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A Note on the Integral Transforms on a Function Space I, I1

By

Bong Jin KiM

Abstract

In this paper we obtain some results of integration by parts formulas involving integral transforms
of functionals of the form F(y) = f({6},y),..., (6n,y)) for s-a.e. y € Co[0,T], where (¢,y) denotes the
Riemann-Stieltjes integral fOT 6(t)dy(t). Furthermore we obtain the various relationships that exist among
the integral transform, the convolution product and the first variation for a class of functionals defined
on K(Q), the space of complex-valued continuous functions on Q = [0,S5] x [0, T] which satisfy x(s,0) =
x(0,6)=0forall 0 <s<Sand 0 <t <T. Also we obtain Parseval’s and Plancherel’s relations for the

integral transform of some functionals defined on K(Q).

§ 1. Parts formulas involving integral transforms on function space

In a unifying paper [15], Lee defined an integral transform F, g of analytic functionals on
an abstract Wiener space. For certain values of the parameters o and 8 and for certain classes
of functionals, the Fourier-Wiener transform [3], the Fourier-Feynman transform [4] and the
Gauss transform are special cases of his integral transform ¥, g. In [6], Chang, Kim and Yoo
established an interesting relationship between the integral transform and the convolution prod-
uct for functionals on an abstract Wiener space. In this paper we establish several integration
by parts formulas involving integral transforms, convolution products, and the first variations of
functionals of the form F(y) = f({61,y),---,{0a,y)) for s-a.e. y € Co[0, T}, where (8, y) denotes
the Riemann-Stieltjes integral fOT a(t)dy(t).

Let Co[0, T'] denote one-parameter Wiener space; that is the space of all real-valued contin-
uous functions x(t) on [0, 7] with x(0) = 0. Let M denote the class of all Wiener measurable
subsets of Co[0, T'] and let m denote Wiener measure. (Co[0,T], M,m) is a complete measure
space and we denote the Wiener integral of a Wiener integrable functional F by

(1.1) / F(x)m(dx).
Gol0,T]
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Let a and B be nonzero complex numbers. Next we state the definitions of the integral
transform F, gF, the convolution product (F * G), and the first variation 6F for functionals
defined on K = K[0,T1], the space of complex-valued continuous functions defined on [0,T]

which vanish at ¢ = 0.

Definition 1.1. Let F be a functional defined on K. Then the integral transform F, gF of F
is defined by

(1.2) Fop(F)y) = FopF(y) = / F(ax+pBy)ym(dx), yeK
Gol0,T]
if it exists [6, 12, 13, 15].
Definition 1.2. Let F and G be functionals defined on K. Then the convolution product
(F *G)q of F and G is defined by

(1.3) (FxG)(y) = /

Go

[0,7] F (yj-/;x) G(y :/;x) m(dx), ye€K

if it exists[6, 10, 12, 19, 21].

Definition 1.3. Let F be a functional defined on K and let w € K. Then the first variation
OF of F is defined by

d
(1.4) OF (ylw) = 5 FO+Wl—0, yeK

if it exists [2, 5, 12, 17].

Let {61,6,,...} be a complete orthonormal set of real-valued functions in L,[0, 7] and as-
sume that each 6; is of bounded variation on [0, T']. Then for eachy € K and j € {1,2,...}, the
Riemann-Stieltjes integral (6;,y) = fOT 0(t)dy(t) exists. Furthermore

T
(1.5) (65,3 = |0,T)NT) /0 YOd6;0)] < Cjllylloo
with
(1.6) Cj = IOj(T)I + Var(aj, [0,T),

where Var(6,[0, T]) denote the total variation of 8 ion[0,T].
Next we describe the class of functionals which is related to this paper. For0 <o < 1, let
E be the space of all functionals F : K — C of the form

(1.7) FO) = f({6,9) = f((61,5),- -, (6n, 7))
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for some positive integer n, where f@) = f(A1,...,4,) is an entire function of the n complex
variables 4;. ..., 4, of exponential type; that is to say,

(1.8) |f()| < Arexp{Br|d|'*7}

n
for some positive constants Ar and By, where |A|!T7 = 3~ [1;|'1.
j=1
In addition we use the notation
Fi(y) = f;({(6,y))

where f;(1) = ai—jf(,tl,...,,z,,) forj=1,...,n.

Recently [12], Kim, Kim and Skoug established the results that if F and G are elements
of E, then F,gF, (F * G)o, 6F(-|w) and 6F (y|-) are also elements of E, and examined var-
ious relationships holding among F, gF, F4 3G, (F * G)q, 6F and 6G. For related work see
[3,6,10,12,15,17,19,21] and for a detailed survey of previous work see [18].

We introduce the following three existence theorems for the integral transform, the convo-
lution product and the first variation of functionals in E, [12].

