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Double zeta functions constructed by
absolute tensor products

ANKZREEREBEHER KX LM (Hirotaka Akatsuka)*
Faculty of Mathematics, Kyushu University

The aim of the present article is to report recent progress on the theory of the
absolute tensor product initiated by Kurokawa [K], in particular, to introduce a
new result (Theorem 3). This article is based on the author’s talk at the workshop
“Analytic Number Theory -related Multiple aspects of Arithmetic Functions”. This
article can be regarded as a continuation of the author’s previous RIMS report [A1].

This article is organized as follows. In §1 we recall the absolute tensor product. In
§2 we introduce some results on Euler products for double zeta functions constructed
by absolute tensor products. In §3 we give a proof of the new result.

I would like to express my sincere gratitude to the organizer, Takumi Noda, for
giving me an opportunity of a presentation in the workshop.

1 Absolute tensor product

Definition 1.1 (zeta regularized product). Let m : C — Z be a support discrete

function. Put )
m{p
C’m(w7 3) = Z w'!? (11)
< (=0
m(p)#0

where (s — p)* := exp[wlog(s — p)] and we choose the logarithmic branch by arg(s —
p) € (—m,m|. Here we assume the following two conditions for each Re(s) > 1:

1. the Dirichlet series (1.1) converges absolutely in Re(w) > C for some C € R.

2. (m(w, s) has a meromorphic continuation with respectto w in a region including
w=0.

*The author is in part supported by JSPS Research Fellowships for Young Scientists.



Then the zeta regularized product is defined by

H(s — p)™#) .= exp | — Resyu—g SACI) : (1.2)

w2
peC
The zeta regularized product has the following property.

Proposition 1.2. [I, Theorem 1] We assume the two conditions 1 and 2 in Definition
1.1. Then the zeta regularized product (1.2), which is initially defined in Re(s) > 1,
has a meromorphic continuation in the whole complex plane s € C. Moreover, the
analytic continuation of (1.2) has zeros at s = p with the order m(p). (If m(p) is
negative, then s = p is a pole with the order |m(p)|.)

Here we give two examples of zeta regularized product expressions.
Example 1.3. (1) Let M > 1. Then in Re(s) > 0 we have
(1 _ M__s)_l N ]:[ 5 — 2min -1
B log M '

neZ

(2) [Den, Theorem 1.1] We denote ((s) by the Riemann-zeta function. Then in

Re(s) > 1 we have
I o @L(s +2n)
C(S) =p:distinct n=1

s—1 ’
where p runs over the distinct nontrivial zeros of ((s) and m(p) is the order of the
zero of ((s) at s = p.

Definition 1.4 (absolute tensor product). We assume that Z;(s) have the following
zeta regularized products for any j € {1,...,r}:

Z;(s) = [ (s - p)™",
peC

where F(s) = G(s) means that there exists Q(s) € C[s] such that F(s) = e?)G(s)
holds. Then their absolute tensor product (Z; ® - -+ ® Z,)(s) is defined by

(Zl Q@ ZT)(S) = H (8 —pr— - plr)m(ﬂl,---;ﬁr),
pl:-“:prEC
where

1 if Im(p;) > O for any j,
m(p1, ..., pr) = ma(p1) - my(p;) X ¢ (=1)"* if Im(p;) < O for any j,

0 otherwise.
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Keep the setting as in Definition 1.4. In addition we assume that Z;(s) are entire
for any j € {1,...,r}. Then, by definition (Z; ® --- ® Z,)(s) has the following
additive structure on zeros and poles:

Z;(p;) = 0 for any j andIm(p;) are all nonnegative or all negative
= (Z1®+®Z)(p1 + -+ p;) =0 or co.

In particular, taking Z; = Z and p; = p, we have
Z(p) =0= Z®(rp) =0 or co.
Thus, if for some A,, B, € R it holds that
Z®(p') =0 or co = A, < Re(p)) < B,, (1.3)

then we obtain
AT BT
Z(p) =0= — <Re(p) < —.
Therefore, if for any r there exist A, and B, such that (1.3) holds and there exists
C, which does not depend on 7, such that B, — A, < C, then we see that all the zeros
of Z have a same real part. The above strategy, which is a trial to extend Deligne’s
proof [Del] for the Weil conjecture, was proposed by Kurokawa.

