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On the transcendental degrees of the fields
generated by special values of power series

&F Jt (Kaneko Hajime) *
Department of Mathematics
College of Science and Technology, Nihon University

Abstract

We study arithmetical properties of the values of power series

w(n); X) = Z xvm

n=0

at algebraic points, where w(n) (n = 0,1,...) is a sequence of non-
negative integers with w(n +1) > w(n) for any sufficiently large n. In
[5] the author proved algebraic independence of such numbers in the
case where X = b~! with b€ Z,b > 2 and

w(n) = By;n) := [exp (log(n)'*¥)]

with y € R, y > 1. In this paper we study transcendental degrees
of the field generated by Q and f(B(y;n);a ') for certain algebraic
integers a. In section 3 we give another elementary proofs of certain
Fredholm numbers in order to show main ideas for our results.

1 Introduction

In this paper we study arithmetical properties of the values of power series

— i xw(n)

n=0

*This work is supported by the JSPS fellowship.
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at algebraic points X = «, where w(n) (n = 0,1,...) is a sequence of non-
negative integers with

w(n+1) > w(n) (1.1)

for any sufficiently large n. In this section we introduce transcendence and
algebraic independence of such values in the case where w(n) (n =0,1,...)
is lacunary. Recall that w(n) (n=0,1,...) is lacunary if

lim inf —w(n +1)

> 1.
n—oo u)(n)

Note that if w(n) (n = 0,1,...) is lacunary, then there exist a positive
constant § satisfying ‘

w(n) > (14+0)" (1.2)

for any sufficiently large n. Liouville [8, 9] showed for any integer b greater
than 1 that the number

fho) =) o™
n=0
is transcendental, using Diophantine inequalities. By his method we verify
the following: Assume that w(n) (n =0,1,...) satisfies

w(n + 1) =

lim w(n)

(1.3)
Then f(w(n);b™) = S°°° b7 is transcendental for any integer b greater
than 1. Note that if w(n) (n = 0,1,...) satisfies (1.3), then f(w(n);X) is
called a gap series.

We consider the case where f(w(n); X) is not a gap series. Let k and b
be integers greater than 1. Kempner [6] showed that the Fredholm number

¢.o}

fEmE) = b7

n=0

is transcendental. Moreover, Mahler [10] proved for any algebraic number o
with 0 < |a| < 1 that

o0

fka) =) o

n=0



is transcendental. He verified transcendence of such numbers, using the func-
tional equation

FRmXF) =X =N X = f(k X) - X
n=0 n=1

Applying Mahler’s method, we deduce that f(w(n);«) is transcendental in
the case where w(n) (n =0,1,...) is a liner recurrence with certain assump-
tions. We recall that w(n) is linear recurrence if there exist a positive integer
! and complex numbers ¢y, ..., ¢ such that

Wnti = CLWnti-1 T CoWntl—2 + - + QWn (1.4)

for any nonnegative integer n. For instance, let F, (n = 0,1,...) be the
sequence of Fibonacci numbers defined by Fy = 0,F; = 1, and Fr4p =
F,.1+ F, for any nonnegative integer n. Then f(F,,; a) is transcendental for
any algebraic number a with 0 < |a| < 1.

Let again o be an algebraic number with 0 < |a| < 1. Then Corvaja and
Zannier [3] showed for an arbitrary lacunary sequence w(n) (n = 0,1,...)
that f(w(n); ) is transcendental, using the Schmidt subspace theorem. Note
that if w(n) = k™ (n = 0,1,...), then the transcendence of f(k™; ) follows
from the Roth-Ridout theorem.

In the rest of this section we study algebraic independence of f(w(n); a)
for distinct lacunary sequences w(n) (n = 0,1,...). First we consider the
case where f(w(n); X) is a gap series. Schmidt [13] proved for any integer b
greater than 1 that the set

{ F(hn)l; b7 Zb (b))
n=0

is algebraically independent. We recall that a nonempty set S of complex

numbers is algebraically independent if arbitrary numbers of distinct ele-

ments &1, ...,& in S are algebraically independent. Next, let v be a positive

algebraic number less than 1. Then Durand [4] verified that the continuous

set

z € R, x>0}

{ flz(m)l];7) = Z A=)

n=0

is algebraically independent, where [y] is the integral part of a real number
y. Shiokawa [14] verified criteria for algebraic independence of the values of
gap series at algebraic points, which give generalizations of the results by
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Schmidt and Durand above. For instance, using his criteria, we deduce the
following: For any positive real number z we take an algebraic number o,
with 0 < |a;| < 1. Then the continuous set

n=0

z € R, x>0}

is algebraically independent.
We now consider the case where w(n) (n = 0,1,...) is not lacunary.
Nishioka [11] verified for any algebraic number o with 0 < |a| < 1 that the

set
k=2,3,...}

is algebraically independent, using Mahler’s method. We give elementary
proof of algebraic independence of

