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A SUPER ANALOG OF THE KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

SHUNSUKE TSUCHIOKA

1. INTRODUCTION

In the conference, I reported a joint work [KKT] with Masaki Kashiwara (RIMS) and Seok-Jin
Kang (SNU) that proposes a super analog of the Khovanov-Lauda-Rouquier algebras which we
call quiver Hecke superalgebras. Our main results [KKT, Theorem 4.4,Theorem 5.4] establish
a “Morita superequivalence” (see [KKT, §2.4]) between the cyclotomic quotient of the quiver
Hecke superalgebras and the cyclotomic quotient of the affine Hecke-Clifford superalgebras® and
its degeneration.

If you are interested in our work, I believe the best way to grasp the synopsis is reading the
introduction of [KKT] since our motivations and results of the work is best summarized in it.

Acknowledgements The author would like to thank professor Reiho Sakamoto for giving me
a chance to talk in the conference “Topics in Combinatorial Representation Theory” in October
2011 at RIMS Kyoto University.

2. KLR ALGEBRAS AND THE SYMMETRIC GROUPS

Recently, Khovanov-Lauda and Rouquier independently introduced a remarkable family of
algebras (the KLR algebras, the quiver Hecke algebras) that categorifies the negative half of the
quantized enveloping algebras associated with symmetrizable Kac-Moody Lie algebras [KL1,
KL2, Rou| (see Definition 2.1 and Theorem 2.4). An application of the KLR algebras is the
gradation of the symmetric group algebras [BK1, Rou] (see Theorem 2.5) which quantizes Ariki’s

categorification of the Kostant Z-form of the basic ;[p-module V(Ag)?% = @nzo Ko(Proj(Fp6s)).
The story is also valid for its g-analog, the Iwahori-Heck algebra of type A.

Definition 2.1 ([KL1, KL2, Rou]). Let k be a field and let I be a finite set. Take a matriz
Q = (Qij(uﬁu)) € Matf(k[u7 v]) such that Qii(uav) = 07 ng(ua ’U) = jS(’li, ’LL) fOT‘ all Za.] el
(a) The Khovanov-Lauda-Rougquier algebra (KLR algebra, for short) R,(k;Q) for n > 0 is a
k-algebra generated by {zp, 75,6, |1 <p<n,1<a<n,ve I} with the following defining
relations for all p.v e I",1<p,q<n,1<b<a<n-1.
° ege,, =dueul= Zueln €y, TpTq = Lqlp, Tp€y = €4Tp, ® ToTh = TpTq of |a — b > 1,
o 7oty = Quy vy (Tar Tat1)ew, Toey = €50 () Tar ® ToTp =TpTe if P# @,a+ 1,
® (Tama-{—l - xaTa)eu = (xa+17'a - Taxa)ep, = 5ua,ua+1 €v,
® (To+1T6To+1 — ToTo+176)€r = Ouyyn (Zor2 — T6) "N (Quy s (o421 Tor1) — Qupipsr (To Toy1)))ew-

(b) For B =} c;Bi-i € NI with n = ht(8) := Y ;c; Bi, we define Rg(k; Q) = Rn(k;Q)es
where €5 = 3, cceq(p) € and Seq(B) = {(4;)7-; € I"™ | 37,45 = B}
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!They can be regarded as a superanalog of the Ariki-Koike algebras.
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(¢) For A=3;c; Ai-i € N[I] and B € N[I] with n = ht(B), we define
RAK: Q) = Ra(k; Q)/Ra(k; Q)(Tyern 2™ €0) Ra(k; Q),

Rk Q) = Ra(l:@)/Ra(; Q) Tucseatsy 72" e Ra(ki Q).

As a consequence of PBW theorem for KLR algebras, we see that {eg | ht(8) = n} exhausts
all the primitive central idempotents of Rn(k;Q). Thus, Ru(k;Q) = D geny) Rs(k; Q) is a
ht(8)=n
decomposition into indecomposable factors. It is not difficult to see that both R}(k;Q) and
R)(k; Q) are finite dimensional k-algebras.

