v)

and
U : v(y,u)— uv(gyv,u) )
V o v(yv,u) = yov(yv,u)

where ¢ : C*/T — C* is a (non-definable) " choice function”, u(yu,v) €

Uy, and v(yv,u) € V.
We also have

Ut u(yu,v) = vy lu"tu(yuy,v) 3)
V-1 u(yu,v) —~ v-lu(gyu,v)
and
U™l v(y,u) = u tv(g vy, u)
1 (4)

V=l o ov(y,u) =y o iv(yo,u)

There is also a function (-|-) called the pairing function which
plays as an inner product

<'|'>Z(V¢XU¢)U(U¢XV¢)—>P (5)
whose properties are given in the next subsection.

2.1 More details

Fix ¢ : C*/T — C*. Put ® = ran(¢). We work with ®2. Take
(u,v) € ®2. Let

Uy = {1 -ulrw,v):myel}, (6)
V(u,v) = {'71 : V(’YQ'U, ’U,) ‘M2 € F}
Then let
U¢ = U(u,v)@bz U(U,'U)’ (7)

V¢ = LJ(U.,v)ecb2 V(u,v)-
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Consider the following sets C*Uyg and C*V:

C*Uy := {x-u(yy,v):(u,v) € @ xeC*yel} (8)
C*Vy = {z-v(yu,v): (u,v) € 2,z € C*,v €T}

The pairing function (5) defined above satisfies the following quan-
titative relations: take (u,v) € ®2, then for any m,k,r,s € N and
q°v(q™v,u) € Vi, and q"u(qu,v) € Uyy,,) we have

(qu(qm’U, u)lqru(qku’ 'U)) — qr—s—km (9)
and

(g"u(g*u,v)|g°v(g™v,u)) = ¢*™ 7" = (¢°Vv(q™v, u)|q"u(q"u, v)) 1.
(10)

Forv ¢l -voru €T -u,
(@°v(¥',u)lg"u(u’,v))
is not defined.

Definition 1 Let ¢ be a choice function of C*/T". The pair (Ug, V)
with operators U,V acting on Uy and V4 satisfying (1) through (4)
and the pairing function satisfying (9) and (10) is denoted (U, V).

3 The first-order theory of T, (F)

Proposition 4.4 of [Z1] claims that once ¢ = €*™™* with h € R is
given any two structures of the form Tq2 (C) are isomorphic. Following
Zilber’s argument in [Z1], we supply here details of his proof.

Proposition 2 (Proposition 4.4, [Z1]) Given ¢ = €*"™* with h €
R any two structures of the form TZ(C) are isomorphic over C. In
other words, the isomorphism type of T2(C) does not depend on the
system of representative ®.

Proof: Fix a q = 2™ with h € R, and set T = ¢%.

Let ¢,v be two choice functions of C*/T. Consider two struc-
tures (U, V)4 and (U, V),. We show that these two structures are
isomorphic.

Suppose ¢ picks (ug,v,y) from C*/T" and 1 picks (ug,vp) from the
same coset of (ug,vy).
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Consider the bases {u(g*u,,vy) : k € Z} of Utu, v,) and {v(g*vg,uy) :
k € Z} of Vi, 4,y in the structure (Uy, V).

Since (ug,vp) and (ug,vq) are in the same coset of C*/T" there are
s,t € Z such that up = g%ug, vo = g'vg.

We want to transfer the structure of U, .,y and Vi, ..y to
U fug,) and V(no,v> as follows. Set

o u(up,vp) := 'ftu(qs“gavg)’

° u(q'“uo,vo) = ng‘ku(uo,vo),

o v(vo, up) := v(gtvg, ug),
o v(g*vo,up) := UO—kUkV(’U(), up),
where k € Z. First notice that we have
[ ]
u(gfug,vo) = vEV*u(ug,vo)

= (qtvg)kv—k(QStu(QSUm”9))
= qktqu“v_ku(qs"'kug,'Ug)
— qkt+stu(q +sug’,vg),

v(qg*vo, ug) = UakUkV(’Uo,UO)
= q‘ksug‘kU’“v(g"vg,ug)

g bk v(g g, )
Vg, Ug)-

— q—skv(qk+t
These relations allow us to show that the operator U and V act on
the set Uy, vy = {u(g*ug, vo) : k € Z} properly, i.e. U and V obey
the rule (1) and (2).