Theorem 1.4. Let F € E, be given by (1.7). Then the integral transform FqgF exists,
belongs to E, and is given by the formula

(1.9) FopF () = h({8,y))

fory € K, where

(1.10) h(d) = 2m)="/? / f(aﬁ—l—ﬁ;i)exp{—%llﬁ.lz}dii
Rn

n
where ||il||? = 3 u;? and dii = duy - - - duy,
j=1

Theorem 1.5. Let F,G € E, be given by (1.7) with corresponding entire functions f and g,
respectively. Then the convolution (F * G), exists, belongs to E, and is given by the formula

(1.11) (F *G)o(y) = k((8,y))

fory € K, wiere

(1.12) k() = (27r)_"/2‘/mnf(;ij}§ﬁ)g(i‘_/;ﬁ) exp{——%”ii“z}dii.

Theorem 1.6. Let F € E, be given by (1.7) and let w € K. Then

(1.13) 6F (y|w) = p({(8,7))



23

fory € K, where

(1.14) P =) _{8;;w)fiD.

Jj=1
Furthermore, as a function of y € K, 6F (y|w) is an element of E,;.

Now we state some observations which we use later in this paper. First of all, equation (1.2)

implies that
(1.15) FasF/V2) = F o/ sF )
for all y € K. Next, a direct calculation using (1.4), (1.2), (1.13) and (1.15) shows that

8FagF5/V2\w/V2) = 6F, 5/ 5F (yw)

(1.16) B <
=7 ;wﬁwmﬁmw)

for all y and w in K. Finally, by similar calculations, we obtain that

2
(117 FusOFWNOIVE) = Y267, . s OlW)
forall yand win K, and forall y € K,
(1.18) (FaF) ;) = BFapFi0).

Let
A= {y € Cy[0,T]: yis absolutely continuous on [0, 7] with y’ € L?[0, Ti}.
We note that if we choose z € 1,[0,T] and define w(t) = fot z2(s)ds for t € [0,T], then w is an

element of A, w' =z a.e. on [0,T], and for all v € L;[0,T], (v,w) = (v,w’) = (v,2), where

©,2) = [ v(s)z(s)ds.
The following theorem plays a key role throughout this paper. In this theorem the Wiener
integral of the first variation of functional F is expressed in terms of the Wiener integral of F

multiplied by a linear factor.

Theorem 1.7. Let F € E,; be given by (1.7) and w € A, then

(1.19) / OF (x|w)ym(dx) = / F(x)(z,x) m(dx)
Col0,7]

Gl0,7)

where w(t) = fot z2(s)ds on [0,T] for some z € [,[0,T].
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Proof. Let w(t) = f(; 2(s)ds for some z € L?[0,T]. Using the Gram-Schmit process we can

1

find an orthonormal set {6y, ...,6n,6p+1} With 6,41 = T 2n 1 where

n
Znp1 =2— 2(9,‘,2)9;-
j=1

Then by the Wiener integration formula

/ F(x)(z,x) m(dx)
Col0,7]

_ /C . £((@,x) (Z(GjaZ)(gj,x) s nr, ) ) mid)

Jj=1

n
1 1
— —(n+1)/2 . . a2 2,2 -
(27) Aﬂ+l f(ﬁ)(jzzl(epz)u]"*'”Zn+1“un+l)exp{ 2”“” 2un+l}dun+ldu-
If we evaluate the last integral with respect to #,41, we obtain
n
- 1 - g
/ F(x)(z,x) m(dx) = 2m) ™ (8;,2) / f(@u; exp{— 5 ||u|l2}du-
Col0,T] o R”

On the other hand, since w € A C K, by Theorem 1.6

n n

SFGlw) = 3 (6;,w) fi((B,x) =Y _(0;,2£;(B,x)).

j=1 j=1

Hence by th: Wiener integration formula

[ oFahman=3 02 [ fi@smdn
J¢l0,7] j=1 Gl0,7]
- 1
_ 2 -
—m ;(gj,z) /R fi@exp{ ~5lul? } .
Note that for each j = 1,...,n, the integration by parts formula yields

/Rfj(ﬁ)exp{—%uﬁ}duj

= lim lim [f(ﬁ)exp{—%uf}]j+/Rf(t'i)ujexp{—%uf}duj.

b—ooa——00

But since f is of exponential type, the double limit in the last equation is equal to 0 and so

(-3 -3}



Hence
% 1
6F dx) =202 S @, / exod — L) gt
/CO[O,T] (x|w)m(dx) = (2) J;( 32) Rnf(ﬁ)u;eXP{ 2”"“ } i

and this completes the proof. O

In our next theorem we obtain an integration by parts formula for the products of functionals

in E,.

Theorem 1.8. Let F,G < E, be given by (1.7) with corresponding entire functions f and
& respectively. Then for w € A, we have the following integration by parts formula.

(120 /C XG0+ SF OGO - / FO)GO) (2, y)m(dy),
oLY,

Gol0,T]

where w(t) = fot 2(s)ds for some z € [5[0,T].

