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DEDEKIND SUMS AND VALUES OF L-FUNCTIONS AT POSITIVE
INTEGERS

ABDELMEJID BAYAD
ABSTRACT. In this paper, we study Dedekind sums and we connect them to the mean

values of Dirichlet L-functions. For this, we introduce and investigate higher order
dimensional Dedekind-Rademacher sums given by the expression

ap—1 d T
m 3
o) (38, 30) = zzr 3, [Joot™ (Z28)),
k=1 j=1
where ag= (ao;al,...,ad),mo= (mo;ma,...,mq), ag,a1,...,aq are positive integers
pairwise coprime and mg, m4, ..., mg are nonnegative integers. In this paper, we prove

that the sums (1) are rational nurbers, satisfy a Dedekind reciprocity type law, and their
denominators have explicit and universal bounds. Our results recover and improve the
well-known reciprocity and rationality theorems in [3, 13] and others. In connection with
Dedekind sums we study the mean values of L-functions. For a given positive integer
g > 2 and Dirichlet characters x1,...,xa (mod ¢), we investigate the mean value of the
twisted product
X1(a1) -+ Xa(@a)L(mi + 1,x1) - - - L(ma + 1, Xa),
such that my, - - - , mqg have the same parity and
xi(-1) = (-)™H i=1,... d
as an application of our Dedekind reciprocity law, for the non twisted case we give explicit

fromulae for this mean and we recover and improve the previous works of Walum [11],
Louboutin Liu and Zhang [5, 6, 7, 14].

1. Higher dimensional Dedekind-Rademacher sums

Through this paper, for any m= (mg, ..., mq) be a (d+1)-tuple of nonnegative integers,
we denote by

d
W= m, mt=[[ m!, M=d+|m]|.
=0 0<i<d

Let us recall some definitions.

1.1. Dedekind-Rademacher sums. Let d,a; be positive integers, aq,...,a;,...aq are
positive integers prime to a; and my, ..., mq be non-negative integers. For i = 0,...,d,
we consider the multiple Dedekind-Rademacher sum defined by

a;—1 d
- a;k
m,+1 Z Hcot(mi) ( ) if a; > 2,
— = l k=1 7=0

(2) Sa(as, m;) := i
0 if a; = 1,
— —~ g —— —
where a;= (a;;ao,...,a;,...,0q4), M= (m;;my,...,m;,...,my) and as usual T, means
we omit the term z,, . Throughout this paper , we set M; =d + Z m;, and N denotes
i
0<i<d

the set of nonnegative integers.
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1.2. Bernoulli functions. The Bernoulli polynomials By(z) are defined through the
generating function

: ze* By(z) ,
(3) —=> z
er—1 = k!
and the Bernoulli numbers are By := Bj(0). The Bernoulli functions By(z) are the
periodized Bernoulli polynomials:
_ 0 freZ k=1,
B e ) 7 bl
k(-’E) {Bk({z})? otherwise.

2. Statement of the results on Dedekind sums
2.1. Rationality theorem.

Theorem 2.1.1. Let d, ay be positive integers, ay, ..., aq be positive integers prime to ay,
and mg, . .., mg be non-negative integers. We set H = 27770 Then we have

i1=m0) (my +1)-(mq+1) "

mo+lp—la (=2 =2 M—mo—d+1 o) n ¥) N4
ag® H™ S4(ag, mg) = ay' ™ E : By 41 (—" By | —

a a,
0<ny,...,ng<lap—1 0 0

aglniey++ngay

_Bm1+1(0) md+1(0)
Remarks 2.1.2. Since the coefficients of Bernoulli polynomials B, (z) are rationals, then

the sum Sy(ag, Mg) is a rational number. The denominator of this rational number is
gwwen by the Theorem 2.5.1 below.