Definition 2.2 ([KL1, KL2, Rou]). Let A = (a;j)ijer be a symmetrizable generalized Cartan
matriz with the symmetrization d = (d;)ic1, i.e., a unique d € Z%, such that diai; = djaj; for

alli,j € I and ged(di)ier = 1. Take Q4 = (Qf}(u, v)) € Mat(k[u,v]) subject to
Qﬁ(u» ’U) = Oa Qé(uv U) = Qﬁ(v’ u)v t'i,j,——a,-j,O = tj,i,O,—a.-_,— # 0

for alli,j € I where Q{‘j(u,v) =3 pa>0 tijpquPve.
pdit+qdj=—diai;

For n > 0 and ), 8 € N[I] with ht(8) = n, all of Rn(k; Q4), Rs(k; Q4), R)(k; Q4), R}(k; Q*)
are Z-graded via the assignment where v € I",1 < p<n,1<a<n.
deg(e,) =0, deg(zpe,) =2d,,, deg(Taer) = —dy, v, ., -

Definition 2.3. Let R a graded algebra. We denote by Projg,(R) the category of finitely gener-
ated left graded projective R-modules and degree preserving R-homomorphisms.

The grading shift autoequivalence (—1) : Projg,(R) = Proj,, (R) affords a Zlv, v~!]-module
structure on Ko(Projg, (R)) via v = [(~1)].
Theorem 2.4 ([KL1, KL2, Rou]). Let A be a symmetrizable generalized Cartan matriz and let
& = Z[v,v"Y]. Then, the following categorification results hold (though we don’t ezplain how to
define an algebra structure in (a) nor how to define a U (A)-module structure in (b)).
(a) as an o -algebra, we have @, > Ko(Projg (Rn(k; QM) = U,,_“d(A).
(b) as a UZ (A)-module, we have D0 Ko(Projg,(R;\l(k; QM) =V (N~
Here UZ (A) (resp. Uy ™ (A),V()\)¥) is the Lusztig’s of -lattice of Uy(A) (resp. Uy (A),V()))
and we identify A € Pt with >, .; AM(hs) - i € N[I].

Recall that Agl_)l = (25,‘_7' — 0i+1,5 — 5i—l,j)i,jeZ/£Z for £ > 2 and ;[g = g(Aﬁl_)l)
Theorem 2.5 ([BK1, Rouj). Let k be a field of characteristic p > 0. Then, as a k-algebra we

)
have k&, = Ro(l;Q*-1) where Qi (u,v) = +(u — v)Do+berrsthiors for i # j € Z/pL
(though we don’t explain how to choose signs).

You can find related topics to Theorem 2.5 in a well-written survey paper [K11] which can be
seen as an update of [KI12].

3. SUPER REPRESENTATIONS

We briefly recall our conventions and notations for superalgebras and supermodules follow-
ing [BK2, §2-b] (see also the references therein). Although they are different from [KKT, §2],
we review [BK2, §2-b] in order to cite [BK2, Tsuj. In this section, we always assume that in our
field k we have 2 # 0.
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3.1. Superspaces. By a vector superspace, we mean a Z/2Z-graded vector space V = V5 & V¢
over k and denote the parity of a homogeneous vector v € V by 7 € Z/2Z. Given two vector
superspaces V and W, an k-linear map f : V — W is called homogeneous if there exists
p € Z/2Z such that f(V;) C Wy, for i € Z/2Z. In this case we call p the parity of f and denote

it by f.

3.2. Superalgebras. A superalgebra A is a vector superspace which is an unital associative
k-algebra such that A;A; C A;y; for i,j € Z/2Z. By an A-supermodule, we mean a vector
superspace M which is a left A-module such that A;M; C M, for i,j € Z/2Z.

3.3. Super categories. In the rest of the paper, we only deal with finite-dimensional A-
supermodules. Given two A-supermodules V and W, an A-homomorphism f : V. — W is
an k-linear map such that f(av) = (—=1)/%f(v) for a € A and v € V. We denote the set of A-
homomorphisms from V to W by Hom4(V, W). By this, we can form a superadditive category
A-smod whose hom-set is a vector superspace in a way that is compatible with composition.
However, we adapt a slightly different definition of isomorphisms from the categorical one.