Z b~2" and E b

n=0

{f(k”; @) =) o

n=0

in Section 3, where b is an integer greater than 1. Let (v (1))n_0, (vn ))n_o, .
be distinct linear recurrences satisfying (1.4) with common coeﬂiments Ciy..-,Cl
Tanaka [15] investigated algebraic mdependence of f (vn a), f (v,(f),a) e

applying Mahler’s method. For instance, let (v )n_o, ( ne )2, be sequences

of nonnegative integers satisfying
7(:12 ,(:J)rl +o® fori=1,2.
Then, for any algebraic number a with 0 < |a| < 1, two numbers f (vﬁl), Q)

and f (’un ; &) are algebraically dependent if and only if there exists an integer
N satisfying

1’7(12) = U7(11-+)—N

for any sufficiently large n. For more details on Mahler’s method, see [12].

2 Main results

Let b be an integer greater than 1 and w(n) (n = 0,1,...) a sequence of
nonnegative integers with (1.1). Then

o0

fwm); by = 35

n=0



gives the base-b expansion of a positive real number. Borel [2] conjectured
that any positive algebraic irrational number £ is normal in base-b. In par-
ticular, if this conjecture holds, then £ is simply normal in base-b. Namely,
let

&= i 807"
n=0

be the base-b expansion of £, where s = [£] and s, € {0,1,...,b— 1} for
n>1. Let 0<k<b-1. Put

Ab k& N):=Card{n€Z|s,=k, 1 <n< N},
where Card denotes the cardinality. Then it is believed that

. AbkEN) 1
N VA ¥ (2.1)
If Borel’s conjecture above is true, then we deduce the following: For any

w(n) (n=0,1,...) with

lim M = 00,

69

then the number f(w(n);b™!) is transcendental. In fact, assume that f(w(n);b!)

); ™
is algebraic. Thus, f(w(n);b™!) is an algebraic irrational number because the
base-b expansion of f(w(n);b7!) is not ultimately periodic. We have

. A(B,0,§N)
1 N F TS
Nosoo N
with £ = f(w(n);b™!), which contradicts (2.1). |
Bailey, Borwein, Crandall, and Pomerance [1] showed the following: As-
sume that
lim ——w(:) = 00 (2.2)
n—oo 1
for any positive R. Then f(w(n);b™!) is transcendental. Note that they
proved the results on transcendence above only in the case of b = 2. However,
transcendence of f(w(n);b™!) for an arbitrary b is proved in the same way.
We give applications of the transcendental results above. First we con-
sider the case where w(n) (n =0, 1,...) is lacunary. Then (1.2) implies that
w(n) satisfies (2.2). Hence, f(w(n);b™!) is transcendental, which gives spe-
cial cases of the transcendental results by Corvaja and Zannier [3]. Next we
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consider the case where w(n) (n = 0,1,...) is not lacunary. For a positive
real number y and a positive integer n, we put

Bly;n) == [exp ((10g n)”y)] ,

where [z] denotes the integral part of a real number z. Let
uw(y; X) = f(By;n); X) = Y Bly;m) X"
n=1

Then ((y;n) satisfies (2.2) because

n® = exp(Rlogn).

Hence, u(y;b™') is transcendental for any integer b greater than 1. Note
that B(y;n) (n = 0,1,...) is not lacunary because B(y;n) does not satisfy
(1.2). Thus, we cannot prove transcendence of u(y;b™!) by the criteria for
transcnedence by Corvaja and Zannier.

Let again b be an integer greater than 1. The author [5] showed that the
continuous set

{uly;p Y |y > 1, y e R}

is algebraically independent. Moreover, in the same paper the author verified
for any positive distinct real numbers z and y that u(z;b™!) and u(y;b™1)
are algebraically independent. On the other hand, it is unknown whether
p(y; —b~1) is transcendental for a positive real number y.

" In what follows we consider arithmetical properties of u(y;a™!), where o
is an algebraic integer with certain assumptions.

Let a be an algebraic integer of degree d. We write the conjugates of

a by oy = a,ag,...,a4. We say that o is represented by an expanding
nonnegative matrix if o satisfies the following two assumptions:

1.
o] >1fori=1,...,d. (2.3)

2. There exists a square matrix A of order d whose entries are nonnegative
integers such that the eigenvalues of A are ay,...,aq4.

