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A Survey of Conditional Expectations
on an Analogue of Wiener Space

By

Dong Hyun CHO*

Abstract

Let C'[0,¢] denote the space of R"-valued continuous functions on the interval [0,t], where 7 is a
positive integer, and for a partition 0 =19 < f] < --- <ty < tp1] =1 of [0,7], let X,,: C'[0,£] — R"TDr
and X,.41 : C'[0,1] — RT*2)" be given by Xu(x) := (x(t0), X(t1), - -, X(tn)) and Xy 11(x) = (Xn(5), Xt 1)) =
W(t0), - -, X(tn), Mt +1))-

In this survey paper, with the conditioning function X, and X,,, 1, we introduce two simple formulas
for conditional expectations of functions defined on C'[0,#] which is a generalization of the r-dimensional
Wiener space. As applications of the formulas, we evaluate the conditional expectations of functions
defined on C'[0,7]. Finally, we investigate that the conditional analytic Feynman integrals of some func-
tionals can be applied to solve an integral equation which is formally equivalent to the Schrodinger partial
differential equation and to express the operator-valued Feynman integrals in terms the conditional Feyn-
man integrals.

§1. Introduction and Preliminaries

Let Cp[0,7] be the space of real-valued continuous functions x on [0,¢] with x(0) = 0. It
is well-known that the space Cp[0,¢] equipped with the Wiener measure which is a probabil-
ity space.. On the space, Yeh introduced an inversion formula that a conditional expectation
can be found by Fourier-transform [19], and also, in [20], [21], he obtained very useful results
including Kac-Feynman integral equation and the conditional Cameron-Martin translation the-
orem using the inversion formula. However Yeh’s inversion formula is very complicated in its
applications when the conditioning function is vector-valued. In [17], Park and Skoug derived
a simple formula for conditional Wiener integrals on Cp[0,#] with the conditioning function
X: Col0,t] — R™*! given by

X(x) = (x(11), .., X(tn11))
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where 0 =ty < #; < --- < t,41 =1 is a partition of the interval [0,]. In their simple formula
they expressed the conditional Wiener integral directly in terms of ordinary Wiener integral.
Using the formula, they generalized Kac-Feynman formula and obtained a Cameron-Martin

type translation theorem for conditional Wiener integrals.
Let C'[0,] denote the space of R"-valued continuous functions on the interval [0,], where

r is a positive integer, and let X,,: C"[0,¢] — R”+D" and X, : C"[0,¢] — R®+?" be given by
Xn(x) = (x(t0),x(t1), . . . ,x(tn)) and X+ 1(x) = (x(20), - - - , X(tn), X(tn+1))-

In this survey paper, with the conditioning function X, and X, we introduce two simple
formulas for conditional expectations of functions defined on C"[0,#] which is a generalization
of the r-dimensional Wiener space. As applications of the formulas, we evaluate the conditional
expectations of functions defined on C"[0,#]. Finally, we investigate that the conditional analytic

Feynman integral of the functional

t
exp { / 0(s,x(s))dmL(s)}
0

can be applied to solve an integral equation which is formally equivalent to the Schrédinger
partial differential equation and to express the operator-valued Feynman integrals in terms the

conditional Feynman integrals.

Throughout this paper, let C, C; and C denote the sets of the complex numbers, the
complex numbers with positive real parts and the nonzero complex numbers with nonnegative
real parts, respectively. Let m; be the Lebesgue measure on the Borel class B(R) of R.

Now, we begin with introducing the probability measure w, on (C[0,¢], B(C[0,t])). For a
positive real ¢, let C = C[0,] be the space of all real-valued continuous functions on the closed
interval [0,#] with the supremum norm. For? = (to,t1,...,t) WithO =t < #; < --- < 1, <t, let
J: C[0,t] — R™*! be the function given by

Jr(x) = (x(t0), x(t1), . . . , X(tn)).

n
For B; € B(R) (j=0,1,---,n), the subset thl( I1 Bj) of C[0,1] is called an interval and let 7
j=0

be the set of all such intervals. For a probability measure ¢ on (R, B(R)), let

(113

j=0

15" %// { 12" (uj_uj_l)z}
= —_— . eXps —= Y ————= dmj(u,- - ,un)dp(uo).
[};‘[IZIT(tj—tj_l)} By J 1 B; p 2j— ti—tj—1 L 0
j=1

=1

The Borel o-algebra B(C[0,¢]) on C[0,7] coincides with the smallest o-algebra generated by 7
and there exists a unique probability measure w,, on (C[0,¢], B(C[0,¢])) such that wy(I) = m,(I)
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for all 7 in Z. This measure w,, is called an analogue of the Wiener measure associated with
the probability measure ¢ [11], [18]. Let r be a positive integer and C” = C’[0,] the product

space of C[0,¢] with the product measure w,,. Since C[0, 7] is a separable Banach space, we have

B(C[0,t]) = H B(C[0,¢]). This probability measure space (C'[0,¢], B(C’[0,]), w ) is called
=1

an analogue of the r-dimensional Wiener space.

Lemma 1.1 ({11, Lemma 2.1]). If f: R*! — C is a Borel measurable function, then

/ f(x(t0), x(t1); - . . , X(tn))d W (x)
C
x [ 2 (u] —Uj— 1) }
= ———— Uo,Ug, - .., Uy)€X —
[1_——_1 "(t]_t] 1) // f( 04 ) p{ 2; ""t]—-l
-dmij(u1,. .., un)dg(up),
where = means that if either side exists, then both sides exist and they are equal.

Let {ex;k =1,2,...} be a complete orthonormal subset of L,[0,¢] such that each e; is of
bounded variation. For f € L,[0,¢] and x € C[0,¢], let

n ¢
(frx) = lim D (f,ex) /0 ex(s)dx(s),
k=1

if the limit exists. Here (-,-) denotes the inner product over L,[0,]. (f,x) is called the Paley-
Wiener-Zygmund integral of f according to x. Note that (-,-) also denotes the inner product
over Euclidean space unless otherwise specified.

Applying [11, Theorem 3.5], we can easily prove the following theorem.

Theorem 1.2. Let {h1,h,...,h,} be an orthonormal system of [,[0,t]. Forl=1,2,--- ,n,
let Z)(x) = (hy,x) on C[0,¢]. Then Z,2,,--- ,Z, are independent and each Z; has the standard
normal distribution. Moreover, if f: R" — R is Borel measurable, then

/C JZ1(0), (%), - .., Zu(x))dwy(x)

L1 1 |
(Zﬂ) RACELEIE un)eXp{—izuﬁ}dmZ(un,uz,---,un),
j=1

where = means that if either side exists then both sides exist and they are equal.

§2. Evaluation Formulas for Feynman Integrals

In this section, we establish the evaluation formulas for the analytic Feynman w,-integrals of
several Kinds of functionals on the analogue of the 7-dimensional Wiener space. For a function



118

F: C'[0,] — C and A > 0, let F*(x) = F(A~1x). If E[F*] has the analytic extension J}(F) on
C,, then we call J}(F) the analytic Wiener w, -integral of F over C'[0,7] with the parameter a
and it is denoted by

E*™a[F] = J}(F).

Further, if for a nonzero real g, E™[F] has the limit as A approaches to —ig through C, then
it is called the analytic Feynman w/,-integral of F over C"[0,¢] with the parameter ¢ and denoted
by
E™a[F]= lim E*[F].
A——iq

Now, we have the following theorem [15].

Theorem 2.1. Let my,--- ,m, be positive integers and suppose that
[ ulmapt) < o,
R

where m = max{mj,...,m,}. For x = (x1,...,x,) € C'[0,1], let
rooat
Fo =3 [ opmidmy(s)
j=1

Then for A € C,, E*™¥[F] exists and it is given by

r [mil] k+1
_mj t m]'! m;—2k
E™Wi[F] = El/l 2 kEO 3 12kk!(mj 2k)!/val de(vj),
]:‘_' —1

where [ -] denotes the greatest integer function. Furthermore, for a nonzero real g, E¥™fa[F)
exists and it is given by the right hand side of the equality above where A is replaced by —iq.