In the above strategy the point is to give (1.3) for many r. Here a question
arises: how do we obtain zero-free regions like (1.3)7 We recall the basic fact that the
Riemann zeta-function is zero-free in Re(s) > 1. This follows that its Euler product
converges absolutely in Re(s) > 1. Thus Euler products for Z®"(s) seem important
in order to find B, although existence and appearance of the Euler products are
unclear. On the other hand, to give A,, we would like a functional equation for
Z®(s) in addition to the Euler product. If Z(s) has a functional equation between
Z(s) «— Z(d — s), then Z®"(s) also has a functional equation between Z®"(s) «—
Z® (rd — s)("1""" | which follows from the definition of the absolute tensor product.’

For further details of absolute tensor products, see [M, §].

2 Euler products for double zeta functions

In this article we consider Euler products for

G ®G)(s),  ((®Q(s), ((®E)(s),

'However it seems difficult to write down the functional equation for Z®"(s) as an explicit
equation in general.




where ((s) is the Riemann zeta-function and {,(s) is an Euler factor of the Riemann
zeta-function, that is,

IT 66 G =0-p"

prprimes

First of all, we recall ((, ® (;)(s). From Example 1.3 (1), ({, ® {;)(s) is given by

kad 2mim  2min ad omim  2min\ !
(Cp®<q)(3) = H (5" logp - 1qu> X H <S+ logp + 10gq>

m,n=0 m,n=1

As was shown by Koyama and Kurokawa [KK1], (¢, ®¢,)(s) has an expression similar
to ((s) = exp[>_ -, n™'p™™ as follows:

Theorem 1. [KK1, Theorems 1 and 4] Let p and q be prime numbers. Then,
(1) When p # q, in Re(s) > 0 we have

~ o ~ 0 pne o q—ns ‘
(Cp®§q)(5)— p( ;n( o(n 10gq)) ;n(l 6(”55%))) (2.1)

where e(z) := ™=,
(2) When p = q, in Re(s) > 0 we have

(GO G5 2w (~% - (152 ) 22)
n=1

Remark 2.1. All the sums in Theorem 1 converge absolutely in Re(s) > 0. While
it is easy to check the convergence of the sums in (2.2), the sums in (2.1) have a

delicate problem because of the denominators of the summands. In fact, we need a
result on linear forms in logarithms (see [B, Theorem 3.1]), which says that for any
distinct prime numbers p and g there exists C = C,, > 0 such that

”n—logp“ > (2.3)
log g
for any n € Z>3, where ||z|| := minm,ez |z —m|. The desired convergence in Re(s) > 0
follows from (2.3) together with

1 - e(a)| = 2/ sin(a)| = 2sin(r]al]) > 4lle] (2.4)

for any o € R. We note that we can prove the absolute convergence only in Re(s) > 1
by using a more elementary inequality (3.13).
Similar formulas for (¢, ® - - - ® {,,.)(s) were obtained, for example, in [A2, KW].
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Next we treat (¢ ® ¢)(s). By Example 1.3 (2), (¢ ® ¢)(s) is given by

(€ @<)(s) :
I G-» —pQ)( 1 (s—p+2n)) (s —2) [T (s + 2n1 + 2n)
Im(p;)>0 ImT(Lp2)1>0, n; 21
H (3“P1—P2)( H (S—l*P)> (H(s+2n—l)>
Im(p;)<0 Im(p)>0 n>1

where p, p1 and p, run over the nontrivial zeros of {(s) in the given range counted with
multiplicity.? In [A3] the author gave an analogue of the Euler product expression
for (¢ ® ¢)(s) as follows:

Theorem 2. [A3, Theorem 1.3] In Re(s) > 2 we have
C®O)(s) = ex _1_ Z i Z i p~(e-1g—n logp
P\ 7 n(mlogp — nlogq)

p m=1l ¢ n=1
qr#£p™

l "=\ P ™™g logp
- Ezzzzn(mlogp-{—nlogq)

p m=1 g n=1

1 1 -
+— C—(s — u)log IC(U)IdU) ¢(s —1)™" x R(s),
T Jy ¢
where p and q Tun over the prime numbers and R(s) is a holomorphic function having
no zeros in Re(s) > 1.

Remark 2.2. We can express R(s) in terms of sums over the prime numbers: see
[A3].