3.4. Parity change functors. Two A-supermodules V and W are called evenly isomorphic
(and denoted by V ~ W) if there exists an even A-homomorphism f : V — W which is an
k-vector space isomorphism. They are called isomorphic (and denoted by V & W) if V ~ W
or V ~ IIW. Here for an A-supermodule M, IIM is an A-supermodule defined by the same
but the opposite grading underlying vector superspace (ILM); = M, 1 for i € Z/2Z and a new
action given as follows from the old one a -new m = (—1)%a o4 M.

3.5. Types of simple supermodules. We denote the isomorphism class of an A-supermodule

M by [M] and denote the set of isomorphism classes of irreducible A-supermodules by Irr( A-smod).

Let us assume that V is irreducible. We say that V is type Q if V ~ IIV otherwise type M.

3.6. Super tensor products. Given two superalgebras A and B, A ® B with multiplication
defined by (a1 ®b1)(az®bs) = (—1)%1%2(a1a2) ® (b1bs) for a; € A, b; € B is again a superalgebra?.
Let V be an A-supermodule and let W be a B-supermodule. Their tensor product V® W is an
A ® B-supermodule by the action given by (a ® b)(v ® w) = (=1)*(av) ® (bw) for a € A,b €
B,v € V,w € W. Let us assume that V and W are both irreducible. If V and W are both
of type Q, then there exists a unique (up to odd isomorphism) irreducible A ® B-supermodule
X of type M such that V@ W ~ X @ IIX as A ® B-supermodules. We denote X by V& W.
Otherwise V ® W is irreducible but we also write it as V ® W. Note that V ® W is defined only
up to isomorphism in general and V & W is of type M if and only if V and W are of the same

type.

3.7. Grothendieck groups. For a superalgebra A, we define the Grothendieck group Ko(A-smod)

to be the quotient of the Z-module freely generated by all finite-dimensional A-supermodules
by the Z-submodule generated by

o Vi1 — V3 + V3 for every short exact sequence 0 — Vi = Vo — V3 — 0 in A-smodg.

e M —IIM for every A-supermodule M.

Here A-smodyj is the abelian subcategory of A-smod whose objects are the same but morphisms
are consisting of even A-homomorphisms. Clearly, Ko(A-smod) is a free Z-module with basis
Irr(A-smod). The importance of the operation ® lies in the fact that it gives an isomorphism

(3.1) Ko(A-smod) ®z Ko(B-smod) — Ko(A ® B-smod), [V]® [W]+— [V & W]
for two superalgebras A and B.

2Note that in general we have |A® B| % |A| ® | B| where for a superalgebra C we denote by |C| the underlying
unital associative algebra.
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3.8. Projective supermodules. Let A be a superalgebra. A projective A-supermodule is, by
definition, a projective object in A-smod and it is equivalent to saying that it is a projective
object in A-smodg since there are canonical isomorphisms

Hom 4-smod(V, W)ﬁ = HomA-smodE(Vs W),
Hom 4.smod (V. W) = Hom g smodg(V, IW) (= Hom g_smods (TIV, W)).

We denote by Proj(A) the full subcategory of A-smod consisting of all the projective A-supermodules.

3.9. Cartan pairings. Let us assume further that A is finite-dimensional. Then, as in the
usual finite-dimensional algebras, every A-supermodule X has a (unique up to even isomor-
phism) projective cover Px in A-smodg. If X is irreducible, then Px is (evenly) isomorphic
to a projective indecomposable A-supermodule. From this, we easily see M = N if and only
if Pyy = Py for M,N € lrr(A-smod). Thus, Ko(Proj(A)) is identified with Ko(A-smod)* def
Homgz(Ko(A-smod), Z) through the non-degenerate canonical pairing

(,)4 : Ko(Proj(A)) x Ko(A-smod) — Z,

dimHomg(Py,N) iftypeM =M,

for all M € Irr(A-smod) and N € A-smod. Note that the left hand side is nothing but the
composition multiplicity [N : M]. We also reserve the symbol

w4y : Ko(Proj(A)) — Ko(A-smod)

for the natural Cartan map.