Example 2.2. Suppose that / |u|2d<p(u) < 00. For x = (x1,...,x) € C'[0,1], let
R
r t
F@®=)_ /0 (xj() dmy(s), 1=1,2.
j=1
For a nonzero real ¢, we have by Theorem 2.1
.. 1 r
I
gafri=1(2)" 3 [ odets)
7 T/R

and

. r )
Eofarpy = L / 2 L .
[ 2] q(tjgl ]Rujd‘p(vj)+ ) )



Let M = M(L}[0,1]) be the class of all C-valued Borel measures of bounded variation over
L;[0,¢] and S,,,, the space of all functions F which for o € M have the form

r
Q1) F(x) = / exp{iZ(Uj,xj)}do'(Ula S p)
for wy-a.e. x = (x1,...,x,) € C'[0,]. Note that Sg,‘p is a Banach algebra which is equivalent to
M with the norm ||F|| = ||o||, the total variation of o~ [11].

Now, we have the following theorem [15].
Theorem 2.3. Let F € S‘f@ be given by (2.1). Then for A € C;, E*™ A[F] exists and it is
given by

1 r
E*A[F] =/ ex {—— |v-||2}d0'(3),
L0 Y 21; o

where U = (v1,...,v,). Furthermore, for nonzero real q, E*[F] exists and it is given by the

right hand side of the equality above where A is replaced by —iq.

Let r =1 and {ey,...,e;} be an orthonormal subset of L,[0,¢]. For 1 < p < oo, let .Af”) be
the set of cylinder type functions having the form

(22) E(X) = f((el ,X), sy (el,X))

for wy-a.e. x € C[0,1], where f € L,(R’) is Borel measurable on R'. We now have the following
theorem [15].

Theorem 2.4. Let F; € AP (1 < p < o) be given by (2.2). Then for A € Cy, E™™i[F]

exists and it is given by

A% A
R = (1) /R f@exp{~Z @] }dm}(@.

Furthermore, for nonzero real q, E*™4[F)] exists if p = 1 and it is given by the right hand side
the above equality where A is replaced by —iq.

For a positive integer [, let M(R’) be the class of all complex Borel measures on R’ and
M(R’) the set of all functions ¢ on R’ defined by

2.3) o) = /R expli{i,2)}dp®,

where p € M(R}).

119
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Theorem 2.5. Let ®(x) = ¢((e1,%),. ..,(e1,%)) for we-a.e. x € C[0,t], where ¢ is given by
(2.3). Then for A€ C,, E*™[®] exists and it is given by

1

anw _ —zn2
E*™[P] = /R cexp{ -l }dp(®.

Furthermore, for nonzero real q, E*4[®] exists and it is given by the right hand side of the
above equality where A is replaced by —igq.

Theorem 2.6. Let0 =ty <t < --- <t, <t and G be given by
G(x) = f(X(t()),X(tl), oo 7x(tn)), fO" Wy-a.e. x € C[Ovt])
where f € L,(R*!, BR"!),m? ® p)(1 < p < 00). Then for A € C, E*™[G] exists and it is
given by

A% A
E™1[G] = (ﬁ)z/m/wf(uo’uhm ,u,,)exp{—iJZ:;(u,-—u,-_l)z}dmﬁ(ul,...,u,,)dgo(uo).

Furthermore, for nonzero real q, E*4[G] exists if p = 1 and it is given by the right hand side
the above equality where A is replaced by —igq.

Let n be a complex valued Borel measure on [0,z]. Then 5 = u+ v can be decomposed
uniquely into the sum of a continuous measure y and a discrete measure v. Further, let 6,
denote the Dirac measure with total mass 1 concentrated at p;. Let r be a positive integer and
let G* be the set of all C-valued functions 8 on [0, 00) X R” which have the form

2.4) 0(s,ii)=/ exp{i(i,7) }do (@)
R’

where {o7; s € [0,¢]} is the family from M(R") satisfying the following conditions:
1. for each Borel subset E of R, ox(E) is a Borel measurable function of s on [0, ],
2. |los|l € L1 (10,21, B[O, D), 7))

Now, we have the following theorems [9].

Theorem 2.7. Let m and k be two positive integers, and

m
n=u+) wibp,
j=1

where 0 < p1 < -+- < pu <tandw; € C. Let 0 € G* be given by (2.4) and for x € C"[0,1], set

1 k
Fi(x) = [ /0 9(s,x(S))d77(S)] :



121

Then for 1 > 0,
E[Fk/l]= ZH(k’/laauqO?qlr"7qm;j0a"-ajm)

q0+q1+ +qam=k
Jot-+im=qp

where for Uy, j,,+1 € R"

H(kv/l,vm,jm+laq0;qla- o aqm;j()v- 7]m)

1 m Jja+1 Ja+1
=k!< )/ / exp{ ZZ(saﬁ—s(,ﬁ 1) Zva,y-i—
Aqo Jor R (1—0 B=1
m Ji+l1 1 m jat+l m Jja
> S|} [ ew{ (522 0s) far ([T 1T,
I=a+1 y=1 a=0 =1 a=0p=1
[1o% )62006)
a=1
with
s00=0, §= (50,15 550,55y S1,1y+ 581, jis---2SmL> " »Sm, jm)>
50,0 = Sa—1,j,_1+1 = Pa fora: 17"'ama Sm,jm+1 =1,

Aggijorrjm = 1510 <801 <+ < S0jp <Pp1 <811 << s1,j, < P2
<LK Pl < Sm—11 < < Sy < P <SSyt <0 < S, jm <t},
V= @071""’30,j0731,1,"' 131,j17"' ’Bm,lﬁ-“y-ﬁm,j,,,) and
Z=(1,1,-+-121,4;,22,15--»%2,gp1- -1 Zm 11+ Zmgm)

—50—1,ja_1+1 = zza',l fora= 1’ ,m
=1

Corollary 2.8. Under the assumptions as given in Theorem 2.7 with one exception n = y,
that is, assuming that 1 has no discrete part, we have

k k 2 k
1 1
/1 —_— 1 —x= — -
eirti= [ [ ool-gie-aoSa] § [ ee{ai(i3n))

k
ag@a(o, ) @ae)

=1

where so =0, 5= (s1,-+,5¢), 0= 01, ,Ux) and Ay = {§: 0 <57 < --- < s5p < t}.

Corollary 2.9. Under the assumptions as given in Theorem 2.7 with one exception 7 =
27=1 WjOp;, that is, assuming that 1) has no continuous part, we have

m  gq m m4dy
w, 1
E[Fkll]:k! E (I I fT) /erexp{_‘z—/i E (par“Par—l) E E Z'y, }
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x/Rrexp{,-,l—%<;;,V::§:Z,,J>}d<p’(n)d(ﬂ )

a=1Il=1 a=1
where po = 0, = (Zl,la tre 721,(11 ,22,1 3T 322,q2a T ,Zm,l y T ’Zm,qm)-
Theorem 2.10. Let " be normally distributed with mean vector 0 and variance covariance

matrix 01,, where I, is the r-dimensional identity matrix. Then, under the assumptions and
notations as given in Theorem 2.7, E“"4[F,] exists for A € C and it is given by

E™iFl= ) Y Tk A,0,0,90, - ,gm; o, s Jm)
qo+q1+--+qm=k jo+:--+jm=40

where for Up j,+1 € R", T(k,A,0,0m,j+1,90," " 19m3 J0s j,,,) is given by the expression of
H(k1 /l,vm,jm+laq01q13 o ,‘Im,JO, : 7]"1) replaClng f]Rr eXp{l/I 2(’71 Za_o éa_-*i va,ﬁ)}d()a (’7)

by exp{—-%“ o [’,"_4;1 Dapl|?}. Furthermore, for nonzero real q, E*"/a[F;] exists and it is

given by the above equality replacing A by —igq.