The first sum and the third integral converge absolutely and locally uniformly
in Re(s) > 2 while the second sum converges absolutely and locally uniformly in
Re(s) > 1. Furthermore it is impossible to improve the convergent domain for the
first sum and the third integral because we can show that

1 o 0 —m(s—1) -n} 1
=222 n’;mlo ‘_I_nlogp) ~ 5—(log(s —2))?,
p m=1 q n=1 gp 089 i
g #p™
1 1 CI

= | Fle-uloskldy ~ ~ (log(s ~ 2)°

Instead of writing multiplicity functions like Example 1.3 (2), we count zeros considering the
multiplicity.




as s — 2. See [A3, Proposition 7.1].

Koyama and Kurokawa [KK2] also obtained an Euler product for (¢ ® ¢)(s) by
an entirely different method. However the Euler product in [KK2] includes an extra
parameter and is more complicated than that in Theorem 2.

For j € {1,...,m} and k¥ € {1,...,n} let F;(s) and Gi(s) be meromorphic
functions having zeta regularized product expressions. Then by definition we have

m n m n

(H Fj) ® (H Gk) =TI ]F ® Gk)(s)- (2.5)
j=1 k=1 j=1k=1

Therefore we may hope that

€®0(s) = [[(G®&)s), (2.6)

g

where p and q are taken over the prime numbers. However we cannot interchange the
order of the limit process and the zeta regularized product in general. To make mat-
ters worse, we expect that the right hand side of (2.6) does not converge absolutely
for any s € C: see Theorem 1.

From the viewpoint of (2.5), it is also interesting to compare (¢ ® {)(s) with
((®&)(s) and ((®¢)(s) with (¢ ®¢,)(s). As a first step to investigate relationships
among these three functions, we give an Euler product expression for ({ ® {,)(s).

First of all we recall that (¢ ® {,)(s) is given by

2min 2min
| (S~p+ 10gp)H (s~ b logp)

Im(p)<0, n>0

. n>0
s—p— ] H s+2m — i
Im(p)>0, ogp m>1, 08P
n>0 n>0

where p runs over the nontrivial zeros of {(s) counted with multiplicity. This function
has the following Euler product expression:

Theorem 3. Let p be a prime number. Then in Re(s) > 2 we have

(C®G)(s) = exp (ZE (s))

where

o0 —ms

Bi(s) = =23

)
g#p m= (L~ e(mlogp))
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WYY e
" 2mi — 5 n(mlogp — nlogq)’
AP
_s-1 > p mslogp 2 pms
E —
2me ; m —m
1 & = mSq~" log p
o Z]L;Zl n mlogp-l—nlogq)

1 v+ 10g(27r 2 p ™ p~™*
Bs(s) = (Z TTom Z m2logp |
pm I mlogp :
Es(s) " omi Z ( i ) ’

logp log |¢(u)|
— - d
Er(s) 2mi /0 pu—10
B =g > s [T
B\ = 2mi = m?logp Jo e*—lu+mlogp’
—m(s 1) *® -m(s+2)
p p
Ey(s) = —5 E ’ En(s) = 2 :_—m(l _p' ~2m)’

m=1

where q appearing in E1(s) and E5(s) run over the prime numbers and +y appearing
in Es(s) is the Euler constant.

Remark 2.3. The sum in Ej(s) converges absolutely and locally uniformly in
Re(s) > 2. The sums and the integral in Ey(s), E;(s) and Eq(s) converge abso-
lutely and locally uniformly in Re(s) > 1. On the other hand the sums and the
integral in E3(s), E4(s), Es(s) and Es(s) converge absolutely and locally uniformly
in Re(s) > 0 and the sum in Ejo(s) converges absolutely and locally uniformly in
Re(s) > —2.

3 Proof of Theorem 3

First of all we recall the theory of Cramér [C] and Guinand [G]. Put

—rt . logt
Z e, U(t) = a(t) + m,

Re(1)>0

where 7 runs over the complex numbers with Re(7) > 0 such that $+i7 are nontrivial
zeros of ((s), counted with multiplicity. The sum converges absolutely and locally
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uniformly in Re(t) > 0, so that 6(¢) and U(t) are originally defined in | arg(t)| < 7/2.
Cramér and Guinand showed that

e an expression for () in terms of sums over prime numbers,
e a single-valued meromorphic continuation to the whole complex plane t € C

for U(t),
e a functional equation for U(%) between ¢ «— —t.