For instance, o = 3++/2 is an algebraic integer represented by an expanding
nonnegative matrix. In fact, a; = o and ap = 3—+/2 satisfy (2.3). Moreover,

the eigenvalues of
31
2 3

are a; and ;.
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THEOREM 2.1. Let a be an algebraic integer of degree d. Let oy =
a, Qg, ..., aq be the conjugates of . Assume that o is represented by an
expanding nonnegative matriz.

(1) There exists an i with 1 <1 < d such that the continuous set

{uy;oi) |y > 1,y € R}

15 algebraically independent. In particular, let r be a positive integer and
Y1, ..., Y, be distinct real numbers not less than 1. Then

tr.degQ({p(y;;0; ") [1<i<d1<j<r}) >

(2) Let z and y be distinct positive real numbers. Then there exists ¢ with
1 < i < d such that p(z;0;') and u(y; ;') are algebraically independent.
In particular,

tr.degQ(u(z; art), ..., p(z; 00", ply; o), - . o, ply; agt)) > 2.

3 Elementary proof of algebraic independence
of certain Fredholm numbers

In this section we denote the set of nonnegative integers by N. Let b be an
integer greater than 1. Put

=3 b7 =) b
n=0 n=0

Knight [7] gave a simple proof of transcendence of {;. Namely, he proved
transcendence of £;, calculating the base-b expansion of &;,£2,£3,. ... In this
section, applying his method, we show that & and & are algebraically inde-
pendent in order to show main ideas for our results of algebraic independence.
That is, we verify the following: for any nonzero polynomial

PX,Y)= > AXY
k=(k,l)EA

with integral coeflicients, we have P(&,&;) # 0. Here, A is a nonempty
finite subset of N2 and Ay is a nonzero integer for any k € A. We introduce
the graded lexicographic order > in N? satisfying (1,0) = (0,1). Namely,
(k,)) = (K, if k+1> K+, orif k+1 = k' +1' and simultaneously k > k'
Let g = (g, h) be the maximal element of A with respect to >. Without loss
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of generality, we may assume that XY divides P(X,Y) and that Ag > 1.
Since XY divides P(X,Y), we have k,l > 1 for any (k,[) € A. Set

Ay = {keA|A >0},
A = {kEAIAk<0}.

Moreover, put

me= Y Al me= Y |Adere

k=(k,l)€A~ k=(k,l)EA_

For the proof of algebraic independence of &; and &,, it suffices to show that
m # n2. The proof relies on the calculation of the base-b expansions of 7;
and n,. Let (k,1) € A. We calculate £F¢L. Put

S1 = {2"|ne N} ={1,2,4,8,...},
Sy = {4"|neN}={1,4,16,64,...}.

Then &; and &, are written as

G=) b7 =) b7

€S JESa
Let
k l
kS, +1S; == {Z$i+zyj L1, T2+, Tk € S1, Y1,Y2,--, Y1 € 52}
i=1 j=1
and

k l
Zxﬁ—Zyj In}.
i=1

=1

p(k,l;n) := Card {(xl,xz, e Ty Y1, Y2y -5 Y1) € Sf X Sé

It is easily seen that
p(k,1;n) < nFt (3.1)

because 1 < z;,y; <nforany 1 <i< kand 1< j <l We obtain

s - (zo) (S+)

ZE€S1 y€ESa
— Z p~(@rt+zk) Z p—@wrt+um)
Z1,...,T5ES1 Y. Y1 ES2
= > pkLn)b™ (3.2)

n€kS1+1S2
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In particular, we deduce that

m= Y. A >  pkLn)b" (3.3)

k=(k,[)eA+ nekS1+1S2

and that

m= . |Al > plkLn)p (3.4)

k=(k,l)€A_ nekS1+1S;
Let m be a nonnegative integer. Put
B:=20492 4 ... 4 02h=2 921 | g%+l | . | 92ht2—3
and
N(m) :=2""B.
LEMMA 3.1. Let m be an integer greater than 1 and (k,l) € A. Then

),

w&HwnWm—W?MM+Wﬂ={mw “ii ﬁ

(9,
(m)} (( (g,
Proof. Put
L(k,l;m) == (kSy +1S2) N [N(m) — 2*™72 N(m) + 2°™?] .