Theorem 2.11. Let the assumptions and notations be as given in Theorem 2.7 and let

t
F(x) = exp { / 6’(S,JC(S))dTI(S)}
0

for x € C"[0,t]. Then for A > 0, we have
E[F']=1+ Z E[Fk‘]

where E [Fk"] is as given in Theorem 2.7. Furthermore, under the assumptions as given in
Theorem 2.10, E®4[F] is obtained by

E“a[F] = 1+Z E“"fq[Fk]
k=1

for nonzero real q, where Ef3[F,] is as given in Theorem 2.10.

Theorem 2.12. Let the assumptions and notations be as given Theorem 2.7 and let Gi(x) =
F(y(x()) for x € C'[0,t], where y(ii) = fmr exp{i(é,v) }dv(®) for ve MR"). Let G(x) =
exp{ f(; 0(s, x(s))dn(s) }y(x(t)). Then for A > 0, we have

E[G']= / , / rexp{m 7,5) - o= I llz}dga’(n)dv(‘)+ Z ,;E[G,?]

where

ElGl= ) > H(k, A,Tm,j1,40,91, "+ 1Gm3 J0s*+ » jm)
Go+ar+-+am=k jo+---+jm=qo " R

dV@m,jm+l )'
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Furthermore, under the assumptions and notations as given in Theorem 2.10, E**/a[G] can be
obtained by

anf, = t+a° 2112 = _1_ an fg
E™h(G] /R rexp{ 2q }dv@‘)+k§ GEIG]

Jfor nonzero real q, where

Eanfq[Gk]:: Z Z / T(k, _iQ70-7-ﬁm,jm+laq01"' an;jOa"' y Jm)
Go+qi+--+am=k jo++in=q0 " X
AV(Um, jpp+1)-

Corollary 2.13. Under the assumptions and notations as given in Theorem 2.12 with one
exception ¢" = &5, the Dirac measure concentrated at 0 € R”, we have for a nonzero real q

anf, _ L 2112 3 _1. f
5iG1= [ exo{ 391 jav + 3y

where
Ea’lfq[Gk]= Z Z / T(ka _iqaoaam,jm-i-laq()a"' ’ m;jO,"' ,jm)
Qo+a1-+-+gm=k jo+++jm=q0 " K

which is a main result of [14].

Remark. e Under the conditions as given in Corollaries 2.8 and 2.9, we can obtain more
simple expressions in Theorems 2.10, 2.11, 2.12 and Corollary 2.13.
o Ifn=p+ Z?:l wjépj, where 0 < p; < --- < p,, <t, we can obtain all the results including
n with minor modifications.
o If n=p+3 72 w;d,,, then using the following version of the Ro-nomial formula [12,
p41]

oo n o0
n!
(2.5) (§ :b,,) =Y > ——pLpT ... b
0 20'q1! - qn!

p=0 h=0qo+q1+--+qp=nqp#

we can show that for 1 > 0, E[G*] exists in Theorem 2.12.

§3. Simple formulas for conditional expectations

Let F : C"[0,¢] — C be integrable and let X be a random vector on C"[0, #] assuming that the
value space of X is a normed space with the Borel o-algebra. Then, we have the conditional
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expectation E[F|X] of F given X from a well known probability theory [16]. Further, there
exists a Py-integrable complex-valued function y on the value space of X such that E[F |X1(x) =
(Yo X)(x) for wy-a.e. x€C 7[0,t], where Py is the probability distribution of X. The function ¢
is called the conditional w,-integral of F given X and it is also denoted by E[F|X].

LetO=ty <t <--- <ty <typ1 =1 be a partition of the interval [0,7]. Define the polygonal

functions by

—tj1

)
(x(tj) —x(tj-1)), tj-1 <8<ty

[x1(s) = x(2j—1)+
for x € C'[0,t] and

o)) = &1 + ——1
tj —

i €j—¢&j-1), tji-1 <s<tj,

for &up1 = (£0,&1, - ,&ns1) € R@*+2r where j=1,---,n+1.
Now, we have two simples formulas for the conditional wy,-integrals on C’[0,t] [4, 6].

Theorem 3.1. Let X,11 : C'[0,¢] — R®*2" be given by
3.1 Xn+1(x) = (x(20), x(t1), - -+, X(tn+1))

and let F : C"[0,t] — C be wi,-integrable. Then for a Borel subset B of R**2" ywe have

/ | F@dwy(x) = / E[F(x— (4] + Gnr1 DIdPy, ., Grr),
X\ ® B

n+

where P, , is the probability distribution of X, +1 on (R"+2r  BR™D"Y), so that we have for
Py g by € ROVDY

E[F|Xo111Gnt1) = E[F(x — [X] + [Ew1 D]
Theorem 3.2. Let X,, : C'[0,¢] — R"+D" be given by
(3.2) X (%) = (x(t0),X(t1), -+ , X(tn))-

Moreover let F be integrable on C'[0,t] and Px, a probability distribution of X,, defind on
ROV BR®HDN)), Then we have for any &, = (£o,&1, -+ ,&x) € ROTDr

E[F|X,1E,) = 1 5 / E[F(x—[x]+ [£:s1])]exp _ s — &l dm (£ns1)
i) = 2t — 1) , t 2t —tn) Lisn+l

for Py -a.e. & € RV, where £,11 = (£0,£1, " y€ny€nt1):



Theorem 3.3. Letr =1, F,(x) = f(; (x(w))"dmy(u) (m € N) for x € C[0,t] and suppose that
flR [u|"dp(u) < co. Then F, is wy-integrable. Moreover, E[leX,,_,.]](gnH) exists for P ., -a.e.
Ent1 = (€0,€1, €, Env1) € R™2 and it is given by

n+1 131 m—2k m!(l +k)!(tj — tj—l)k+1§7—_12k—l(§j —‘fj—l)l

ElElnei)Ene) =D > D 2¥1(m — 2k — DI+ 2k+ 1)!

j=1 k=0 =0

where [ -] denotes the greatest integer function.

Example 3.4. Form = 1,2,3, let F,,(x) = f(; (x(u))"dmy (u) for x € C[0,¢] and suppose that
Jg [u|™dp(u) < 0o. Then for Py, -a.e. &1 = (&0,&1, - &n,&nr1) € R™2, we have by Theo-
rem 3.3

n+1

- 1
E[F X1 1Eur) = 5 D~ 1-D)Ej +£;-1)

j=1

which can be also obtained by an application of Corollary 4.5 in [11]. We also have

B 1
ElF|Xns11Enrt) = g D (1 =100 —tj-1 + 265 + 26161 + 267 1)
j=1

which is the result given by Corollary 4.10 of [11]. Moreover we have

n+l

- 1
E[F|Xus11Gar) = 3 Y0 — 1Dl — 120 +€5-1)

j=1
+EHEE I+ EE  +HE_]

Theorem 3.5. Under the conditions and notations as given in Theorem 3.3, we have for

Py-ae &= (&,&1, &) € R

n 3lm-2 +R)\¢tj — tjq)k“f'f__fk_l(«fj —&j-1)

EFnX0E=2_> > 2k[1(m — 2k — )1 + 2k + 1)!