Proof. Define H(y) = F(y)G(y) for y € K and let (1) = f(1)g(1). Then H € E, and

SHOIW) = (8, w) (@B, y))+ F(B.yND (6, w)g;((B,3)

Jj=1 Jj=1
= 6F y|w)G(y) + F(»)6G(y|w).
Thus equation (1.20) follows from Theorem 1.7. d

By choosing G = F in Theorem 1.8, we obtain the following corollary.

Corollary 1.9. Let F € E; be given by (1.7). Then for each w € A,

1
(1.21) / F(y)oF (y|wym(dy) = 2 / [FO)(z, y)m(dy),
Gol0,7] Gl0,7T]

where w(t) = f(; z(s)ds for some z € 1[0, T].

As we saw in Theorem 1.6 above if F belongs to E,, then 6F(y|w;) also belongs to E,
as a function of y. Thus if we replace G(y) with 6F(y|w1) in Theorem 1.8, then we have the

following corollary.
Corollary 1.10. Let F € E,, be given by (1.7). Then for each wy,wy € A,

/ (FOISEFCw1)(ylwa) + 5F (3 lwa)6F (ylwi)midy)
(1.22) Gl0.7]
- / FO)SFOIw) (22, ymidy)
Col0,T]

where w;(t) = f(; zi(s)ds for some z; € [5[0,T],i = 1,2.
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As we saw in Theorem 1.4 above if G belongs to E, then F, gG also belongs to E,. Thus
if we replace G with F, gG in Theorem 1.8, then we have the following corollary.

Corollary 1.11. Let F,G € E; be given as in Theorem 1.8. Then for each w € A,

/ FOYSFs 5GOIW) + SF OIw)Fs 5G] midy)
Gol0,7)

(1.23)
- / FO)FagG0)(z,y)m(dy),
Col0,T]

where w(t) = f(; 2(s)ds for some z € [,[0,T].

By replacing F and G by F.gF and F,gG, respectively, in Theorem 1.8, we obtain the
following corollary.

Corollary 1.12. Let F,G € E; be as in Theorem 2.5. Then for each w € A,

/ [ F )0 Fn gGOI) + 6T 5F (3W) Fa s GO)Im(dy)
Gol0,T}

(1.24)
- / FogF ) FagGO) 2, yymidy),
Col0,T]

where w(t) = f(; 2(s)ds for some z € [5[0,T].

§ 2. Various integration formulas and examples

In this section we establish various integration formulas involving integral transforms, con-
volution products and first variations. Furthermore we give some examples to illustrate the
integration formulas in this paper.

In [12], Kim, Kim and Skoug established various relationships holding among F, gF, F, gG,
(F *G)q, 6F and 6G. From these relationships and the results in Section 1 above, we can estab-
lish various integration formulas.

From Theorem 1.7 above we know that the Wiener integral of the first variation of functional
F € E; is expressed in terms of the Wiener integral of F multiplied by a linear factor. On the
other hand, some of the formulas, for example, Formulas 3.3, 3.5, 4.1, 4.2, and 5.2 in [12] give
us the expressions of the first variation of various functionals. Hence it is easy to obtain the
following formulas (2.1) through (2.7) below. We just state the formulas without proofs.

Let w € A with w(t) = f(; z(s)ds for some z € L,[0,T] throughout this section. The paper
[12] was concerned with the class Ep. But as commented in Remark 5.6 of that paper, all the
formulas in [12] still true for functionals in E,. Hence we will assume that F' € E,; in Formula
2.1 through Formula 2.6 and Corollary 2.7 below.



Formula 2.1. From Formula 3.3 of [7], we have
(2.1) B Fa pOF (-|w)y)m(dy) = / FapF()(z,y)m(dy).
Gol0,T] Gol0,T]
Formula 2.2. From Formula 3.5 of [12], we have

n 0
Z< jsW) / [(Fj % ®)a(y) + (F x Gj)a(y)] m(dy)
— Gol0,T]

2.2)
= [ F<Gumzman
Gol0,7]
and if F = G,
ey VI (@) [ (FxF),om@)= [ (F1F),00em@.
j=1 Gol0,T] Col0,T]

Formula 2.3. From Formula 4.1 of [12], we have

/c - (fa,ﬂ/f F(y)oF, ﬁ/fG(ylw)+6 ap/viF yIW)F, /3 \/-G(y)) m(dy)

(24) = /C o (-7:(1,/3F( \/—>5-7:(1,BG( \/_I \/_)+6ﬂﬁF( \/—I \/—) a,BG( ji))m(dy)

- / Fap(F % G)aly)(z,y)m(dy)
Cpl0,7]

andif F =G,

R AT [T e

1

(2.5)
~ | FesF D0 erm@.
Col0,T]

2
Formula 2.4. From Formula 4.2 of [12], we have
% Z <6jaw> Co[0.T] [(fa,ﬂFj *fa,,BG)a(y) + (fa,,BF *fa,ﬁGj)a(}’)]m(dy)
(2.6) ' or

= (FopF * Fo gG)a(y)(z,y)m(dy).
Gol0,T)

Formula 2.5. From Formula 5.2 of [12] we have,

O,B 6 WG +1 6G w d

(-Ez,ﬁF*fa,ﬁG)ia//g 0){z,y)m(dy).
B Jeyo,m

27
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Using the equations (1.10) through (1.12) we obtain the following integration formula for
the Wiener integral of the integral transform with respect to the first argument of the variation.