3.10. Clifford superalgebras. The Clifford superalgebra is defined as C, = C®" for n > 0
where C; is a 2-dimensional superalgebra generated by the odd generator C with C? = 1.
Assume v/—1 € k, then C, is a split-simple superalgebra, but |C,| is split-simple if and only if
n is even. We denote by U, = CP" the Clifford module, i.e., a 2(("*1/2_dimensional irreducible
Cn-supermodule (of type Q iff n is odd) characterized by Irr(C,-smod) = {[U,]} noting (3.1).

3.11. Morita superequivalences. We must clarify our meaning of the terminology Morita
superequivalence. Again we emphasize that our meaning of Morita superequivalence in this
article is similar to [K12, BK2, Wan] and different from that of [KKT. §2.4].

Two superalgebras A and B are called Morita superequivalent of type M if there exist superad-
ditive functors F' : A-smod — B-smod and G : B-smod — A-smod such that GoF ~ id, FoG ~ id
and both Fli(4.smod) : Irr(A-smod) — Irr(B-smod), Glirr(B-smod) : Irr(B-smod) — Irr(A-smod)
are type preserving. We say that A and B are called Morita superequivalent of type Q if there
exist superadditive functors F' : A-smod — B-smod and G : B-smod — A-smod such that
Go F ~id®ll, F oG ~ id®Il and induces type reversing bijections

{[V] € Irr(A-smed) | type V = M} — {[W] € Irr(B-smod) | type W = Q},

{[V] € Irr(B-smod) | type V = M} = {[W] € Irr(A-smod) | type W = Q}.
We say that A and B are called Morita superequivalent if they are either Morita superequivalent
of type M or type Q.
Example 3.1. Let A be a superalgebra and e € A a full even idempotent, i.e., e € Ag, e=e
and A = AeA ¥ {3° aiebi | ai,b; € A,n > 0}. Then, A and eAe are Morita superequivalent
of type M.
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Ag‘)) o & o Déz)l 04 0 —--— 0 =0
oo o 1 a ar_y

Agi) 0& o0 —--— 0 & o0 boo 0& 0—0—0 —---
(e 7] [o3] Qg1 (73 (a1} o a2 a3

FIGURE 1. Dynkin diagrams of type Ag) , Dﬁ)l and beo.

Example 3.2. Let A and B superalgebras and suppose there exists a superalgebra isomorphism
AQ®C, — B for some n > 0. Then, A and B are Morita equivalent of type Q (resp. type M)
if n is odd (resp. n is even) via

F : A-smod — B-smod, V — Homg, (U,,V),

G : B-smod — A-smod, W — W Q U,.

4. PARTIAL CATEGORIFICATIONS USING HECKE-CLIFFORD SUPERALGEBRAS

From now on, we reserve a non-zero quantum parameter ¢ € k* and set £ = ¢ — q‘1 for
convenience. Let us define the affine Hecke-Clifford superalgebra [JN, §3]. Although Jones and
Nazarov introduced it under the name of affine Sergeev algebra, we call it affine Hecke-Clifford
superalgebra following [BK2, §2-d].

Definition 4.1 ([JN]). Let n > 0 be an integer. The affine Hecke-Clifford superalgebra H,, is
defined by even generators Xlil, v XEV T, Tho1 and odd generators C1,- -+ ,C,, with the
following relations.

(1) XiX7'=X'X; =1, X:X; = X;Xj for all 1 <i,5 < n.

(2) C?=1,C;C; +C;C; =0 forall1 <i#j<n.

(3) T? = ¢T; + 1, T;Tj = T T, TiTo1 Tk = Tis1 Tk Thy1 for all1 <k <n—2and1<4,j <

n— 1 with |i — j| > 2.

(4) CiX}' = XF'Ci,C X' = XF1C; forall1 < i j <.