j=1 k=0 [=0
my rm—2k

N (31 [%5=1 m[(2[+k)!§’rln—2k—21(t g,
k=0 =0 214k1V(m — 2k — 21121 + 2k + 1)1

Example 3.6. Form =1,2,3, let F,,(x) = f(; (x(w))"dmy(u) for x € C[0,¢] and suppose that
Jg [ul™dg(u) < co. Moreover, let Z;(x) = 1Fi(x) and

n+1 tj
20 =Y —— [ xwdmw

=1 =y

125
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for x € C[0,¢]. Then for Pyx,-a.e. E,, = (é0,é1, " ,&én) € R we have
E[R|X, 1E) = Z(t, —tj—1)(&j+&j—1)+ (& —tn)én.
]_

Hence we have

E(Z||X,)E) = Z(t,—t, DE+Ei-)+ - (t—tn)fn

and
1 n
EZ|X.1E) =5 Z;o:,- +&j-1)+én
J=
which are also given by Theorems 4.3 and 4.6 in [11], respectively. Further, we have
E[FR| X)) = Z(z, — o)ty —tjo1 + 260+ 2658511 + 280 ))
j 1
2 1 2
+(t _tn)‘fn + E(t —tn)
which is also given by Theorem 4.8 in [11]. Finally, we have
E[FR|X1E,) = Z(t, LoDt — 1-)Ej+E-1) + & + 81+ £82_
1_

+E_ 1+ —t)E + 50 —t2) .

§4. Evaluation formulas for an analogue of conditional Feynman integrals

For a function F : C"[0,1] — C and A > 0, let FA(x) = F(1™1/2x), X}, (1) = Xu11(A7/2%)
and X} (x) = X,(1~1/2x), where X,,,1 and X, are given by (3.1) and (3.2), respectively. Suppose
that E[F*] exists for each A > 0. By the definition of conditional w,-integral and Theorem 3.1,
we have for 1 >0

E[F!1X}11Gns1) = EIFQA7?(x = [x]) + [Zrt1])]

for Py: -ae. Ent1 € ROTDT | where Py  is the probability distribution of X!, defined on

(R(”+2)’ B@®R®"+2ry). Moreover, we can obtaln from Theorem 3.2

E[FYX]1(E)

_ A 2 _1 2 /l||‘fn+l ““fn"z
4.1) = [m} /YE[F(/I 7(x—[x])+[§n+1])]exp{——2‘(t_—tn)—}

dm2(§n+ 1)



for Pys-a.e. &= (0,61, &) € RO where &,y = (&,&1,+ ,&n, énv1) fOr &1 ER
and Py, is the probability distribution of X;! on (R®+Vr, BR®+Dr)). If, for &,41 € R*+2r,
E[FQA V2 (x-[x]) + [En+1])] has an analytic extension J3 (F )(§n+1) on C_ as a function of A,
then it is called the conditional analytic Wiener w,-integral of F given X, with parameter A

and denoted by
E“™[F Xy 11Eni1) = T3 (F)Enr1)
for ;",,.H € R®*2r_If for a non-zero real q, EA"™i[F |X,,+1](E,,+1) has a limit as A approaches to

—iq through C,, then it is called the conditional analytic Feynman w,-integral of F given X, 1
with parameter g and denoted by

ETAF X)) = lim, B (F X1 1GErs)-

Similarly, we define E9[F|X,](€,) and E“/¢[F|X,1(£,) using (4.1).

Throughout the remainder of this section, we will assume r = 1.

Theorem 4.1. Let X, be given by (3.1). Then, under the assumptions and notations as
given in Theorem 3.3, E*™i[F,, |X,,+1](§n+1) exists for 1 € Cy and for Px,  -a.e. E,,H € R*2,
Moreover, for a non-zero real g, E*"/a [leXn+1](E,,+1) exists and it is given by

E“a[Fop| X110 11)
nl [ m— Zk( ) m'(l+k)'(t,—t, 1)k+1§m —2k— l(é_-j_fj_l)l

—ZZZ 281 (m — 2k — D!+ 2k +1)!

j=1k=0 1=0
Theorem 4.2. Let X,, be given by (3.2). Then, under the assumptions and notations as given
in Theorem 3.5, E4™1 [FmIX,,](E'n) exists for 1 € C,. and for Py,-a.e. ;5',, e R**1. Moreover, for
a non-zero real q, E*f4[F,,|X,1(€,) exists and it is given by

E“"a[F, | X,1(E)
n (2], 2k( ) Emi+ k)Nt —tj— 1)"“5’” 2k ’(fj—é“j-l)l

’ZZ Z 260\ (m — 2k — DI + 2k + 1)!

j=1k=0 [=0
myrm 2k

+§[Z ke m!(21+k)!§,’{'—2k—21(t —tn)l+k+1
o S \g)  2FHm—2k-20)1+ 2k+ DI

Foreach j=1,---,n+1, let a;(u) = \/%——IX(U—M;](”)- Let V be the subspace of 1,[0,¢]
J =

generated by {a@, -, @11} and let V' denote the orthogonal complement of V. Let P and P+
be the orthogonal projections from 1,[0,] to V and V-, respectively. Let o be in M (L;[0,]).
For E,, = (&, - ,&) € R* ! and E,,H € R"2, et o, and 0% be the measures defined by

do; n
4.2) ) = exp{iva)(rj)(f,- - §,~_1)}

j=1

127
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and

g, 0.
“3) —24L0) = exp{i(0, [En1 D},

respectively, where v € L»[0,t]. Moreover, let F?m € Sy, be defined by

4.4) Fp ()= /lq exp{i, 0)}d(az o (PH)™)w)
, , 4

9

for wy-a.e. x € C[0,1].
We now have the following theorems [7].

Theorem 4.3. Let F € S, and X1 be given by (2.1) and (3.1), respectively. Then, for
A€ Cy, E™™[F|X,1)Ens1) exists for &1 € R*2 and it is given by

(4.5) E“™A[F| X, 11Gns1) = E™[F; ]

= LT . 1y—1
_/bz[o,z]exP{ 2/1“0” }d(o'f,,+1°(P )7 )W),

where T and F3n+| are given by (4.3) and (4.4), respectively. Moreover, for a non-zero real
g, E*fa[F |X,,+1](7g",,+1) is given by (4.5) replacing A by —igq.

Theorem 4.4. Let F € SW and X, be given by (2.1) and (3.2), respectively. Then, for
A€ C,, E"™A[F|X,\(E,) exists for & € R"*1 and it is given by

- 1
46)  E™F|X)E) = / exp{—z—ﬂ-[n?’lvll2 +( —tn)[(Pv)(t)]zl}dO'gn(v),
[0,1]

L
where o, is given by (4.2). Moreover, for a non-zero real q, E**/1[F IX,,](E,,) is given by (4.6)
replacing A by —iq.

Corollary 4.5. Let F € Sy, and o be related by (2.1) and suppose that o is concentrated
on VL. Then for a non-zero real g, we have

— -— 1
E™a[F|X,1(€,) = E*™4[F| X 411Ens1) = E“fa[F] = / eXp{ - ||v||2 }do'(v)
L00.] 2qi

fora.e. & € R™! and for a.e. &, € R*2.