Formula 2.6. For F € E;, we have

(2.8) /C oy P AP CINOImdy) = 3 (6)w) / F ) viFiOIm(dy).
olY,

]] 0[1

Proof. By (1.16) and Theorem 1.7 we have

@i 2F0m(d F o/ viFO)(2y)m(dy).
\/‘Z W /CO[()T] ap)v3EiOIm(dy) = /CO[O,T] w8/v3iF 0)(z,y)m(dy)

Similarly by (1.17) and Theorem 1.7 we have

ﬁ /
5(6F (-|w m(d )= F, F(y)(z,y)m(dy).
Thus we have the above formula (2.8). O

We next obtain an integration formula for functionals which is a product of elements of E,
by some linear factors.

Corollary 2.7. Let k be a natural number and let zj € L{0,T] for j =1,2,...,k+1. Let
F € E; and let

k
F¥ @) = F¥=10)(z,y) = FO) [ [ z5»9)-

j=1

Then we have the following integral equation.

/ F¥ U yym(dy)
2.9) Gol0.7)

= / SF* N (ylwis 1) (e, YYm(@y) + (2, Wi 1) FE=1)m(dy)
Col0,T] Col0,T]

where F© = F and wy1(t) = [y 2+1(s)ds.

Proof. To prove this theorem we simply take the first variation of the F¥)(y) = F*~1(y)(z,y).

Now we have

J _
SFM (ywiy1) =—FE D@+ twer1)(ze,y + Wi 1)li=o
dat

=6F* =) (z,y) + F*N3) (2, war1).-
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Hence we have

/ SFIE (ylwy s 1)m(dy)

Col0,T1]

= / SF=Y(y) (21, yym(dy) + (zx, wis1) / F¥=1()m(dy)
Col0,T] Col0,T1]

But by Theorem 1.7,

/ SFR (Wi 1)m(dy) = / SF M (z1p1,y)m(dy) = / F¥* U (y)ym(dy)
Gol0,T] Col0,T] Col0,7T]

and this completes the proof. O

We finish this section by giving some examples for the illustration of the integration by parts

formulas.

Example 2.8. Let F(y) = > (6;,y) which is an element of E,-, then we have 6F(y|w) =
j=1

F(w), where w(t) = fot z(s)ds € A. Thus we can obtain

/ SF(ylwym(dy) = /
Col0,T1 Gol0

Since the constant functional G = 1 belongs to E, and its first variation equals to zero, Theorem

1.8 yields the following.

n " T
2.10 8;,3)(z,y)m(dy) = / 0-()2($)ds.
(2.10) > /C 0[0,n<’y><z yym(dy) ,S:: A ($)2s)ds

J=1

n n T
Fwm(dy) = (6j,w) = _ / 0;(5)z(s)ds.
T] j=1 j=1"0

4]

n
Example 2.9. Let G(y) = exp{ ) (6;,y)} which is an element of E,, then we have
j=1

n

6GOIw) =3 (65, w)exp{ 3 (65, } = (6,6,
j=1 j=1

j=1

where w(t) = fot z(s)ds € A. Hence by the Wiener integration formula

6G(ylw)m(dy) = 0-,W/ exp{(6;,y) }m(dy)
o 5501 S [, o el

n

=e”/22(9j,w).

1

From Theorem 1.8 we obtain the following Wiener integral.

.11) / 9;, Ym(dy) =e7*S (0;,w).
CO[O,T]eXP{;My)}(zy)m M=e ;<,w>



n
Example 2.10. Let H(y) = >_[(6;, y)]2 which is an element of E,, then we have,
j=1

SH(|w) = 2Z<0,,w 0;,y) = 22(0,,z)<0,,y>

=1 J=1

30

where w(t) = f(; 2(s)ds € A. Thus we can obtain the following by Wiener integration formula.

| attoboman =23"6,0 [ (6;ymdy =
Col0,T] o= Col0,T]

By Theorem 1.8 we have the following.