For each n € N, let us write the sum of digits of the binary expansion of n
by o(n). Let n € kS; + 1S;. Namely,

k l
ne Yot Y
i=1 j=1

where z; € Sy fori=1,...,k and y; € S, for j = 1,...,l. The right-hand
side of the equality above causes carry in the binary expansion of n. Thus,

on)<k+1<g+h (3.5)

because (g,h) is the maximal element of A with respect to >. Moreover,
suppose that n € kS; + [S2 and that o(n) = k + [. Then write the binary
expansion of n by

n:ZZi,

1€Q
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where (2 is a finite subset of N with Card 2 = k£ + [. Then we get
n= Y 24+ Y 2 (3.6)
i€y, 21eS) JEQ2, 27€8;

where Q; and ), are disjoint subsets of ) with Card ; = k, Card (2, = 1.

On the other hand, let (;-- - t1tp)2 be the binary expansion of B, where
to = 1. Then the binary expansions of N(m), N(m)—2*"~2, N(m)+ 222
are represented as

2m—-2>0
N(m)—2*"""2 = (t;...£,0110...0),,

2m—2>0
N(m)+2°""2 = (...1,1010...0),.

2m~2>0
Thus, let n’ € [N(m) — 22™~2 N(m)). Then

o(n’) > o(N(m)—2"""?)=0(B)—1+2
> o(B)=g+h. (3.7)

Combining (3.5) and (3.7), we obtain that n’ & kS; + 1.5,.
Similarly, let n” € (N(m), N(m) + 22™2]. Then

on”)>ac(B)=g+h
implies that n” & kS; + 1S;. Hence, we deduce that

D(k,l;m) C {N(m)}.
Suppose that (k,1) = (g,h). We have

N(m) — 22m + 22m+2 4+ 22m+2h—2
+22m+2h——1 + 22m+2h+1 44 22m+2h+2g—3

€ ¢S51 + hSo, (3.8)
because

22mt% G, fori=10,1,...h—1
and

22m+2h-1+2 ¢ G, for j =0,1,...,9 — 1.
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Thus, |
(g, h;m) = {N(m)}
We now consider the case where (k,[) # (g, h). Suppose that
Dk, m) = {N(m)}.
Using (3.5) and N(m) € kS; + 1Sz, we get
o(N(m))=g+h<k+IL

The maximality of (g, h) implies that k+1 = g+ h. We apply (3.6) to (3.8).
Using

22m+2h+2j—3 ¢ Sz
?

we get
22m+2h+2j—3 c Ql C Sl

for any 7 = 1,2,...,9. Hence, we obtain k = Card €; > g, which contra-
dicts the maximality of (g, h) with respect to >. Therefore, we deduce that
I'(k,l;m) = 0. O

For any positive real number ¢ with base-b expansion
=D, tab™
n=—R

where we do not use the infinite word (b—1)(b—1) ... for the base-b expansion
of £. We set

N(m)

Em)y= > b

n=N(m)—22m-2

Put
Vim = Z Ax Z plk,l;n)b™"
k=(k’l)€A+ n€kS+1Sy
n<N(m)
and

Yom = Z | Ax| Z p(k,l;n)b™".

k=(k,})eA_ n€kSy +152
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LEMMA 3.2. Let m be any sufficiently large integer. Then

ni(m) = ¢i,m(m)
fori=1,2.

Proof. Let i € {1,2}. We only have to show that

Z | Ax| Z p(k,l;n)b‘”<b—N(m)

= 1 n€kS; +1IS
k=(k,1)€O(3) n>1\}(m)2

for any sufficiently large m, where ©(3) = Ay if i=1and O(i) = A_ if i = 2.
Put

N(m)+2*™2 = (1 + é) N(m) =: (1+ 7)N(m),

where 7 is a positive constant independent of m. Combining (3.1) and Lemma
3.1, we get

Do WAl YD ekkmbm = > Al Y pkLnb

— 1 €kSy+1S = i €kSy+1S
k=(k,1)€O(i) nn>1\1’(m)2 k=(k,1)e0(3) n;(1+-}-)N(3n)

Z | Akl Z nkHp—n

k=(k,)e0(i) n>(14+7)N(m)

< C((1+ T)N(m))k+lb‘(l+T)N(m)
< p~Nm

IA

for all sufficiently large m, where C is a positive constant independent of
m. U

Using Lemmas 3.1 and 3.2, we calculate 7;(m) and n2(m). Note that
Ag2~N™ causes carry in the binary expansion of n;. Thus, for any suffi-
ciently large m, we obtain

(m) = thm(rm) = Ag2~N
and
n2(m) = om(m) = 0.

In particular, we deduce that 7; # 7, and that &, & are algebraically inde-
pendent. O
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