See [G, Theorem 3] and [C, p.114, (13)] for the precise statement. From the second
property 6(t) has a single-valued meromorphic continuation to C \ iR<o. We rewrite
it by the same notation #(t) and put

0% () := 0(t) — e~/2,

which is originally defined in C \ {R<o. For 6*(t) we can read the results of Cramér
and Guinand as follows:

Lemma 3.1. (cf. [A3 Lemmas 2.2 and 2.3]) (1) Int € C\ iR<o we have
_ t - g "
0 (1) = ‘Lt/2 _v o it/2
Q ZZ t—mlogq 27rz'e ;;n(t—l—inlogq)

o (1 + log(27) 1 et2T (¢
—eit/2 (= 4 T 108eT) ) il ()
¢ (4 T o ) (1 it) 2T \ 7

t oo —itu R du
5-€ /0 log |¢(u)|du + ot :

et —1lu—it
2 et — e—it’
where q Tuns over the prime numbers and v is the Euler constant. All the sums and
the integrals converge absolutely and locally uniformly in C \ iR<o.
(2) Poles of 6*(t) in C\ iR<q are located att = inlogq (q: prime numbers, n € Z>1)
and t = —mm (m € Zx,), and nowhere else.
(3) 0*(t) has the following functional equation:

oit/2

#(0)+0r(-) = { 2!

€

if Re(t) >0,

' 0
2isint if Re(t) <

We go back to the proof of Theorem 3. By the definition (2.7) of (¢ ® {,)(s), for
Re(s) > 1 and Re(w) > 2 we would like to express

> (s-p+ 2“”)_1” (3.1)
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in terms of sums over the prime numbers, where arg(s — p + f;’g’:) € (—m/2,7/2).
We put z := (s — 3)/i and a := 27/ logp. Then (3.1) equals to

g~ miw/? Z (z+7+an)™",

Re(1)>0,
n>1

where arg(z + 7+ an) € (—,0). Under Re(z) > 0 in addition to Im(2) < —1/2 and
Re(w) > 2, a standard calculation gives

Z (z+T+an)™ = = Tw) / e”**6(t) t)t“’ dt (3.2)

Re(7)>0,
n>1

where

B,(t) == Ze-ant —~

n=1

To connect (3.2) with sums over the prime numbers, we would consider

1 —zty) w@
) /C . 0181t —, (3.3)

where 0 < € < log2, C. is a path connecting +00 — ¢, ee®? (§ : 0 — 27) and
ee?™ — 0oe?™ and §(t) is an analytic continuation of 8(t) to C\ Rxo with the initial
domain {t € C|Re(t) > 0,Im(t) > 0}. Ignoring the convergence temporarily, we
would have

2 -
o / G (1)0, (t)t”’t ?r(m) Y Resac (061 (34)
aeC\{0},
poles of g(t)ﬂa ()

by the residue theorem. However the right hand side of (3.4) does not converge
absolutely for any (s,w) € C2.
To avoid the above problem, we start with

1 / » dt
— 20 ()0, (t tw 3.5
el OO 35)
instead of (3.3), where 0 < ¢ < log2 and P is a path connecting coe®™/* — g3/,

ee“’ (9 3, 1) and ge ™% — coe” ™4,

7) 7 The integral converges absolutely in .
= {(z,w) € C*| — 1 —a < Re(z) + Im(2) < 5/2}. We recall a = 27/logp. We
restrict z to Im(z) < —3/2 in addition to (2,w) € D. For positive integers M we

put T := log(M + 3) and we take real numbers R > T. Let P.(R,T) be a closed
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path connecting v2Te¥™/4, ge®™/4 ee (§: 3% — —2) R—{R, R+4T and —T +iT.
Applying the residue theorem to the path P.(R,T) and taking the limits R — oo
and M — oo, we have?