2.12) Z /C or [(6, )1 (z,y)m(dy) =
(

Example 2.11. Let L(y) = [ > (8),)] 2 which is an element of E, then we have,
=

§FapLyIw) =282 (6;,w)>_(6),3).
j=1 j=1

From the Wiener integration formula, we have the followings.
n n
/ 6FagLIWIm(dy) = 287> (6;,w) / > (8, y)mdy) =

and

/ Fa gL0) (2,y)m(dy)
CO [0,7]

= 24 "0-, | (z,y) m@y)
/coto,n [na [ﬁjzzl(;y) }(zy}m y

n

2
=0+ B 9;, ,y) m(dy).
'B Col0,T] [FZI( ’ y>:| <Z y> "

From the Corollary 1.11 we have the following.

n

2
2.13) / 6,,9) | (2.y) m(dy) =
o [;( j y)] (z,y) m(dy



Examples 2.8 through 2.11 are interesting to note that we can obtain the Wiener integrals on
the left hand side of (2.10) through (2.13) by using Theorem 1.8 or Corollary 1.11 rather than
direct calculation using Wiener integration formula.

§3. Integral transforms of functionals on function space of two variables

Recently [12] Kim, Kim and Skoug studied the relationships that exist among the integral
transform, the convolution product and the first variation for functionals defined on K[0, T'], the
space of complex-valued continuous functions on [0, 7] which vanish at zero. In this paper we
extend the results in [12] for functionals of two variables.

Let @ =[0,5] x [0,T7] and let C(Q) denote Yeh-Wiener space; that is, the space of all real-
valued continuous functions x(s,#) on Q with x(s,0) = x(0,t) =0 forall 0 < s <Sand 0 <t <
T. Yeh [18] defined a Gaussian measure my on C(Q) (later modified in [20]) such that as a
stochastic process {x(s,) : (s,f) € O} has mean E[x(s,t)] = 0 and covariance E[x(s, #)x(u,v)] =
min{s,u} min{z,v}.

Let M denote the class of all Yeh-Wiener measurable subsets of C(Q) and we denote the
Yeh-Wiener integral of a Yeh-Wiener integrable functional F by

3.1 / F(x)my(dx).
(&(9)]

Let K(Q) be the space of complex-valued continuous functions defined on Q and satisfying
x(5,0) = x(0,1) =0 forall 0 <s <Sand 0 <t < T. Let @ and B be nonzero complex numbers.
Next we state the definitions of the integral transform F, pF , the convolution product (F * G),
and the first variation 6F for functionals defined on K(Q).

Definition 3.1. Let F be a functional defined on K(Q). Then the integral transform F, sF
of F is defined by

(3.2) FogF() = /C o F@xmmr @), yeK©

if it exists [6,12,13,15].

It is obvious that (3.2) implies that
y
FasF (J3) = FopraFO)

forall y € K(Q).

Definition 3.2. Let F and G be functionals defined on K(Q). Then the convolution product
(F *G)q of F and G is defined by

y+ax y—ax
. «(y) = F dx), K
(3.3) (F * G)a(y) /C(Q) (5 )6(>5 ) mri@n, yek@

if it exists [6,10,12,19,21].

31
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Definition 3.3. Let F be a functional defined on K(Q) and let w € K(Q). Then the first
variation 6F of F is defined by

)
(3.4) OF (y|w) = §;F0+1W)lz=o, y<€K(Q)

if it exists [2,5,14,16].

Now we introduce a concept of the function of bounded variation of two variables, and an
integration by parts formula for a Riemann-Stieltjes integral for functions of two variables. The
concept of bounded variation for a function of two variables is surprisingly complex. There are
several nonequivalent definitions. The paper [7] by Clarkson and Adams is useful in sorting
out many of the relationships between the various definitions. In this paper we will use the
definition used by Hardy and Krouse [1,11] which we now review.

Let R = [a, b] X [c,d] and let P be a partition of R given by

a=50<51<-<sSp=b, c=pp<H<---<tp,=d.

A function f(s,t) is said to be of bounded variation on R in the sense of Hardy and Krouse
provided the following three conditions hold.

(a) There is a constant k such that

(3.5) YD 1 fsist)) = fsistj-1) = flsict, 1)+ flsim1,ti-D| Sk
i=1 j=1
for all partition P.
(b) Foreacht € [c,d], f(-,t) is a function of bounded variation on [a, b].
(c) For each s € [a,b], f(s,-) is a function of bounded variation on [c,d].

The total variation Var(f,R) of f over R is defined to be the supremum of the sums in (3.5)
over all partitions P of R. Var(f(-,?),[a,b]) and Var(f(s, ), [c,d]) will denote the total variations
of f(-,t) on [a,b] and f(s,-) on [c,d], respectively, as functions of single variable.

The definition of bounded variation used by Hardy and Krouse has the important property
that if g is continuous on R and f is of bounded variation on R then the Riemann-Stieltjes inte-
grals |, r8(s,)df(s,t) and i) r f(s,8)dg(s,t) both exist and are related by the following integration
by parts formula [9].