Remark. Because [,[0,t] =V @V~ and V is of finite dimensional, the space V' is non-
trivial. Fork=1,2,---, let
(=1)/+192k-1 Lttt
Then we have Phy, =0 for k = 1,2,---. Indeed, every finite linear combination of the A;s are
in V4 so that V1 is at least uncountable and of infinite dimensional since 1,[0,¢] is of infinite

%1
hi () = ) if j1<t<ty; (G=1,---,n+1).

dimensional.
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Throughout this paper, let {v;,v2,---,v;} be an orthonormal subset of L,[0,¢] such that
{PLv1,---, PLuy} are independent. Note that such an orthonormal set can be obtained from
the A;s as given in the above remark. Let {e;,---,¢;} be the orthonormal set obtained from
{P+v1,---, PLuy} by the Gram-Schmidt orthonormalization process. Now, for k =1,--- 1, let

1
'Plvk = Zafkjej
J=1

be the linear combinations of the e 8 and let

a1 a2 - @y

@21 @22 - @y
4.7) A=

an ap -y

be the coefficient matrix of the combinations. We can also regard A as the linear transformation

Ty : R! — R! given by
(4.8) TA@) =7A,

where 7 is arbitrary row-vector in R!. Note that A is invertible so that Ty is an isomorphism. For
& = (&0,61, &) ER™ and &y 1 = (&0,€1, € n1) € RM2, let

Y,

(Z(Pvl YD&) —&j-)s+ 5 Y (PodEEj —fj_1)>

=1 j=1
and
%, = (@ ED, @ [ ]).
Further, for s € [0,7] let
4.9) (PO)(s) = (Pur)(s), -, (Pur)(s))-

For p € M(R?), let PE,., and Pz, be the complex Borel measures on R defined by

dp;
Entl pony oo
—[};“(Z) = CXP{1<U§n+1 3}

and
dpg o
(4.10) ~(2) = exp{i(v; ,2) }-
dp én
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Now we define ¢; € M(R') by
- o )= . —1
¢§n+1(i") = /R’ CXP{IW,Z)}d(Pg"H OTA )3,

where TA"I is the inverse transformation of Ty, and define

4.11) d;

énvi

) =z ((e1,%),++ ,(er, )
for w,-a.e. x € C[0,z]. We now have the following theorems.

Theorem 4.6. Let ¢ € M(R') be given by (2.3) and let ®(x) = ¢((v1,x),- -, (v1,X)) for wy-
a.e. x € C[0,t]. Then we have for A € C

- 1. -

@12) B 1) = B 1= [ e""{ 21 “Z”Z}d@zﬁ. T, )@
for Em € R"*2, where T; and (D?nﬂ are given by (4.8) and (4.11), respectively. Moreover, for
a non-zero real g, E“"fq[<I>IX,,+1](§,,+1) is given by (4.12) replacing A by —igq.

Theorem 4.7. Let the assumptions and notations be as given in Theorem 4.6. Then we have
forAeCy

- 1
@13)  E™0[X,]E) = /R , exp{ ~ @I+ - tn)((Pi")(t),Z)ZJ}dPgn(f)

for &, € R"™!, where Pv and pg, are given by (4.9) and (4.10), respectively. Moreover, for a
non-zero real q, E*"4 [<I>|X,,](;é,,) is given by (4.13) replacing A by —iq.

Corollary 4.8. Let the assumptions and notations be as given in Theorem 4.1 and suppose
that vy € V* fork=1,--- 1. Then for a non-zero real q, we have

- o 1
E“a[®|X,1(Z,) = E“1[®|X,111Er1) = E™4[®] = /R exp{ 24i Hzllz}dp(a

fora.e. &, € R" and for a.e. &,41 € R**2,

For convenience, we introduce useful notations from the Gram-Schmidt orthonormalization

process. For v € L,[0,¢], we obtain an orthonormal set {e1, - -, e1,e;+1} as follows; let
(v,€j) forj=1,---,1

4.14) cj(v)= 5 ] 5 o
\/“U” =2k (v,en)? forj=1+1

and

!
1
= L0 [U— lecj(u)ej]
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if ¢;41(v) # 0. Then we have

I+1 I+1
(4.15) v=> cje; and o> = [c;0)*
j=1 j=1

Note that the equalities in (4.15) hold trivially for the case ¢;1(v) = 0. Using the above notations
we have the following theorem.

Theorem 4.9. Let the assumptions and notations be as given in Theorems 4.3 and 4.6.
Further, let ¥(x) = F(x)®(x) and for E,H.l € R™2 Jer ‘P§n+1(x) = F«?n+1 (x)(p?nﬂ (%) for wy-a.e.
x € C[0,t], where anH and <I>§nJrl are given by (4.4) and (4.11), respectively. Then for A € C,.
we have

- 1
416)  E™[¥|X,1]Er) = ETY; 1= / / exp{—ﬁ[llvll2+2<6(v),
" L,[0,t] JR!
D+ ||2”2]}d(Pgn+l o T, N@d(oz  o(PH)™")(v)

for EnH € R™2, where ¢@) = (c1(v),- -+ ,c1(v)) and the cjs are given by (4.14). Further, for a
non-zero real g, E*[W|X, 1](3,,4r 1) is given by (4.16) replacing A by —igq.

Theorem 4.10. Let the assumptions and notations be as given in Theorems 4.4, 4.7 and 4.9.
Then for A € C; we have

@17)  E"™i[¥[X,1E) = / / exp{‘iHIPLvHZ+2<E(7’lv)7TA(‘Z')>+”TA@”2
L0041 JR! 24
+(t = 1) [(PO)(®) + ((PO)@), D)1 }dpzn (@dog, (v)

forg,, e R where 8(PLv) = (c1(PLv), - ,ci(PLv)) and the cjs are given by (4.14). Further,
for a non-zero real g, E*™Ja [‘P|X,,](E,,) is given by (4.17) replacing A by —igq.

Let 1 < p < oo and F; be given by
(4.18) Fi(x) = f((v1,%)," -, (v7,%))
for wy-a.e. x € C[0,¢], where f € L,(R’). For &, € R**! and &, € R"™? let
(4.19) fe, (D) = f(Ta(#) +7z))
and

(4.20) fe,, @) = f(Ta@+T; ),
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where 7} is the linear transformation given by 74(i#) = #A” . Note that # means any row-vector
in R! and A7 is the transpose of the matrix A given by (4.7). Moreover let

(421) Fz =f (1,0, (e,%)
for wy-a.e. x € C[0,]. Using the above notations, we have the following theorems [7].
Theorem 4.11. Let 1 < p < oo and F; be given by (4.18). Then for A € C.. we have

(4.22) E“™[F|Xp11Ens1) = E™4[Fg ]

1§n+1

1\? PN
= (ﬂ) /IR/ fgnﬂ(ﬁ')exp{—illu” }dmL(ii)

for &,+1 € R™t2, where fan and FI,E,:H are given by (4.20) and (4.21), respectively. Further, if
p =1, then for a non-zero real q, E°"fa[Fy| X, +1 1Eas1) is given by (4.22) replacing A by —igq.

Theorem 4.12. Let the assumptions and notations be as given in Theorem 4.11. Then for
A€ C, we have

! 1
anw T\ — i 2 1 z .
423) E *[lex,.](fn)—(z,,> [1+(t—tn)||5‘1((P3)(t))||2] A

Az =) (T (PO, B ]} !
xeXp{ 2[”“” 1+t — )| T (P12 A

for &, € R"*! where P and f?" are given by (4.9) and (4.19), respectively. Further, if p =1,
then for a non-zero real g, E**4 [F}lX,,](E,,) is given by (4.23) replacing A by —igq.

Corollary 4.13. Let F; be given by (4.18) and suppose that vy € V* fork=1,--- 1. Then
we have for 1€ C,

E“™[F}|Xa)(En) = E“™A[F}| X 411Ent1)

Eanw F; A % —') % =112 i 1
l uyex u my u)

for a.e. & € R™! and for a.e. £,41 € R**2. Further, if p = 1, then for a non-zero real we have

EA[F(X,1(E,) = E*™4[F}| X 111Ens1)

l
i -
= EafR] = ( L Faexpd L) bdm .
R! 2

2
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Theorem 4.14. Let G; = FF;, where F and F; are given by (2.1) and (4.18), respectively.

Moreover, for &,,1 € R"*2 [t Gl,?nﬂ = F‘?n+1F}agn+l’ where F?nﬂ and Flfnﬂ are given by (4.4)

and (4.21), respectively. Then we have for A € C,.