(u-1)

U(g°*u(q°ug, vy))
¢°tU (u(g®ug, vy))
7**q°ugu(g°ug, vg)
upg*tu(gsug, vg)
uou(ug, vg),

U(u(uo, ’Uo))

V(u(ug,v)) = V(qStu(qsug’vg))
QStV(u(qsug, Ug))
g*vgu(g~lgdugy, vg)
q(s_l)tqtvgu(qs_lugvvg)
qtvgq(s—l)tu(qs—lug’vg)
vou(g° lug, ¢'vy)

= Uou(q—luo,UO),



U(U(qkum vo))

(u—4)
V(u(qku0> UO))

I

We also see that the operator

{u(q*vo, uo) : k € Z} properly, i.e.

as well.
(v—-1)
U(v(vo,u0)) =
(v—2)
V(v (v, ug))
(v—-3)
U(v(q*vo,u)) =
(v—4)

V(v(g*vo, uo))

7

U(v(’,“V_"’u(uo, ’Uo))
U(ugV~*g*u(g’ug, v,))
U(qkt“tu(qkﬂug, ’Ug))
qkt+stqk+su9u(qk+sug7 ’Ug)
qkuoqkt+3tu(qk+sug, Ug)

g*upu(g*uo, vo),
V(g***tu (g™ *ug, vg))
qkt+3tv(u(qk+sugvg))
qkt+st,ugu(qk+s—-1ug, ’Ug)
qtvgq(k—k.s—l)tu(qk—#s—lug, 'Ug)
Uou(qk+s—1 )
vou(g®ug, vp).
U and V act on the set Vy; ) =
U and V obey the rule (1) and (2)

{*]

U(v(qtvg, ug))
“gv(qt+lvgv ug))
ugq°q v (g vy, ug)
upVv(quo, uo),

= V(V(qtvw ug))
qt”gv(qtvm ug))
vov (vo, up),

U(g=**v(g* vy, ug))
q_SkU(V(quUg’ ug))
k+t+1'l)g, ug)

k+1+t,
Ug, Ug

q‘skugv(q
qs,ugq—s(k+1)v(q
k‘+1,UO’ UO),

)

uov(q

V(g~*v(q* g, ug))
g™V (v(gFvguy))
q_Squ+tng(qk+tvg, Ug)
qk+t’vgq_3kv(qk+tvg, ug)

g*vov(gFuo, up).



Finally the following relations tell us that we can properly transfer
the pairing function from (Uy, v,) V(vg,ug)) 80 (Uug,ue)s V (wo,u0)):

(V(UO,UO)lu(uO,’Uo)) = (V(qtvg,ug)lq“u(qsug,vg)) — qst—st =1

and

(v(g™vo, uo)lu(g®uo, v0)) = (g7 "v(q™ g, ug)lg*HH u(g¥ Sug, vg))
—_ qst-+-kt—(—sm)-—(m+t)(k+s)

= 4q
We have now shown that the two structures (U, v,)) Vv, u,)) and

(Uuo,vo)s ¥ (vo,u0)) are isomorphic. Therefore so are the two structures
(U,V)¢ and (U,V)¢,. n

—-mk

One notice easily that any particular properties of the complex
numbers are not used in the proof of Proposition 4.4. Hence we see
that Proposition 4.4 can be generalized to quantum 2-tori over any
algebraically closed field F of characteristic zero.