Theorem 3.4. Let R = [a,b] x [c,d). Let g(s,t) be a function of bounded variation in the

sense of Hardy and Krouse and let f(s,t) be a continuous function on R. Then the following

integration by parts formula holds.

d
/ g(s,1)df(s,1) =[f(s,08(s,Dlr — / [f(s,0)dg(s, )12

(3.6) R , c
- / [f(s,t)dg(s, )% + /R f(s,t)dg(s,t)



where
Lf(s,0)8(s,D]r = f(b,d)g(b,d) — f(a,d)g(a,d) — f(b,c)g(b,c) + f(a,c)g(a,c),

Lf(s,1)dg(s,D)]5 = f(b,t)dg(b,t) — f(a,t)dg(a,t)

foreacht € [c,d], and
Lf(s,0)dg(s,012 = f(s,d)dg(s,d) — f(s,c)dg(s,c)
for each s € [a,b).

Let {61,65,...,6,} be an orthonormal set of real-valued functions in L>(Q). Furthermore
assume that each 6; is of bounded variation in the sense of Hardy and Krouse on Q. Then for
eachy € K(Q) and j = 1,2,..., the Riemann-Stieltjes integral (0j,y) = fQ 0i(s,t)dy(s,t) exists.
Furthermore ,

T
1(6,7)] =16, T)¥(S, T) - / Y(S,1)d6;(S, 1)

(3.7) s 0
—/0 y(s,T)dBj(s,T)-i-/Qy(s,t)dgj(s,t)l <Cjliyllo

with
(3.8)  C;=6;(S,T)|+ Var(8;(S, -),[0,T1) + Var(8;(-, T), [0, S]) + Var(6;, Q) < co.

In Section 4 below, we show that if F and G are elements of E-(Q) then F, BF (), (FxG)a(-),
OF(-|w) and 6F(y|-) exist and are also elements of E,(Q). Also we examine all relationships
involving exactly two of the three concepts of “integral transform”, “convolution product” and
“first variation” for functionals in E,(Q). Furthermore we obtain Parseval’s and Plancherel’s
relations for functionals in Ey(Q). For related work, see [3,6,10,12,14,15,16,19,21] and for a
detailed survey of previous work, see [17].

We finish this section by introducing a well-known Yeh-Wiener integration formula for func-

tionals £((6,x)):
- ' 1
(3.9) | 5@apmy@n=ony? [ saexe{ 31l }a
Q) R7

where ||i]|*> = 3°7_, % and dii = du; - -~ du,,.

§4. Integral transform, convolution product and first variation of functionals in E(Q)

In our first theorem, we show that if F is an element of E,(Q), then the integral transform
FopgF of F exists and is an element of E,(Q).

33
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Theorem 4.1. Let F € E,(Q) be given by (1.7). Then the integral transform F, gF exists,
belongs to E;(Q) and is given by the formula

(4.1) FapF () =h((8,y))

fory € K(Q), where

- - 1
(4.2) hA) = @n)~"/? / f(aii+BA) exp{ —= nﬁ||2} di.
R 2
Proof. For each y € K(Q), using the Yeh-Wiener integration formula (3.9) we obtain

FapgFO) = [  f(@(B,x)+B(8,y))my(dx)
c(Q)

— 1
—@0" [ fai+p@shes{ -1} i
R’l
=h((8,y))

where 4 is given by (4.2). By [8, Theorem 3.15], h(7l) is an entire function. Moreover by the
inequality (1.8) we have

~ : 1 ~
IACD| 5(27:)—"/2/R Apexp{Br Y lau;+B2;|+" — S|l } da

j=1

But since

lau; + BT < [2au|' 7 + 1282,
we have "

Ih(;i)l S A}_aﬂF exp{BfaﬁF Z I/ljl 1+0‘}’

j=1
where
u2 n
AF,4F = 2n) "2 A (/ exp{BFIZa/ul”" - ?}du) < o0
R

and Br, ;7 = Br(2|B|)' 7. Hence F, gF € E-(Q). O

In our next theorem we show that the convolution product of functionals from E;(Q) exists
and is an element of E,(Q). We may assume that F and G in Theorem 4.2 below can be
expressed using the same positive integer n. For details see Remark 1.4 of [12].

Theorem 4.2. Let F,G € E,(Q) be given by (1.7) with corresponding entire functions f and
g. Then the convolution (F x G), exists, belongs to E;(Q) and is given by the formula

(4.3) (F *G)a(y) = k({8,))
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Jory e K(Q), where

(4.4) k() = (2m)~/? / nf(jf/gﬁ)g(i\_/gﬁ)exp{—%llﬁllz}dﬁ-

Proof. For each y € K(Q), using the Yeh-Wiener integration formula (3.9) we obtain

* _ (5,y)+a(5,x} <§ay>*a<§vx> m X
FrGu0)= | P )o(FH e

~m)™? / nf(@’y\)/;“ﬁ)g( @y \>/2T %) exp ~ 1P} d

=k((8,y))

where k is given by (4.4). By [8, Theorem 3.15], k(1) is an entire function and

= —-n/2 . I/lj|+|auj[ H—U._l 12| g
jh) < @ [ nAFAGexp{(BFH&;)Jzﬂj(————f2 ) 3 lar}

By the same method as in Theorem 4.1, we have

k()] < AFecra eXP{B(F*G)a > l/ljl”"},
j=1

Jj=

where B(r.c), = (Br + Bg)2'*)/2 and
2 n
A(F*G)a = (271')‘"/2AFAG (/ CXP{(BF+BG)(\/§|a'u|)1+‘T _ %}du) < oo,
R

Hence (F * G), € E,(Q). O

In Theorem 4.3 below, we fix w € K(Q) and consider §F(y|w) as a function of y, while in
Theorem 4.4 below, we fix y € K(Q) and consider 6F (y|w) as a function of w.

