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KKR TYPE BLJECTION FOR E{": ALGORITHMS AND
EXAMPLES

MASATO OKADO* AND NOBUMASA SANO

ABSTRACT. We review the KKR type bijection for the exceptional affine alge-
bra E’él) obtained in our previous paper [4] by giving concise explanations on
algorithms and more examples.

1. AFFINE ALGEBRA E{ AND KR CRysTAL B!

We consider the exceptional affine Lie algebra of type Eél) . We label the nodes
of the Dynkin diagram as in Figure 1 following [2]. Let I be the index set of the
Dynkin nodes, and let a;,0),A; (¢ € I) be simple roots, simple coroots, funda-
mental weights, respectively. Following [2] we denote the projection of A; onto the
weight space of Eg by A; (i € I) and set P = Dicr, ZA;, P = Dics, Z>oA;. Let
(Cij)i,jer stand for the Cartan matrix. For 4,5 € I, i ~ j means that the nodes i
and j are adjacent in the Dynkin diagram. Then C;; = (as|a;) = 2if i = j, = —1
if i ~ j, and = 0 otherwise.

Let us consider the level 0 fundamental representaion of Ué(Eél)) or simplest
Kirillov-Reshetikhin module corresponding to the node 1. It is known that it has
a crystal basis, denoted by B!:!. Following [1] we show the crystal graph of B!

in Figure 2. Here vertices in the crystal graph signify elements of B! and b - ¥/
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FI1GURE 1. Dynkin diagram for Eél)
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FIGURE 2. Crystal graph for B!

stands for the relation

fib =1V, or equivalently b = e;b’

where e; and f; are Kashiwara operators. f;b = 0 (resp. e;b = 0) signifies that
there is no arrow of color i sourcing from (resp. sink into) b. Standard notations

are in order. Let B be a crystal. For b € B we set

ei(b) = max{m € Z>¢ | e]*b # 0},

e(b) = ) _ei(b)A,,
wt(b) = (b) — £(b).

pi(b) = max{m € Zxo | f"b # 0},
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Let By, By be crystals. Then the set By ® By = {by ® ba | by € By1,by € By} is
endowed with the structure of crystal by

b1 @by if pi(b1) 2 €i(b2),

(L.1) ei(b1 ®ba) = { boeb  if gib) < ei(ba)
fili®b2  if pi(b1) > €i(b2),

(1.2) fibr®bz) = { b éfib2 if ‘Pi(bi) < Ei(bz)-

0® b and b® 0 should be understood as 0. One checks that €;, ¢; and wt are given
by

£i(b1 ® bp) = max(ei(by), &i(b1) + €i(b2) — wi(b1)),
wi(b1 ® bz) = max(¢pi(bs), pi(b1) + pi(b2) — €i(b2)),
wi(by ® b2) = wt(b1) + wt(bs).
Tensor product of crystals is associative. In order to compute the action of Kashi-

wara operators e;, f; on multiple tensor products, it is convenient to use the rule
called signature rule. See [3, §2.1).

2. PATH

In what follows we set B = BY!. The set of classically restricted paths in B®L
of weight A\ € Pis by definition

P\, L) = {b € B® | wt(b) = A and e;b = 0 for all i € Ip}.

Using the tensor product rule (1.1) one can check that the following two conditions
are equivalent for b=56; @, ® --- ® by, € B®L and A€ P .

(i) bis a classically restricted path of weight A € P
(ii) by ® --- ® by is a classically restricted path of weight A — wt(bz), and
ei(by) < (A - Wt(b;),d.}’) for all i € I.

Example 2.1. The following three elements of B®S are classically restricted paths.
The dot - signifies ®.

Dbt=0-2-83- - B0 wi(d)=A;1+As

2)b=0-2-8-06-2-Q3 wt(b) = A3

B)b=0-2-0-@-©2-03 wt(b)=As
One checks that b in (1) is a classically restricted path as follows. Firstly, ® is the
unique classically restricted path in B. ® ® @ is classically restricted by the above
criterion with L = 2, since @ is classically restricted and £(®) = Ag + A1, wt(®) =
A1 — Ap. D ® O ® €3 is classically restricted with L = 3, since ® ® @ is classically
restricted and £(23) = Ag, wt(® ® @) = A — 2Ay. We continue these checks until
L =6.

The element of B®L has a grading called energy. To define it we introduce a
local energy function H : BQ B — Z. Since the crystal graph of B® B is connected,
it is defined uniquely, up to a global additive constant, by

1 ifi=0and e(b®b)=ed @V
He;(bRV)=HOV)+{ -1 ifi=0and b ®¥)=>b® et/
0 otherwise.
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We normalize the additive constant by the condition
Hoe®D)=0.