Corollary 3 Suppose F and F’' are isomorphic algebraically closed
fields of characteristic zero. Let ¢ € F and ¢’ € F’ such that both ¢
and ¢’ are transcendental and T' = ¢% and I" = ¢'2 are elementarily
equivalent infinite multiplicative subgroups. Then Tq2 (F) and qu, (F")
are isomorphic as quantum 2-tori.

This enable us to describe the isomorphism type of the quantum
2-tori using the language £, given below.

3.1 The language

From now on we work with F an algebraically closed field of charac-
teristic zero and I' = ¢Z for some q € F (say, transcendental).
Let £, = Equ ={U,V,F,T\U,V,q,u(-,),v(,"),sp,0,1,T,} where
e U,V ,F,T are unary predicates,
e U,V are 4-ary relations,
e g is a constant symbol,

e sp is a ternary predicate such that sp(v,x,y) is interpreted as
v -z = y for the module operation, (sp stands for the scalar
multiplication)

e binary function symbols u(-,-), v(:,-),

e T, is a ternary relation symbol corresponding to the pairing func-
tion.



3.2 The first-order theory of T(F)

Recall that we treat the quantum torus T7(F) as a 3-sorted structure
(U,V,F). Two operators U and V are acting on F*U and F*V. We
view both F*U and F*V as the following equivalence classes; F*U ~
(F x U)/E where for (z,y),(«/,y') € F x U define

(z,y) ~g (@', y) = Iyel (Y =yyAd' =zy7)  (11)

Similarly for F*V.

3.2.1 Two actionson U and V

Two operators U and V are acting on F*U and F*V and we treat
both U and V as 4-ary relations. These actions have the following
properties;
1.Vue U3u e F* (U : u — uu) and
Vvue U eF I eUV:u— v AU 0 — g lud)
2. VWweViveF (V:v— vv)and
VWweVIueF IV eVU:vs quv' AV :ivis uv)
We need to translate the above properties into first-order formu-

las taking into account the equivalence relation (11); first we express
simply that U and V are acting on both F*U and F*U as follows.

o VaVu,VroVuy Vo, Vu! Ve, Vub V) (U(a:l,ul,xg,w) — (z1 € F*A

u; € UNzy € F*Aug € U)) A ((U(xl,ul,xg,uz)/\U(z’l,u’l,;ré, uHA

(z1,u1) ~E (21,u)) = (22, u2) ~E (25, u5)
This formula corresponds to U : F*U — F*U. We need three

more similar formulas expressing V : F*U — F*U, U : F*V —
F*V and V : F*V — F*V.

Next we write down the above properties 1 and 2;

1. VzVudu ((a: eFFAueUAuelF) —» U(ac,u,:n,uu))

This formula corresponds to U : u — uu.
Second part can be translated similarly.

The property 2 is also translated into first-order formulas.
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3.22 VU=qUV

We must write down the equation VU = qUV” using 4-ary relations
U and V. This can be done as follows;

Vx1VuVzaVuaVrsVusVae Vus Vs Vus (V(xl , U1, To, u2) AV (22, ug, 3, ug)A

V(z1,u1, x4, us) AU(x4,us,25,u5) = T3 = T5 Aug = qus)

3.2.3 The pairing
1. VaVyVz (T,,(a:,y,z)—) ((zeVAyeUAzel)vV(zeUAye€
VAze r)))

2. VaVyVzvz' ((Tq(m,y,z) ANTy(y,z,2")) = z- 2/ = 1)

3. If Y ¢ T-voru ¢TI -uthen ternary relation does not hold. This
can be translated into

Vr € VVy € UVzVy € 'V’ € V(z # vz’ = —Ty(z,y, 2))
Ve VVy € UVzVy e I'VY € U(y # vy — —Ty(z,y, 2))

3.2.4 Quantitative properties of pairing functions

Finally we need to take account of quantitative properties of the pair-
ing function (9) and (10) into the theory.

4 Remarks

In this note we only give the first-order description of quantum 2-
tori. Stability issue of the theory and L, , description of the tori are
discssued in the forthcoming paper.
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