1 —zt n* wdt - 2 . st " 1
F('LU) ‘/Pe € 6 (t)oa'(t)t ¢ - F(w) A}Enw Z Rest—mlogqe 0 ( )6 ( )t
"<M+2

(3.6)
where ¢ runs over the prime numbers and n runs over the positive integers with
q" < eT. We calculate the residues explicitly by using Lemma 3.1 (1). For simplicity
we write Lemma 3.1 (1) as

—N

) =—25 _zt/QZZN(t—leogQ) +Ra(0)

Q N=1

where @ runs over the prime numbers. When g # p, e *6*(t)6,(t)t*~! has simple
poles at ¢t = inlog ¢ and we have

Rest:in loggq e~2t9* (t)ea (t)tw_l
t q"
— R —in —2i 7 —’Lt/2
ESt=inlogq © ( omiC n(t — inlogq)
em’w/z ~(iz+3)n (’I’L log Q)w -1 log q

2mi 1 — e(nf82)

) 6, (1)t

When g = p, e7#6*(t)0,(¢)t“ ! has double poles at ¢t = inlog g and we have

Rest:in logp e——zte* (t) 00 (t) tw_ '

t ; -n
= Rest=in logp e (__'e——zt/Z p, ) 0, (t)tw_l

2mi n(t —inlogp)

—N
. —zt e~ it/2 Q w—1
+ Rest:mlogp € ( 27]_2 Z Z N(t N ]og Q) + Rl( )) Ha(t)t

QN;p
— _emwl2pmltannlogp) | w  logp R
2min 2min. 2w 2 2
(27)2 Q N=1 N(nlogp - NlogQ)
QN #p™
e™/2p=inz R, (inlog p)(nlog p)*~*log p

+ (3.8)

271
8Here we need some estimates for the integrand. See [A3, §2] for needed estimates of 8*(t).
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Next we express (3.5) in terms of Dirichlet series like the left hand side of (3.2). We
note that the integral (3.5) is determined independently of a choice of € € (0,log 2),
which is a typical application of Cauchy’s theorem. We assume Re(w) > 2 in addition
to (z,w) € D. Then taking the limit ¢ | 0 gives

- / e~ (1) ( /oo - / MW) e ()8, (£)1Y 2

(3.9)
We calculate the second integral. By definition we have
—7ni/4
1 / o€ it dt
—_— 0" (1)0,(t tw
7 (0u()
— 1 /*006""’74 e—zt Z E_Tt _ e—it/2 ie—ant v t
| I'(w) Jo
Re(7)>0 n=1
oo . -—W
= Z Zz-l—'r-i-cm w Z(z +an> : (3.10)

Re(7)>0 n=1 n=1

where arg(z + 7 + an), arg(z + % +an) € (—n/4,3n/4).* Here in the last equality we

used e
ocoe~ Tt dt
/ e""‘tt‘”—i— = T(w)a™,
0

which is valid for arg(a) € (—7/4,37/4) and Re(w) > 0. Next we calculate the first
integral in the right hand side of (3.9). By Lemma 3.1 (3) and 6,(—t) = —e*8,(t),
we have

0 —zt * wdt
F(TU—S/ € 0 (t)Ha(t)t T

ooe3Ti/4
0

= ) / eZtB*(—t)Ga(—t)twe"iw%

ocoe—Ti/4

—mi/4
1 e * zt/2 at w ,Tiw dt
T T(w) /0 ( AU stmt) (=e%0a(2))t" T

In the same manner as (3.10) we obtain

1 0 —2zt n*x wﬂ
o / e~26" (£)6a ()t

coedmi/a t

“From the assumption —1 —a < Re(z)+Im(z) < 5/2 we see Re(z+7+an)+Im(z+7+an) > 0
and Re(z+ % +an)+Im(2+% +an) > 0. These imply arg(z+7+an), arg(z+%+an) € (—m/4,37/4).
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= e ¥ ZT—Hm—Z) w_ g “wzz<(2m+ )i+an—z)_w,

Re(7)>0 n=0 m=1 n=0

(3.11)

where arg(7 + an — z),arg((2m + 3)i + an — 2) € (—7/4,37/4).
Combining (3.6)—(3.11), we obtain

> Zz+7‘+an —w i(m- +an> B

Re(r)>0 n=1 n=1

—e™ Z i(TvLan —2)Y — ™ i i((Zm + %) i+an— z)
Re(7)>0 n=0 m=1 n=0

Tiw /2

2\ g0+ 3" (nlog g)*log g

1— (nl—é—g)

—evriw/2 i p—(iz""zl')”(nlogp)w w _ 1ng z+ 3. — 1
T(w) n smin 2 .