2.2. Proof of the Theorem 2.1.1. We use the well-known lemma.

Lemma 2.2.1. Let m be a non-negative integer, a be an integer > 2 and k be an integer
not divisible by a. Then we have

271'129:
(4) Em(x = ym Z
LeZ\{0}
and .
(m—1) mk i 2_0’ " —2mikn/a 2
cot (a) ma(z’ ;e Bm(a)'

To use this lemma, we set

A= L %)M ™
(my+1)---(mg+1)ad \ 1 '

Then, we have

ap—1 d ap—1

ap°tSy(ag, mg) = A Z H Z exp 27rzn]ta] ——2VBym, 41 <%)
0

t=1 j=1n;=0

a()l

d
= AZ Z exp ( _ant anaj) HEmrH (Z—Z) .
=1 =1

t=1 0<ny,...,nglap—1

Since
ag—1 d ag — 1 if aolnlal + -+ Nngay

- exp (o (3o may) =

~1 otherwise,
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it follows that

Il

A X ao—lf[mj( )— > HBm,+1( ))

0<ny,...,ng<ag-1 j=1 0<ny ..y ng<ag—1 j=1
aglnyjey+-+ngag aginy ey +--+ngag

G ﬁ—gm]'+1(%)_ > HBmﬁl(nJ))

0<ny,...,ng<ag-1 j=1 0<ny,...,ng<ag—1 j=1
aglnyal++ngag

%mOHSd(;J, IH:))

Finally note that this last sum is equal to

d ag—1 d
H Z Bm1+1 ( ) = a‘O_ijMj+1 (0) = aaml—m_md H-Emj“'l (0)
j=1 j=1

3=1n;=0

where we have used the classical Raabe formula [8].
This completes the proof of Theorem 2.1.1.

2.3. Dedekind Reciprocity Law.
Next we state the reciprocity law for these sums that allows us to compute them.

Theorem 2.3.1 ([1]). Let d be a positive integer, ag,...,aq be pairwise coprime positive
integers and m= (mq,...,mq) be a (d+ 1)-tuple of non-negative integers. Assume that
M=d+|m| iseven. Then we have

d d E
Z(—'l)mz‘m-‘ Z* H —e—g—- Sd a‘ ’ml + i,—)) —
J*

R+ (=1)%? | if all m; are zero;

=0 (Gosoba) 922 R , otherwise
where Z*i denotes summation over all £y, . .. ,E, ..., €3 > 0 such that

— — -
|Lil= m;, Li: (ei;fo, e ,Ei, . ,fd)
and
| ~1)M/20M .
(5) =720 S (A
H at! i, O
=0

and
4 BQJ‘

Gy f Ji 18 an integer > (m; +1)/2,

Ai,ji = 9 (—l)mfm,-! Zf].L = 0,

0 otherwise.

\
(—1)3:2%i By,

CTATRE hence the

Example. When all m; are zero, we have M = d and A, ;, =
right member of the reciprocity formula in Theorem 2.3.1 becomes

(6) R+(—1)d/2:(_1)d/2(1_ 2 Z H B2J~ 231)

Qg...Q
0 d 30se03g 20 'L"O
Jot-+ig=ad/2
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2.4. Proof of the reciprocity Theorem 2.3.1. Let us consider the function f of the
complex variable z defined by

d

flz)= H cot™)(ma;z2).

=0
Let ¢ be a fixed real number with ¢ E]O,Orgigd 1/a;[. Let y > 0 be a real parameter. We
VAN

set A= (1 —¢€)+yi, B=—e+yi, C =B and D = A, and we consider the rectangular
path v :=[A, B,C, D, A]. We want to integrate f along -y by applying Cauchy’s Residue
Theorem. The poles of f lying inside 7 are:

e the point zy = 0 which is a pole of order M + 1;

e the points k;/a;, where k; =1,...,a; — 1, a; # 1 and j = 0,...,d, which are distinct
since the integers a; are pairwise coprime. Every point k;/a; is a pole of f of order
(m; +1). By Cauchy’s Residue Theorem, we have

d e;-1
27rz/f )z = Res(f,0 +ZZReS [ k/a;).
7=0 k=1
Since 1 is a period of f, we see that
f2)z=— f(2)z.
[D,A] (B,C]

Furthermore, setting § = +1, we have for all real ¢

~8 ifm=0
li ™ (¢ 4+ § ’
s = {07

Hence

/ £(2) 2¢%+1  if all m; are zero and d is even,
2z= =
v ' 0 otherwise.

e Note that if a; = 1 the sum over k is equal to 0.
Therefore, we obtain

d a;-1 .
c —Res(f,0) +i¢/m if all m; are zero and d is even,
(M 3 Y Res(f,kfay) = { o)+

=0 k=1 —Res(f,0) otherwise.