(5) T.Ci = Ci1T5, (Ti + £CiCi 1) XiT; = Xiyy for all1 <i<n—1.

(6) T.C; = CiTo, TLX; ' = XF'T, forall1<i<n-1and 1< j<nwithj#i,i+1.

Definition 4.2 ([BK2, Tsu]). Let k be a field whose characteristic different from 2 and take
g € k*.
(a) RepH, is a fullsubcategory of Hn-smod consisting of H,-supermodule M such that the set
of eigenvalues of X; + X;l is a subset of {q(i) | i € Z} for all 1 < j < n® where q(i) =
9. (q2z’+1 4 q—(2i+1))/(q + q—l)-
(b) Put I be the set of vertices of Dynkin diagram X (see Figure 1) where
Ag) (if ¢* is a primitive (2¢ + 1)-the root of unity for some £ > 1)
X = Dﬁ)l (if ¢° is a primitive 2(£ + 1)-the root of unity for some £ >1)
boo (if otherwise and moreove we have g* # 1).
We define for a dominant integral weight A € P* of X a finite-dimensional quotient super-
algebra Hy, = (f*) where g* = [[;c;(X? — q(3) X1 + 1)) and

o 9/ 100X 1200) - (if X = D)
g/ (Xy = 1)MRo) (if X = AS) boo)

3Lt is equivalent to require only the set of eigenvalues of X; + X! is a subset of {g(¢) | ¢ € Z} by [BK2, Lemma
44).
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Remark 4.3. In the setting of Definition 4.2 (b), for M € Hp-smod we have M € RepH, &
NePH,AM=0

Theorem 4.4 ([BK2, Tsu]). Let k be an algebraically closed field whose characteristic different

from 2 and take q € k* and X as in Definition 4.2 (b). Then, we have the following.

(a) the graded dual of K(00) = @,,>0 Ko(Rep Hy) is isomorphic to U; as graded Z-Hopf algebra.

(b) K(\)g = B,>0 Q@ Ko(H) -smo_d) has a left Ug-module structure which is isomorphic to the
integrable highest weight Ug-module of highest weight A.

(¢) B(00) = |,>0!rr(RepHy) is isomorphic to Kashiwara’s crystal associated with U, (g(X)).

(d) B(A) = Un>—0 Irr(H)-smod) is isomorphic to Kashiwara’s crystal associated with the inte-
grable U,(g(X))-module of highest weight X.

(e) K(\)* =B, Ko(Proj(H)2) and K (A) @, ¢ Ko(H2-smod) are two integral lattices of K (\)q
containing the trivial representation [1)] of HY = k. Moreover, K(\)* is minimum lattice
in the sense that K(\)* = U [1.].

Here Uzi is the +-part of the Kostant Z-form of the universal enveloping algebra of g(X) and

Uq is the Q-subalgebra of the universal enveloping algebra of g(X) generated by the Chevalley

generators.

Remark 4.5. Since A-smod is not necessarily an abelian category for a superalgebra A, Theorem
4.4 cannot be seen as a categorification result in the usual sense (see for example [KMS]). For
example, in the identification Theorem 4.4 (b) neither the action of Chevalley generators e; nor
fi are “exact” functors, of course. We just can assign for each simple module identified up to
parity change (which is a basis of the Grothendieck groups (see 3.7)) a well-defined destination
in a “module-theoretic” way.

Remark 4.6. Under the identification (b) and (e) of Theorem 4.4, the Cartan pairing on K(\)g
coincides with the Shapovalov form [BK2, Tsu]. It is expected but not proved so far? that the
decomposition of K(A)g comes from the block decomposition of {#) | n > 0} coincides with
the weight space decomposition of the corresponding integrable highest weight module.

5. AN EXPECTATION AND TWO COUNTEREXAMPLES

Considering both Theorem 2.4 and Theorem 4.4, it is reasonable to expect that in the setting
of Definition 4.2 (b), R)N(X;@%) and H, has a “good relation” as Theorem 2.5. However, we
believe that this expectation never achieved because of the following two facts.