424)  E“™Gi|Xp411Ge1) = E™(Gy; ]

a\? 1 [<
=15 Iz (ii)exp{—[ [Aiu;
(2,,) /LZ[OJ] Rl el 21 ; J

+¢,;@F - ||v||2] }dm’L(ﬁ)d(agnH o(PH) ™),

where i = (uy,- - ,u;), and Tz cj(v) and f§n+1 are given by (4.3), (4.14) and (4.20), respec-
tively. Furthermore, if p = 1, then for any non-zero real g, E*J4[G;|X,41] (Ent1) is given by
(4.24) replacing A by —ig.

Theorem 4.15. Let the assumptions and notations be given as in Theorems 4.12 and 4.14.
Then for A € C, we have

(4.25)  E“™G)|X,1E,)

-(&)] 1 I [ L]k
27) T+l T-(PHNE] Jion Jr '8P 22

t—t,
1+ — )| T (PD@)?

!
X [Z[/liuj +ci(PLo))? — [P ® +
j=1

x(Pu)(®) — (€(P+0), T,” (PB)(©)))] +A<Z,“((Pﬁ)(t)),ﬁ>]2] }dmlLﬁ')dO'gn(v)

for En € R**1, where &(PLv) = (c1(Ptv),- - ,ci(P1v)) and o, is given by (4.2). Further, if
p =1, then for a non-zero real q, E*4[G)|X,)(£,) is given by (4.25) replacing A by —igq.

Remark. Since PLv=vand Pv =0 forv € V1, if o € M(L;[0,¢]) is concentrated on VL,
then we have 0z, =0z =050 that we also have an+1 =F.IfyyeV+tfork=1,---,l, then
Pu; = 0 and PLu; = vy so that (PU)(r) = 0. Further, the coefficient matrix A given by (4.7) is
the identity matrix and hence ffnﬂ = fé,. = f which implies ﬁv§n+l = F;. In each case, we can
obtain more simple equations in each theorem of this section.

§5. Time-dependent and time-independent conditional Feynman integrals

Throughout this section, let 0 =1 <#; < --- < t,_1 <1, =t be a partition of [0,7], let
X (x) = (x(t0), - -+ ,x(tn_1),x(t,)) and ¥;(x) = (x(t0), - - - , X(tn—1)) for x € C"[0,]. Our first theorem
in this section is a time-dependent version of Theorem 2.7 above; its proof is included in [9].
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Theorem 5.1. Let F, and n=pu+3 Z;’zl wy,j0p, ; be the function and the measure as
described in Theorem 2.7, where w; j € C forall (1, j)and 0 =19 < p11 <p12 <-- < p1y <
H<ppi < <prp,<B<- <tyo1 <Pu1 <+ < Ppyp, <tn=t Thenfor 1€ Cy and
E,41 € RO pama(BIX\E, . ) is given by

n
(5.1) EiEIX)E) =kt > [[ACG &G
qi+-+gn=k =1
where
A(la/lvé:'l-l-l’ql)
r my j
-y gE) = [
. my ;! Lo s qrr
myotmy+---tmy,=q " j=1 hi Jotjrtetin=mg Ay 9o+ R
r ]u+l n ]u+l
exp{izZ([§n+l](sluv)avluu ZZ(sluv Slup— 1)'
u=0 v=1 u-—O v=1 B=u+1
jptl Jutl v—1
L—Si18y., — I~ Sluy. Ho1— Hot = Stuy s
=1 i = Tl = i =0
jﬁ'Ht s r Ju
1—1 1.8y~
> g, HHo-s,u,,xHap, @1, h)du™ ()
h—t-
y=1 u=0v=1
with
5100 =H-1, SLu0 = Plu=Slu-1,j,_,+1 foru=1,---,n, Stryjn+1 =1,
81 = (510,15 3510,jo>- - - »SLrp, s+ - > SLry,j Do
Ay s riny = 151 1 t1—1 <5101 <+ < 810,jo < P11 <111 <0 <8115, < Pi2

<< Pry <SSt <t <Shpjy < u},
— - - - - — _ r
= @1,0,15--->01,0,jos DL, 1,15"" " s O L jy s+ -3 O, Ls -5 Oy )y Ul +1 = 0 € R,

hy= (Pl M2 B2y s B S R my )

Miu_,

Vut,j, 41 = Zhluu foru=1,.

Furthermore, for nonzero real g, E“"fq[FkIX,](E,,H) is given by the right hand side of (5.1)
replacing A by —igq.

By the same method as used in the proof of Theorem 2.11, we can prove the following

theorem.



Theorem 5.2. Let the assumptions and notations be as given in Theorem 5.1, and let F be
as given in Theorem 2.11. Then for nonzero real q and 2,,“ € R+ parfo[p lXt](En+1) exists

and it is given by

E“a[F|X,)Eni1) =1+ Z —E“”f"[l‘"lez](é’nH)
k=1

where Efq [Fk|X,](§,,+1) is as given in Theorem 5.1.

Let y(ii) = f]Rr exp{i(ii, 5) }dv(®) for v € M(R"). Then we have for &,11 = (&,&1,- - ) €
R®*+Dr and 1> 0

(5.2) , (A2 (x(t) — [x1(2)) + [E0110)) = ¥(E,).
By (5.2) and Theorem 5.2, we have the following theorem.

Theorem 5.3. Let G and G be as given in Theorem 2.12. Then, under the assumptions

and notations as given in Theorem 5.2, we have for nonzero real g and &,,1 = (30,31 o En) €
R(n+1)r

Ea[Gr|X,1(Enr1) = W(EDETT1[F| X, )(Enr1)

and
- - - 2. w1 -
E™NIGIX1Enr1) = Y EDETFIFIXNEnr) = YE) + D ET Gk X1 E o).
k=1""
Now we obtain a time-independent version of Theorem 2.7. To do his, we need the following

lemma [9].

Lemma 5.4. For 1 >0,5€ R and &€ = (&,&1,--- ,&n—1) ERY let

rm Jutl

B p) :
‘P(I‘l /1 é:) [m] /Rrexp{ ZZ [(fvfn)](snuu)a

u=0 v=1

z A n— Sn— 2 re2
Onaep) +i(En,0) — 5 “foji }dmL@n)

where (E,E‘n) = (EO,EI,"' aEn—laEn) S R(n+1)r: tnt < Spup Sty =1t and 6n,u,v € R” for u=
0,1,---,rp;v=1,2,---, j, + 1. Then we have

rm Jutl
(5.3) W(n, vf)—eXp{ <§n 1,v+ZZvnuu>

n ]u+1

+ZZ sntujtnin 1_. e

u=0 v=1

t—tn 1

y

135
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Theorem 5.5. Let the assumptions and notations be as given in Theorem 5.1. Then for
A€Cy andE=Go,é1,+ 1Ea-1) €RY, E™A[R|V1(@) is given by

n—1
E™FYIE) =k ) [H Al, 4., QI)J B(n,4,0,£,qn)
q1+-+an=k “I=1
where for v € R", B(n, 2,7, g, qn) is given by the expression of A(n, A€, qn) replacing

rm Jutl

CXp{iZ z ([E‘](sn,u,v)a 3n,u,v>}
u=0 v=1
by ¥(n,A,3,8) which is given by (5.3). Furthermore, for a nonzero real g, E™ A (1@ is

given by the above expression replacing A by —iq.

Theorem 5.6. Let the assumptions and notations be as given in Theorem 5.5 and let F (x) =
exp{ jg 8(s,x(s))dn(s)} for x € C"[0,t). Then for nonzero real q and & e R, E*4[F|Y,)@
exists and it is given by

» =1 -
E“AIF|GIE) =1+ ) E"HIFRIXIE
k=1~

where E%fa [Fk|Y,](§) is as given in Theorem 5.5.