More specifically, the value of H is calculated as follows. Let By be the crystal
graph obtained by forgetting arrows of color 0 from B. One knows that the crystal
graph of By ® By decomposes into three connected components as

By ® By = B(2X1) @& B(K1 +X2) 5] B(Kl +K5),

where B(])) stands for the highest weight Eg-crystal of highest weight A € P and
the highest weight vector of each component is given by 0@ 0, 0®Q, 0 (8. H is
constant on each component, and takes the value 0, —1, —2, respectively. One can
confirm it from the fact that eg(@® @) = ® ® ) and (O R Q) = ® ® €2 belong
to the second and third component. In fact, the value of H is given by

-2 fb®ce s

Hb®c)=4 0 ifb®ces; ,
—1 otherwise

where
S ={oe®@|j>18lu{ece®|j>23}U{eQ®|Jj > 25}
U{e®@0®@|j>261L{e®0)|i=>5,8,10,13,18},
Sz ={@®@ | @ can be reached by following some (possibly zero) arrows from (®}.
With this H the energy function D is defined by
L—-1

D(b1®---®br) =Y _(L—j5) H(b; ®bjs1).
j=1
Example 2.2. The energies of classically restricted paths in Example 2.1 are given
by
(1) D(b) =5(—1) +4(-2) +3(=1) +2(-1) +1-0 = —18,
(2) D(b) = 5(—1) +4(—1) +3(-1) +2- 0+ 1(-2) = —14,
(3) D(b) = 5(—1) +4(=1) + 3(~1) + 2(-1) + 1(~1) = —15.

3. RIGGED CONFIGURATION

We first provide the definition of a rigged configuration that is valid for any
simply-laced affine type g and datum L, and then restrict g and L to Eél) and
the case corresponding to paths we consider in this paper. Fix A € P oand a
matrix L = (Lt(.a)),,,e‘ro,.,-ez>0 of nonnegative integers, almost all zero. Let v =
(mga))ae Io,icZ>o De another such matrix. Say that v is an admissible configuration

if it satisfies _
Z imz(a)aa = Z z'Lga)Aa -

a€ly a€lp
i€Z>0 i€Zs¢
and
P >0 forallacIpand i€ Zso,
where
3.1) p¥ =3 (L§“> min(3, §) — Y, Cap min(s, j)mg.")) :
JE€Zso belp
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(

p; ) is called a vaca.ncy number.

Let v = (m,- )ae Io,i€Z>o be an admissible configuration. We identify v with a
sequence of partitions {¥/(*)},¢j, such that v(%) = (1"‘(“)2"‘ -+). For a partition
u and i € Zs, define

Qi(p) = Z min(u;,1),

the area of the corresponding Young dlagram p in the first ¢ columns. Then setting
Q(a) Q:i(v®) the vacancy number (3.1) is rewritten as

(3.2) P\ = Z L(a) min(3, ])+ZQ(b) 2Q,
JE€Z>o b~a

where b ~ g stands for Cp, = —1 as defined in §1.
Let J = {J (“")}(a i)eloxZso D€ a double sequence of partitions. Then a rigged

configuration is a pair (v, J) of an admissible configuration v and J = {J(@9} such
that J(®9 is a partition contained in the m(*) x p{* rectangle. The set of rigged

configurations for fixed A and L is denoted by RC(A, L).
We define the charge of a rigged configuration. First, define the charge of an

admissible configuration v by
1 .
c(v) =3 Z Z Cap min(J, k)mg-“)mg’)

a,bEIoj,kGZ>o
=Y Y minGG, K LPm{.
a€lp j,k€Z~o

Using (3.1) ¢(v) is rewritten as

(33) )= ( > Pm®P+ Y ming, k)L§“’m£“’)-

€lp,i€Z5g a€lo,j,k€Z50
We then define the charge of a rigged configuration (v, J) by
(3-49) c(v,J) = c(v) + |J|
where |J| = 30, o eroxz0 |J(@),
To return to our case, we use the Cartan matrix (Cyp) of ES" and set
(3.5) L® = L6460 (a € Io,i € Zo)

corresponding to considering paths in (B**)®L. Under this constraint, the formulas
(3.2) and (3.3) are rewritten as

pz( a) _ L5 1 +ZQ(b) (‘1),

b~a
c(v) = Z pPm{® + L Z m® | .
a€lp,i€Z50 k€Z>o

By abuse of notation, the set RC(), L) for E_‘él) with the restriction (3.5) is denoted
by RC(A, L).
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Example 3.1. Three rigged configurations in RC(A; +As, 6), RC(A3, 6), RC(A3, 6)
are illustrated below.

(1)

1[T]o 0 0 0 0 0 0 1L T]o 0 0
1.0 0 0 0 0 0
_8 0 0 ollo
| 1o 0/ lo
o (o o

(2)
o[ T Jo o[ T ]o 111 0 0 o[ ITJo o[ o
11 010 o[ o oo 11
11 o o o
o 10 o
o 1o o

(3)
o[ T Jo o[ [ ]o 1[ T 0 0 ol Lo o[ Jo
1 1 o Jo ol _Jo oo 101
| {0 10 10 i
1o 1o o
o o o

The partitions (1), (2 ... () are depicted from left to right as Young dia-
grams. In the second example, 0 and 1 in v(!) on the left signify pgl) = 0 and
pgl) = 1. Looking on the right we see Jél) = (0), Jfl) = (1,1,0,0). From (3.3) we
have c(v) = —18, hence ¢(v,J) = —14. ¢(v) = —18 is the same for the other two.
c(v,J) = —18,—15 for the first and third example.