51. X = D{? case. Let ¢ = exp(2rv/—1/8) € k and let chark = 0. In virtue of Theo-
rem 2.4 and Theorem 4.4, the family of (super)algebras {HA°(q)}n>0 (resp. {RA°(k; Q% )}n>0)
categorifies U(g(X))-module (resp. U,(g(X))-module) V(Ap).

However, there is no Morita equivalence between I’HQ"(X )| and Rf" (k; Q%) nor Morita su-
perequivalence of type M between ’Hf° (X) and Rf" (k; @%) whatever superalgebra structure we
impose Rf" (k; @%) on and for any choice of parameters QX. This is because we have

dim Z(|H10(q)]) = 4 # 5 = dim Z(|R}° (k; QX))).

Because #Irr(Modg,(Rf"(k; Q%))) = 2 and Irr(’Hf"(q)—smod) consists of 2 irreducible super-
modules of type M, there is no possibility that ’Hf"(X )} and Rf"(k; Q%) get Morita superequiv-
alence of type Q by defining a superalgebra structure on RQ" (k; Q%) appropriately.

4For the degenerate case, some partial results are known [Ruf].
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5.2. X = Agz) and degenerate case. Let us briefly recall the affine Sergeev superalgebra H,,
introduced by Nazarov in his study of spin Young symmetrizers for the symmetric groups [Naz].

Definition 5.1. (i) The spin symmetric group superalgebra k&, is defined by odd generators
{t: |1 <i < n—1} and the following relations

t2 =1, toty = —tyte if la—b| > 1, teterrte = tegitctort.

(ii) The Sergeev superalgebra is defined as Y, = kS, ® C, (for super tensor product, see §3.6)
where Cyp, is the Clifford superalgebra (see §3.10).
(iii) The affine Sergeev superalgebra H, is the k-superalgebra generated by the even generators
T1,...yZTnyti,...,tn—1 and the odd generators C,...,C, with the following relations.
(i) ziz; = zjz; for all1 <i,j < n,
(ii) C2=1, CiC; +CiC; =0 for all 1 <i # j < n,
(iii) 2 =1, titipats = tipatitivr, titj = titi (li — j| > 2),
(iv) t;C; = Csi(j)ti;
(v) Cizj =z;C; for all1 <i# j<n,
(vi) Ciz; = —z;C; for all1 < i< n,
(vii) tizi = Tiy1ti — 1 — CiCiy1, titipr = Tty + 1 — CiCigq for all 1 <i<n—1,
(Viii) tix; = Tt ifj#4,i+1.
H, is an affinization of the Sergeev superalgebra Y, and H,, has Y, as its finite-dimensional

quotient YV, = H,,° := H,,/(x1) since there is a non-trivial superisomorphism

1 L]
(51) kG; ®Cn—l)k6; % Cp 1®le—)1®0‘, ti@lH\/—__Q‘Si(@(Ci—Ci_;_]).
due to Sergeev and Yamaguchi [Ser, Yam]|. Note that ), is Morita superequivalent to kG, (see
Example 3.2),

Modular representation theory of H,, was considerably developed in [BK2] using the method
of Grojnowski [Gro]. A consequence of [BK2] is that the category of finite-dimensional integral
H-supermodules partially categorifies U™ (g(boo)) (resp. U “(g(Aéi))) when chark = 0 (resp.
chark = 2¢+1 for £ > 1) as Theorem 4.4.

Assume chark = 3 and put X = Ag) (see Figure 1). Take a block subsuperalgebra B of
H11 which categorifies U “(g(X))-, where v = 8ag + 3a;. Although R, (k; Q%) categorifies
U; (9(X))-v, Irr(Modg, (R, (k; @%))) and Irr(B-smod) correspond to different perfect basis at
the specialization v = 1.