Theorem 5.7. Under the assumptions and notations as given in Theorems 5.3, 5.5 and 5.6,
we have for nonzero real q and & = (&,&, - ,En1) ER™

qi+an=k "I=1

n—1
E“R(GNIE) =k ) [HA(I,‘iqagaCIl)} /R B(n, —iq,7,£,4n)dv()

and
- - —tn1 ., 1 -
Bl ®= | exp{itenr9+ SEELBIR v+ 3 ETRIGKID
r Pl

Remark. e If F;, Gy, F and G are defined on the r-dimensional Wiener space, then we
can obtain the same results in Theorems 5.1, 5.2, 5.3, 5.5, 5.6 and 5.7 with & = 0 € R in
the expressions of Z-‘,,H and E

e Ifp=porn=>, Z;; { W1,j6p, ;» We can obtain more simple expressions in Theorems
5.1,5.2,5.3,5.5,5.6 and 5.7.

e If some of the p; js are in the set {to,#1,"-- ,In}, We can obtain all the results including 7 in
Theorem 5.1 with minor modifications.

e Ifn=p+y,, Z;’=1 wy,j6p, ; and some of the ;s are oo, then, using (2.5), we can show
that E4/a[G|X,] in Theorem 5.3 and E**"/4[G|Y;] in Theorem 5.7 exist.
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§ 6. Application to an integral equation

In this section, we present a solution of an integral equation including the integral equation
which is formally equivalent to the Schrodinger partial differential equation.
Lett € (0,00) and 6: [0,00) x R” — C be the function given by

6.1) 0(s, i) = / exp{i(i,7) }do (@)
R”

where {07 : s € [0,00)} is the family from M (R") satisfying the following conditions;
1. For each Borel subset E of R", o75(E) is a Borel measurable function of s on [0,¢],
2. ”0‘;“ € L1[0,z].

Furthermore, for a function F : C"[0,#] — C and 2 > 0, let

6.2) I}@ = E[F(A™ 2 (x— [xD) + [ED)],

where € € R and the polygonal functions are taken over the partition 0 < ¢. In the following
theorem, if we replace F by F; with 0 < s <t¢, then we will assume that the expectation is taken
over C'[0,s] and the polygonal functions are taken over the partition 0 < s. We now have the
following theorem [5].

Theorem 6.1. Fort € (0,00) let
t
F(x)= CXP{ / a(u,x(u))dmL(u)}
0
Jor x € C"[0,t], where 6 is given by (6.1). Further, for (I,Eh/l) € (0,00) X R" x (0,00), let
e 5/ expd — 218~ Bl L B Bdy G
SOV Z N ) S TP T 210 TS0 (RS0, 518 80D,

where I;,l; is given by (6.2) in the sense of the conditioning function X; being given by X;(x) =
(x(0),x(t)) on C'[0,t]. Then F; € S,Qw and H satisfies the following integral equation:

6.3 H*/z—’lé ’l*“zd’“+/t )
63)  H@, )—(%) /Rrexp{—zllfl—foll } v+ | 27r(t~S)J

4 z = r
X /]Rr 6(s,W)H(s,i, A) exp{— 2% €1 — ul[%}dmL(z'i)dmL(s)

for (t,&1,2) € (0,00) x R” x (0, 00).

Theorem 6.2. Let the assumptions and notations be as given in Theorem 6.1. Moreover, for
(t,€1,4) € (0,00) x R” x Cy. let

S 2 A= . Lo .
H(t,&,2) = (5%;) /rexp{—zllfl —§0||2}E“"w”[mxz](fo,fl)dsor(fo)-

Then H(t, 31 , A) satisfies the integral equation (6.3) as given in Theorem 6.1.
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For a function f defined on R”, we adopt the following notation:

— . .
i@ = Jim [ r@exp{ -1 fami@
R” A— oo JRrr 2A
if the limit exists. Using this notation, we have the following theorem.

Theorem 6.3. Let the assumptions and notations be as given Theorem 6.2. Moreover, for
(t,€1,9) € (0,00) x R” x (R — {0}) let

, 5 9,2 = 2 2 e
H(t,é1,—ig) = (%) /Rr eXp{%llfl -§o||2}E“"f"[EIX:](fo,fx)d¢'(§o)-

Then H(t, &, —iq) satisfies the following integral equation:

. g \? g9z 22|, rz t 9 g
H(t, %, —iq) = (-2};) /Rrexp 5, 161 = ol }dsp (§0)+/0 Zni(t—s)]

X / . 6(s,HH (s, i, -iq)exp{ ‘9 & —ﬁ||2}dm;(ﬁ)dmL(s).

2t —s9)

Corollary 6.4. Under the assumptions and notations as given in Theorem 6.3, if ¢ is the
Dirac measure concentrated at 0, then W', is exactly the r-dimensional Wiener measure on the

@
Borel class of Cy[0,t], and we have
H(t, &, —ig) = | gexp 41812 o X1®, )
e 27t 2t ! ’

so that H(t, &, —1iq) satisfies the following integral equation which is formally equivalent to the
Schrodinger partial differential equation:

) 5 . t 3
H(t,&,—iq) = (%) CXP{%H& IIZ}+ /0 [——2,,,-(;1_9]

x/ (s, L?)H(s,it‘,—iq)exp{z(tli &1 —l‘illz}dmi(ii)dmL(s)
R’ S)

which is the integral equation as given in Theorem 6 of [10].

Theorem 6.5. Let the assumptions and notations be as given Theorem 6.3. Suppose that
¢ K my, that is, ¢" has the probability density y on R". Moreover, for (t,gl ,q) € (0,00) x R x
(R —{0}) let

5 ) 7 J e e o -
H(t,&,—iq) = (5%) /Rrexp{glt'”fl —fo“2}Ea"f"[FtIX:](fo,fl)w(fo)dmi(«fo)-
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Then H(,&,, —iq) satisfies the following integral equation: -

z
H(t,&,—ig) = (2 t) / w(fo)eXP{—-lIfl fonz}dmL(fo)'i' / {——Zm(f_s)}

x/ O(s, W)H (s, i, —zq)exp{2 |[§1 -—u”z}dmL(ii)dmL(s)
R’ (t —

which is formally equivalent to the Schrodinger partial differential equation.

Remark. 1f y is Lebesgue measurable, then we can take a Borel measurable function ¥ with
Y(#) = y1 () for mj-a.e. i € R, so that we can assume that y is Borel measurable. Furthermore,
since ¢ € L1 (R"), we have by the dominated convergence theorem

[ w@exp] 21 -z Yami @ - / lﬁ(,go)exp{ﬁus?l-—20”2}‘1’"2(30)
R” 2t Rr 2t

so that H (t,g-‘l , —iq) satisfies the following integral equation:

5
Hed-io) = (55) / vEew{ IR Bl famiEo + [ [ L]

x/ 6?(s,ii)H(s,u,—tq)exp{2 ”fl qu}dmL(ﬁ)dmL(s)
R” (t—

which is formally equivalent to the Schrédinger partial differential equation [1, 3, 12].

§7. Operator-valued function space integral

In this section we investigate that the conditional analytic Feynman integrals of function-
als on C"[0,7] can be applied to express the operator-valued Feynman integrals in terms the
conditional Feynman integrals.

Throughout this section, lett > 0 be fixed, X; : C’ [0,1] — R? be given by X;(x) = (x(0), x(2)).
Further, for 1 > 0 and e R, let X; ’g(x) X,(1~ 2x+§) and for a function F : C"[0,t] — C, let
FA% x)=FQ@Q~ bx+ &). Now we define the analytic operator-valued function space integral.