4. THE BIJECTION &

In the previous two sections we have introduced two combinatorial objects P(), L),
RC(\L)for \e P',L ¢ Z>p. In [4] we showed

Theorem (Theorem 3.2 of [4]). There exists a bijection ® : RC(A\,L) — P(A, L)
satisfying
(4.1) c(v,J) = D(®(v,J)).

Leaving the proof to [4], we shall describe the bijection @ and its inverse ®~1.
The bijection @ is defined by giving a more fundamental procedure denoted by J.
For (v, J) € RC(A, L) 6 produces a smaller rigged configuration (7, J) in RC(p, L—1)
and an element b of B. The weight p is in fact given by p = A — wt(b). Write by, for
b. We then apply § to (7, J ), obtaining by_;. We eventually arrive at the empty
rigged configuration (v(*) = @ for all a € Ip) in RC(0,0) that should correspond to
the empty path in P(0,0), giving bz,br—1,.-.,b; € B. Then the image of (v, J) by
® is determined as b; ® -+ ® b1 ® b, € P()\, L) C B®L.

The inverse bijection ®~! is defined in a completely similar manner. Given
a rigged configuration (#,J) in RC(p,L — 1) and an element b of B satisfying
€i(b) < {p, ) for all i € Iy, we introduce a procedure é to construct a new rigged
configuration (v,J) in RC(p + wt(b),L). If by ® b2 ® - - - by € P(A, L) is given, we
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start from the empty rigged configuration and apply & L times, thereby obtaining
a rigged configuration in RC(, L).

Before giving the algorithms of  and §, we recall that By is the crystal graph
(see Figure 2) obtained by forgetting arrows of color 0 from B. We call a row in
v(®) singular if its rigging (number on the right in Example 3.1) is equal to the

corresponding vacancy number p§“) (number on the left).

4.1. Algorithm 4. For a rigged configuration (v, J) the outputs (#, J) and b by &
are are given as follows. First set b = @ and o = 1. Viewing the crystal graph of
By (Figure 2), repeat the following process for j = 1,2,... until stopped. From b
proceed by one step through an arrow of color a. Find the minimal integer i > £;_;
such that v(%) has a singular row of length i and set ¢; = 1, reset b to be the sink
of the arrow. A singular row selected previously during the process should not be
selected again. If there is no such integer, then set £; = co and stop. If there are
two arrows sourcing from b, compare the minimal integers and take the smaller one.
If the integers are the same, either one can be taken. The output of the algorithm
does not depend on the choice. Then b is the one just obtained and ¥ is obtained
from (v, J) by removing the rightmost box from every singular row selected by the
above procedure. The new rigging J is defined to be the same if the corresponding
row is not selected, and declared to be singular if selected.

4.2. Algorithm 4. For a given rigged configuration (7, J ) and b € B satisfying
€i(b) < (p,a)) for all i € Iy, the inverse algorithm d of & is described as follows.
From b € B go back the arrow in the crystal graph By. Suppose the color of the
arrow is a. Let the maximal length of the singular row in () be £y. Repeat the
following process for j = 1,2,... until we arrive at ®. Find the maximal integer
i < £;_; such that (%) has a singular row of length i and set £; = i, reset b to
be the source of the arrow. A singular row selected previously during the process
should not be selected again. If there is no singular row in (%), then assume there
is a singular row of length 0 in ©(*) and set Zj = 0. If there are two arrows ending
at b, compare the maximal integers and take the larger one. If the integers are the
same, either one can be taken. The output of the algorithm does not depend on
the choice. The new configuration v is given by adding a box to every singular row
selected by the above procedure. The new rigging J is defined to be the same if
the corresponding row is not selected, and declared to be singular if selected.

4.3. Examples. We apply § successively to the rigged configurations in Example
3.1. We see that each rigged configuration corresponds under ® to the classically
restricted path in Example 2.1. The charge of the rigged configuration agrees with
the energy of the corresponding path as guaranteed by our theorem. See Example
2.2

Let us look at the algorithm in detail in the first example. The top rigged
configuration has no singular row in #(1), hence ¢; = 0o and b = @. Since no box
is removed by the first 4, the next rigged configuration is the same as the top one.
However, the vacancy numbers change. Applying & one proceeds in By as

(D—)Q—)@-—)@—+®—>8—-)®—->@-—>@

withf; =1for1<j<4,¢; =2for5<j<8,¢; =ocfor j =9, obtaining b = (8.
The boxes in the selected rows are shaded.
The third example differs from the second one just by a rigging in v(1),
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