Let us explain in detail. By [BK2] (see also [KI2, part II]), we have

(5.2) P Ko(HA0-smod)c = V(Ao), L] lrr(FA°-smod) 2 RP3 2 B(Ag)
n>0 n>0
where the left isomorphism is as U(g(X))-modules and the right isomorphism is as U,(g(X))-
crystals. In virtue of (5.1) and Example 3.2, the same Lie-theoretic descriptions hold when we
a7h0 . —
replace H,,” with kG, .
Recall RP;3 is the set of all 3-restricted 3-strict partitions. A partition A = (Ay,-+-,A;) is
3-restricted 3-strict if the following conditions are satisfied [Kan, K12. LT].
® A\ = Mgy implies A\; € 3Z,
o A — A1 < 3if A, € 3Z,
o \p — A1 < 3if A\, & 3Z.
For each A € RP3 & B(Ag), we denote by V;pi" the corresponding isomorphism class of
irreducibles of k&;. Note that V3P is of type Q if and only if v1(X) := x5y |12k | is odd.
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On the other hand, by [KK, LV] we have
€D Ko(Modg (RA (ki @¥)))c = V(Ao), | | Irr(Modg, (RA°(k; @) 2 B(Ao)

n>0 n>0
where the left isomorphism is as U,(g(X))-modules and the right isomorphism is as U,(g(X))-
crystals. For each A € RP3 = B(Ag), we denote by V,\KLR the corresponding isomorphism class
of irreducibles of R2o(k; QX).
If both Irr(Modg, (R, (k; @%))) and Irr(B-smod) correspond (after the specialization v = 1) the
same perfect basis in the sense of [BeKa] on U(g(X))-module V(Ag), then we must have

dim V3P /dim VR = 2l1+m(A)/2

for any A € RP3 (see [K12, Lemma 22.3.8]). A computer calculation shows that for A = (6,4, 1),
we have dim VKR = 648 while it is known that dim V;pi" = 2880. It may be interesting to point
out that in history this dimension dim pri" = 2880 was first miscalculated as dim V;pi" = 2592
in [MY]. If it were correct, observing such a direct discrepancy between the KLR algebras and

the spin symmetric groups must become more difficult.

6. QUIVER HECKE SUPERALGEBRAS

Definition 6.1 ([KKT, §3.1]). Let k be a field such that 2 # 0 and let I be a finite set with
parity decomposition I = Iogq U Ieven. Fori € I, we denote the parity of i by par(i) € Z/2Z, i.e.,
par(i) =1 if i € Io,qq otherwise 0. Take Q = (Q;j(u,v)) such that
o Qij € k(w,v)/{uv — (=1)Pr@prliyy) for alli,j € I,
® Qij(u,v) =0 foralli,jeI withi=j,
® Qij(u,v) = Qji(v,u) for alli,j €I,
® Qij(u,v) = Qij(—u,v) for all i € Iga,j € 1.
(a) The quiver Hecke superalgebra® R, (k: Q) is the k-superalgebra generated by {zp, 74,€y | 1 <
p<mn,1<a<n,ve I} with parity e(v) =0, zpe(v) = par(vp), Tee(v) = par(v,) par(va+1)
with the following defining relations® for all p,v € I",\1<p,g<n,1<b<a<n-1.

euey = Opvey, 1 = Z e Tpzge, = (—1)Pr PP g 3 e,
pein
Tpey = €,Tp, TaTpey = (=1)Parvalpar(var1)par(v)par(vos1) oo if |a — b| > 1,
r,fe,, = Quawvess(Tar Tat1)€w: Taly = €5 () Tar TaTp€y = (—I)Pa'("?)pa"("“)pa'(""“)mpTaeyifp #a,a+1,
(Tawa+1 - (_l)par(l/a)par(uaﬂ)za,ra)eu = (-Ta+17'a - (_l)par(ua)par(uaH)Taza)eu = 6ua.ua+1 €y,

(To+1T6Th41 — ToTo417b)€w =

Qup.ipy (To+2:T641)—Quy vy 1 (T,Tb+1)

Tpt2—Tp €y if Up = Vpy2 € Ieven,
Quy gy (T64+2:T64+1)—Quy,vpy  (T6:Zb41) .
(=1)Prn) (zpy g — @) 2t I S ev if Vb = Vb2 € Loda,
0 otherwise

(b) For B =3 ,.;Bi-i € NI| withn = ht(B) := Y ,c; Bi, we define Ra(k: Q) = Rn(k;Q)es

where eg = ZueSeq(ﬁ) ey,

5Because when I,aa = 0 the quiver Hecke superalgebra is the same as the Khovanov-Lauda-Rouquier algebra,
the notation R, (k;Q) for the quiver Hecke superalgebra is justified.