Theorem 4.3. Let F € E,(Q) be given by (1.7) and let w € K(Q). Then
4.5) SF(ylw) = p((6,y))

fory € K(Q), where

n

4.6) P =>_(8;,w) ;D).

j=1

Furthermore, as a function of y € K(Q), 6F (y|w) is an element of E-(Q).
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Proof. Fory € K(Q),
a - —
6F(y|w) zg;f(<9,y> +t<01 w))|t=0

=Z(91,W)fj(<5,y)) = p((8,y))

j=1

where p is given by (4.6). Since f (_/i) is an entire function, _f]'(;i) and so p(;l') are entire functions.
By the Cauchy integral formula we have

1 FQL, - Ly, )
(A1, Ajy e Ag) = — dg.
T4y )= 2m IL-4;l=1 -7 ¢

By the inequality (1.10), for any ¢ with |{ — 4| = 1, we have

f(/lly"'a{""’/ln)

(-2, <Apexp{Brl| |7+ 42|+ + A1)
j

n

<Af exp{2]+"Bp [z |4;]1H7 + 1] }

Jj=1

Hence n
|£i(D)] < Arexp{2'*7Br} eXP{Z]’L"BF > |/lj|1+a}a
j=1
and so
n n
I < D18 WD < Askiwy eXP{Baﬁ(-|w) > |/lj|'+"}

j=1 j=1

where
n
Asrwy = Arexp{27Br} Wl ¥ Cj < 00
j=1

with C; given by (3.8) and Bsr(.w) = 2! T Br. O

Theorem 4.4. Lety € K(Q) and let F € E5(Q) be given by (1.7). Then
4.7 SF(y|w) = q({6,w))

Jor w € K(Q), where

(4.8) ad = 4;£((B.y).

j=1

Furthermore, as a function of w, 6F (y|w) is an element of E,(Q).
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Proof. Equations (4.7) and (4.8) are immediate from the first part of the proof of Theorem
4.3. Clearly ¢(1) is an entire function. Next, using the estimation for |f;| we saw in the proof

of Theorem 4.3 above we obtain,

g <D 14,16,

j=1

n
<Arexp{2'"Br}exp{2" 7B yIILT(CITT+ -+ Y 14y,
j=1

Since t < exp{t!*7} forallz > 0,
n n 140 n |
> 1Al Sexp{(Zlfljl) }SCXP{n”"Zlﬂjl +"}
J=1 Jj=1 Jj=1

and so

n
|q(§)| < A5F(y|.) exp{BrgpM.) Z l,lj,1+0'}
Jj=1

where Bspy.) = n'*7 and
A(sp(y|.) = Ap exp{21+‘TBp}exp{21+"Bp “y”i:a'(cll-i—a' +- 4 C,lﬂr)} < 0.
Hence, as a function of w, 6F (y|w) € E,(Q). O

Now, we establish all of the various relationships involving exactly two of the three concepts
of “integral transform”, “convolution product” and “first variation” for functionals belonging to
E-(Q). The seven distinct relationships, as well as alternative expressions for some of them, are
given by equations (4.9) through (4.15) below.

In view of Theorem 4.1 through Theorem 4.4 above, all of the functionals that occur in this
section are elements of E(Q). For example, let F and G be any functionalé in E,(Q). Then
by Theorem 4.2, the functional (F x G), belongs to E,(Q), and hence by Theorem 4.1, the
functional F, g(F * G), also belongs to E,(Q). By similar arguments, all of the functionals that
arise in equations (4.9) through (4.19) below, exist and belong to E,(Q).

Once we have shown the existence theorems (Theorems 4.1 through 4.4 above), the proofs
of the Formulas 4.5 through 4.11 below are exactly the same as those in [12]. Hence we just

state the formulas without proofs.

Formula 4.5. The integral transform of the convolution product equals the product of the
integral transforms:

(49 Fap(F*G)a®) = FapF (52 ) FasG( 2 ) = Fo yy sFOIF, //2G0)

&
&)

2
for all y in K(Q).
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Formula 4.6. A formula for the convolution product of the integral transform of functionals
from E,(Q):

(fa,ﬁF*faﬁG)a()’)
— ()32 BBy
4.10) =(2n) A3nf(ar+ﬁ(9,y)+ﬁu)
N . [ i
g(afs+ 7_—2-(9,)7) - ﬁu) exp{— > }dud?ds
for all y in K(Q).