€

['(w)

g#p n=1

m'w/Z @ —(iz—~ )'n w
p QM (nlogp)*logp
" 2miT (w) Z Z Z N(nlogp — Nlog Q)

le N>1,
Q”#p

wiw/2 _°

€ —~inz . w—

) > p""*Ry(inlog p)(nlog p)*~* logp,
n=1

provided —% — a < Re(z) + Im(z) < 2 Im(z) < —3/2 and Re(w) > 2. Putting
z=(s—1) / ¢ and dividing both sides by e™/2 e reach

S i(s_p+2mn)‘“’+i <5_1+2m'n>"“’

Im(p)<0 n=1 logp

_ L[ g ™ (nlogq)” 'logq
- F<w>< ZZ 1—e(n2)

logp

w i p ™ (nlogp)¥ s-—1 i p~"(nlogp)® logp

3 -
n 2mi n
n=1 n=1

1 <= p™(nl 1 & ”(SI)Q(I Y1
__2_210 (”nogp) ZZ Z P nlogp)¥ logp

“— 2m il oet N(nlogp — Nlog Q)
QN #p"
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=" p DRy (inlog p) (nlog p)* ! 1ogp> , (3.12)

n=1
which is valid for —2 < Re(s) — Im(s) < 1+ logp, Re(s) > 2 and Re(w) > 2. Here
the arguments in the left hand side are taken in (—7/2,7/2).

We check the absolute convergence of the sums in (3.12). It is easy to see that
the sums in the left hand side of (3.12) converge absolutely and locally uniformly
in Re(s) > 1 and Re(w) > 2. We can also prove that the sums in the right hand
side except for the first and fifth sums converge absolutely and locally uniformly
in Re(s) > 1 and w € C with no difficulty. We treat the first sum. To check the
convergence, we give a uniform bound for ”"10 &1 || with respect to g(# p) and n. For
m € Z we have

l 1 ™ 1 ™ "+1
o84 m‘ = — |ogL|> > -———mm{log g ,logq ks }
"logp logp pm| ~ logp =1 q
1
= —l 1
og( ’ ) ~ 2¢™logp’
Here in the last inequality we used log(1 + z) > z/2 for 0 < z < 1/2. Therefore we
get
log q 1
. 3.13
Hnlogp“ " 2g"logp (3.13)

This together with (2.4) guarantees that the first sum in the right hand side of (3.12)
converges absolutely and locally uniformly in Re(s) > 2 and w € C.

Next we deal with the convergence of the fifth sum in the right hand side of
(3.12). To do this, we estimate

3D T M 319
5 s N|nlogp Nlog Q| 22,mlogmllogL—logm|
QN #p m#L

where A(m) is the von Mangoldt function and L := p”. We divide the sum into

2<m< VL VL<m<L L<m< L? and m > L% Firstly we consider
2 < m < v/L. In this case we have |log L —log m| = log L —logm > (log L)/2. Thus

we have

A(m) A(m) loglogL
Z mlogm|log L —logm| ~ logL Z mlogm logL (3.15)

2<m<vL

Here in the last inequality we used the prime number theorem. In the same manner
as (3.14), the sum over m > L? is estimated as follows:

A(m) A(m) 1
< . .
mg; mlogm|log L —logm| — 2m>ZLZ m(logm)? < log L (3.16)
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Next we deal with the sum over /L < m < L. We note that the mean value theorem

gives

logY —log X > y-X

for any 0 < X < Y. Thus, together with A(m) < logm we have

3 A(m)
mlog m|log L — log m|

VLI<m<L
A(m) 1
< L E <L E _
N esngly mlogm(L —m) e m(L —m)
1 1
Z m Z L-m
vL<m<L VL<m<L

In the same manner we have

A
Z (m) < log L. (3.18)
L, mlog m|log L — logm)|

Applying (3.15)-(3.18) to (3.14), we obtain

-N

Z Z Nlnlogp Nlog Q)|

N>1,
Q” #p

< nlogp. (3.19)

By (3.19) we see that the fifth sum in the right hand side of (3.12) converges abso-
lutely and locally uniformly in Re(s) > 1 and w € C.

From the above observation (3.12) holds in Re(s) > 2 and Re(w) > 2 thanks to
the coincidence principle. Taking the linear term of the Laurent expansion at w =0
n (3.12), we obtain Theorem 3.°
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