6 When v, is odd, Quy.vpyr (To, Tosa) belongs to the commutative ring k[zZ, xs41], and hence we can define
Qup vpt1{Tb4+2:Tb4+1) = Qup,vp g1 (Th1Tbe1)

= 7 as an element of k[z?, To+1, 00|
Tor2" %
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FIGURE 2. Dynkin diagrams of type Aéi) ,Dé_zi_)l and by, with parity. Here ®

indicates an odd vertex.

(c) For A= 3,1 Ai-i € N[I] and B € N[I] with n = ht(B), we define

RA(K; Q) = Ba(k; Q)/Bn(k; Q)(Xyesn 23 €0) Ru(k: Q),
R3(k; Q) = Ra(l; Q)/Ra(k: Q)L cseq(sy 71 €0) Ra(K; Q).

Definition 6.2 ([BKM, KKT]). A generalized Cartan matriz (GCM) with parity is a GCM
A = (aij)sjer with the parity decomposition I = Ieyen U Ioaq such that a;j € 2Z for all i € Iag
and j € 1.
Definition 6.3 ([KKT, §3.6]). Let A = (aij)ijer be a symmetrizable GCM with parity. Take
the symmetrization d = (d;)ic;. Fori,j € I, let Si; be the set of (r, s) where r and s are integers
satisfying the following conditions. Note that S; j =0 when i = j.

(i) 0<r<—a;,0<s< —aj; and dir + djs = ~d;a;5,

(ii)) r€2Z if i € Inaa and s € 2Z if j € Ipqq.

Take a sequence (tijrs)(rs)es,; in k such that tijrs = tjisr and tij—q,;0 # 0 and put

ij(u, v) = Z(T’s)esﬁ tijrsu v € kalw, z) /{zw — (—1)Par(®)par(i)y,2).

Forn > 0 and X, 8 € N[I] with ht(8) = n, all of Rn(k; Q4), Rs(k: Q4), R)(k; Q*), R}(k: Q*)
are (Z x Z/2Z)-graded via the assignment where v € I",1<p<n,1<a<mn.

deg(e,) = (0,0), deg(zpe,) = (2d,,,par(vp)), deg(Taey) = (—du, Guy,vasrs PAr(Va)Pr(Vat1)).

Theorem 6.4 ([KKT, Corollary 4.8, Theorem 3.13]). Let k be an algebraically closed field whose
characteristic different from 2 and take g € k™ and X € Mat;(Z) as in Definition 4.2 (b) and
make X a GCM with parity as in Figure 2. Then, H;\ and R)(X; @%) are Morita superequivalent
(see §3.11) for all X € P* where we identify A € P and >_,c; A(h;) - i € N[I].

Remark 6.5. Actually, in [KKT, Theorem 4.4] we also treat other blocks of H,-smod than
Rep H, where Dynkin diagram without parity of type aeo, Coo, Agl) ) Cél) appear (in addition to
boo, Ag), Dg)l with parity).

(o]
1 e N
o mo oo AN ceo AP IS
Q_1 aQ Q1 aQ (a3} a1 o2 ag
1
Co ©=>0—0—0 —--- Cé) 0= 0—-+— 0 <« O
Qg (23] a2 ag ag a) [+ 728 (e 7}

Remark 6.6. We believe that R, (k; Q%) has simpler representation theory than #; while they
are Morita superequivalent. For example, we conjectured that all the simple supermodules of
R)(k; Q%) are of type M. This “type M phenomenon” are verified in [HW, §6.5]. Moreover,
Hill and Wang claims that R, (k; @4) categorifies the half of quantum Kac-Moody superalgebra
introduced by Benkart-Kang-Melville [BKM].
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