Formula 4.7. The integral transform with respect to the first argument of the variation
equals 1/ times the variation of the integral transform:

n

1
(4.11) FapOF (-w))(y) = [—35}—"”31: Olw) = Z(G’j, w) FopFi(»)
j=1

for all y and w in K(Q).

Formula 4.8. The transform with respect to the second argument of the variation equals 8
times the variation of the functional:

4.12) Fap(6F (y|))(w) = BF (y|w)
for all y and w in K(Q).

Formula 4.9. A formula for the first variation of the convolution product of functionals
from E,(Q):

n

6;,
@.13) SF + Gl = 3 \’/; ) (Fy% Glal) + (F+Ga)]

j=1
for all y and w in K(Q).

Formula 4.10. A formula for the convolution product, with respect to the first argument of
the variation, of the variation of functionals from E,(Q):

(4.14) (6F (-|w) x6GCIw)a() = > > _(8;,w) (61, w)(F; * G1)a(y)

j=11=1
for all y and w in K(Q).

Formula 4.11. A formula for the convolution product, with respect to the second argument
of the variation, of the variation of functionals from E,(Q):

1 2 &
4.15) (SFO1)*8GO|alw) = 56F GW)SGOIw) - -‘;— > Fi(»)G,()
j=1

for all y and w in K(Q).
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Finally, letting G = F in equations (4.9), (4.13), (4.14) and (4.15) above, yields the formulas

(4.16) Fap(F % F)oa(y) =[F, 5/ /sF O,
4.17) S(F * F)a(yw) = V2 Z(e 1 W(F % F))a(y),
j=1
(4.18) (6F (-|w) % 6F (-|w))a(y) = il Ii(ep w) (61, w)(Fj * F1)a(y),
=1 1=1
and J
(4.19) (OF 5|) % SF ] -))e (W) = —[5F(y|W)] - Z[F )
for all y and w in K(Q). i

Furthermore we can obtain the following Parseval’s and Plancherel’s relation.
Let Hy = Hp(Q) be the space of real-valued functions f on Q which are absolutely continu-

ous and whose derivative Df is in L,(Q). The inner product on Hy is given by
= / DSf)(s)Dg)(s)ds.
g

Then Hp is a real separable infinite dimensional Hilbert space. Let By = Bo(Q) be the Yeh-
Wiener space C(Q) and equip Bg with the sup norm. Then (Hp, Bo,my) is an example of an

abstract Wiener space.
We restrict our attention, in this subsection, to the space Eo(Q) rather than E,(Q). Now it

is well known, see for example [6,15], that for all F € Eo(Q), all y € K(Q) and all complex

numbers a,b and c,

(4.20) / / F(ax+ by +cw)my(dx)my(dy) = / F(Va?+b%z+ cw)my(dz)
C(Q) JC(Q) c(Q

and that
4.21) Fap(Fo g F)3) =F©) = For g (Fa pF))
provided 88’ = 1 and o? + (Ba’)* = 0.

Theorem 4.12. Let F,G € Eo(Q) and let o be a complex number such that a® + (Ba’)? =0

Then Parseval’s relation

4.22) | o TooF ( fz) FasG( \/li) my(dy) = /C oF (%) 6(- %) my (dy)

holds. In particular, if B = i, we have

(4.23) /C (Q)f(,,,-F(%)G(%)my(dy)z /C o F( \/_)FQ,G(:/—_X)my(dy).
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Moreover, formula (4.23) induces Plancherel’s relation of the form

(4.24) / FoiF (22| mytay) = / [F(Z2)| myean.
c© (\/5 ) c@ (\/5 )
Proof. From Formula 4.5 and Definition 3.1, it follows that the left hand side of (4.22) is
equal to
Fap(F % G)ola'y) my(dy)
18((0)

= / (F * G)o(ax+ Ba’y) my(dx) my(dy).
c@ Jc©

But by (4.20) and the fact that @+ (B’ )?> = 0, the last integral is equal to (F * G),(0), which is
equal to the right hand side of (4.22).
From (4.21) we know that F, ;(F,,—iG)(») = G(y) and so we have

FoiF ()G (5 ) mr(dy)

Q) \/2_ \/i
- /C Y FoiF (S5 ) Fus i@ 55 ) mytay

=/C(Q)F(%>fa,_i0(—%) my(dy),

where the second equality is obtained by (4.22). But it is easy to see that F, _;G(—ay/ V2) =
Fa.iG(ay/V/2) and this completes the proof of (4.23).
Finally, since F,iF(ay/V2) = Fz _z/aF (@y/ V/2), by (4.23) we have
@ @

2 —
[ JFeir () mrian = [ F( ) Fuie P () man

But by (4.20), it is easy to see that Fy ;F5 _z/aF (@y/V/2) = F(ay/v'2) and this completes the
proof of (4.24). O
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