Definition 7.1. Let F : C'[0,¢] — C be a function. For any A > 0, ¢ in L;(R") and £ in R’,
let y¥(x) = p(A~x(r) + &) and

(LFW)E) = /C FAE (g (w0,

If hH(F)y isin Lo, (R") as a function of E and if the correspondence y — I (F )y gives an element
of £ = L(L1(R"), L (R")), we say that the operator-valued function space integral I;(F) exists.
Next suppose that there exists an £-valued function which is weakly analytic in C, and agrees
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with I;(F) on (0, c0). Then this £-valued function is denoted by /4"(F) and is called the analytic
operator-valued Wiener integral of F associated with parameter A. Finally, for a nonzero real
q suppose that there exists an operator Jg"(F ) in £ such that for every ¢ in Li(R"), I{"(F)y
converges weakly to J2"(F)y, as A approaches to —ig through C.. Then JZ"(F) is called the
analytic operator-valued Feynman integral of F with parameter q.

Note that in Definition 7.1, the weak limit and the weak analyticity are based on the weak*
topology on L, (R") induced by its pre-dual L;(R") [2, 8, 13].

Lemma 7.2. Let 1 > 0 and € € R". Suppose that ¢ is absolutely continuous with respect
to my. Then Px 1<K m?" and
t

dP /12 r = = 2 r
W (L M-l de
dm%, (771,712) = ( 27(!) eXP{ 2% dmi (4 (771 §))

g

for mi’ -a.e. (f1,72) € R¥.

Theorem 7.3. Let the assumptions and notations be as in Lemma 7.2. For F: C"[0,t] — C,
suppose that EY™A[F|X,1(71,72) exists on C; X R?", and for each bounded subset Q of C.,
there exists Mg > 0 such that |E™[F|X,](7i1, )| < Mq for all 2 € Q and all (7jx,72) € R
Further, suppose that there exists a function ¥ on C x R" satisfying the following conditions;

(i) for each A >0 and 7 € R”, $(A,7) = d%%(/l%ﬁ),
(ii) for each 7j € R", W(A, 7)) is analytic on C. as a function of A, and
(iii) for each bounded subset Q of C, ¥ is bounded on Q x R’.
Then for A € C,, the analytic operator-valued Wiener integral I{"(F) exists as an element of
L(L1(R"), Lo(R")) and is given by

. 1\
(7.1) A (Fw)E) = (—\/—2=-”;> /}R N E™F| X1, T2)¥(7i2)
Al — 712

X \P(/l, ﬁl e E) exp{ - 2 }dm%r(ﬁl 3 ﬁZ)

for ¢y € Li(R") and mj-a.e. Z € R’. In addition, suppose that for a nonzero real q and 2 €
R’, E“*fa[F|X,1(j1,7i2) exists for (7h,7) € R%. Moreover, suppose that ¥ can be extended to
(C+U{—ig}) x R" with the following two additional conditions;

(ii)) for each 7j € R”, W(A,7j) is continuous at A = —iq as a function of A, and

(iil)’ there exists a function ®4 € Ly (R") satisfying

[¥(A,7)| < |Dg(@)| for all (4,7)) € Qe xR,

where Q¢ = {A € C4 : |A+iq| < €} for some real € > 0.
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Then as an element of L(L1(R"), Lo, (R")) the analytic operator-valued Feynman integral Jg”(F )
exists and it is given by (7.1) replacing A and E*™1 by —iq and E®*/1, respectively.

Example 7.4. For7j = (1,---,n,) € R"and 21 € C7, let

dy" 1\ & 1 N\ & 1
m=(-= —— and ¥, 7)) = | - —.
dmz(ﬂ) (ﬂ) Hl—Hﬁ and ¥(4,7) (”) Hl-}-/ln%

j=1 j=1

Then ¢" is a probability measure on the Borel class of R” and the condition (i) of Theorem
7.3 is satisfied. Further, for 7 € R, ¥(4,7) is analytic on C,. and continuous on C7’ because
1+ /lrﬁ # 0 for A € C7, satisfying conditions (ii) and (ii)’ of Theorem 7.3. Now we have for
(4, n j) S (C: xR

2

1 1 1
= <min{1, —/——
l 1+ 47| ~ A+ 7Re)? + (PImA)? = mm{ [+ 7°(mA)? }
which satisfies conditions (iii) and (iii)’ of Theorem 7.3. Let F be a function satisfying the
assumptions of Theorem 7.3. Applying Theorem 7.3 to F, for any nonzero real g, the analytic
operator-valued Feynman integral J,;”’(F ) exists as an element of L(L;(R"),L..(R")) and it is

given by

(J,‘;"(F)w)@):( - ) /R _ ETAIF X 1Gh, ) Glo)

i/ 2nmt

. 1 iq!lﬁz*ﬁlllz} U =
X . expy ————— pdmy (ij1,72)
[H 1 —ig(m,; —.fj)ZJ p{ 2 L

j=1

for ¢ € Li(R") and ;é = (&1, ,&) € R7, where 71 = (71,1, -+ ,m1,-). Note that the probability
distribution ¢ having the above density for » = 1 is known as the Cauchy distribution.

Using the same method as used in the proof of Theorem 7.3, we can easily prove the fol-

lowing theorem.

Theorem 7.5. If the conditions (iii) and (iii) in Theorem 7.3 are replaced by the one con-
dition that for each bounded subset Q of C there exists a function ®q € L1(R") satisfying

(7.2) P4, )| < |Pa@@)| forall (4,7) € Q xR,
then we have all the results of Theorem 7.3.

Theorem 7.6. Let F ¢ vaqp be given by (2.1). Then we have for 1 € C

1 - i, o =
(7.3)  E"™F|X]Gi,72) =/ exp{“ﬁ[tllﬁll—HVsz]-l- ;(le—nl,Vr>}d0'(5)

L5[0,]

for (7i1,7) € R¥, where V, = ( f(; vi(s)ds, -, f(; v,(s)ds). Moreover, for any nonzero real g,
E4[F|X,] is given by the right hand side of (1.3) replacing A by —ig.
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For F € S, given by (2.1), we know from Theorem 7.6 that E*™[F |X,] is bounded by |||,
where ||o7|| denotes the total variation of o-. Combining Lemma 7.2, Theorems 7.3, 7.5 and 7.6,
we have the following theorem [8].

Theorem 7.7. Let the assumptions be as given in Lemma 7.2 and let F € S,:,¢. Suppose
that for a nonzero real q there exists a function ¥ on (C; U {—iq}) X R" satisfying the con-
ditions (i), (ii), (ii) of Theorem 1.3, and either (iii) and (iii)' of Theorem 7.3 or (7.2) of The-
orem 7.5. Then the analytic operator-valued Feynman integral J3"(F) exists as an element of
L(L1(R"), Loo(R")) and it is given by (1.1) replacing A and E°™2 by —iq and E**/4, respectively,
where E°*Ja[F|X,] is given by Theorem 7.6.

Theorem 7.8. Let the assumptions and notations be as given in Theorem 7.6. Furthermore,
suppose that " is normally distributed with the mean vector 0 and the variance-covariance ma-
trix a?1,, where I, is the r-dimensional identity matrix. Then for A € C.., the analytic operator-
valued Wiener integral 1{"(F) exists as an element of L(L1(R"), L. (R")) and it is given by

. A ]2 1
(7.4) (IJ"(Fy)(é) = [m] /L'[o . exp{—ﬁ[tllb'ﬂz
40

- R
—IIV:llzl} /R W@H (ﬂ,f, ] ;v,) dm} (do @)

}
for 1€ CY and Z € R". Furthermore, for any nonzero real q the analytic operator-valued

Feynman integral Jg”(F ) exists as an element of L(L1(R"),L(R")) and it is given by (7.4)
replacing A by —igq.

fory € Li(R") and mj-a.e. £ e R’, where

I A - ta?
HWAE 75,0 = exp{—gz-"f ~1 ~ 22t e

- Al -
§+?(§—77)
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