Now, we need to evaluate the two sides of (7).
1. Residue of f at z = 0. The Laurent expansion of the cotangent at 0:

1 = 1)72% B
cot(w) = " Z R ¥t (0< |w] <)

implies
1)72%71By;

23
J-l— m)!j

w™leot™(w) = (=1)™m!+ Z

J integer
2j—m21

for every integer m > 1.

167
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For i € {0,...,d}, let us set

Baj. e
zz—ﬁjl—_i—j:m if 7; integer > (m; +1)/2,
(8) Aij = 4 (=1)™my! if ji =0,
0 otherwise.
So, we have
d d
Res(f,0) = W"M_IHa{m"l Z H( )"(27ra )29 A,
=0 (3gs-e» jg)eNd+l  1=0

d
(—1)M/20M ”
- d Z H a;" Ay ji-
r[Laptt Gt
=0
2. Residue of f at the other poles. For any integer a; > 1 and 1 < k < a; — 1, we
have

Res(r ba) = (0 S [T e (TR

£ a;
i (T 2 £4)€Nd 1#0
Lo+ 4 Heg=my ’

Consequently, we have obtained the relation

d a;—1 d

d
S S Restrkfa) = T S () Y [Jeottm ) (TE),
i=0 k=1 i=0 i (80w By tg) ENG ’ t

a;7#1

2.5. Universal Bounds.
In the following theorem we study the universal bound for the denominator of the
higher order dimensional Dedekind sums.

Theorem 2.5.1. Let d, ay be positive integers, ag, a1,. .. ,aq be positive integers relatively

prime to ag and my, ..., my be non-negative integers. We set
" d
H p[zﬁ], A:=gcd(u;a0 Ymy+1) - (mg+1) H H )
3<p<M+1 j=1 p<m;
P prime p prime >3

Then we have
gmi+--+mg

A

Remark 7. The reason, that we are interested in 1 and A is that these are the universal
bounds for the denominator of our higher order dimensional Dedekind sums. For any
d, ag be a positive integer, ay, ..., aq be positive integers prime to ag we obtain

—_— -
aoSa(ag, mg) €

a0ASy(ag, mg) € 2™ Mz,

For instance, if my = +-- = mg = 0, we obtain aouSd(Q, IF:)) € Z, this is the rationality
theorem of Zagier [13, p.160]. Our method gives us a simple and new way to get this
theorem of Zagier.
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2.6. Proof of the universal bound Theorem 2.5.1. For the classical von Staudt-
Clausen theorem we can see [4, 9, 12]. For any non negative integer m and any prime
number p, let v,(m) denote the p-adic valuation of m. We have the useful lemma.

Lemma 2.6.1. Let n be an integer > 1. We denote by D,, the denominator of %!l. For
any prime p, we have

n
Proof. Using the classical von Staudt theorem, it’s easy to see that

1 ,ifp—1|n;

vp(denominator of B,) = {0 therwi
, otherwise.

On the other hand, we have the well known fact. For every prime number p
[n/(p—1)] , if p — 1 does not divide n;
vp(n!) <
[n/(p-1)]—-1 , if p— 1 divides n.

This yields the desired lemma.
Proof of Theorem 2.5.1. From the Theorem 2.1.1 we study the denominator of

a™+15,(ag, my). Let D' be the denominator of E B (%> B (@) ‘
0

ap
0<ny,...,nglag—1
apiniey+ - tngag

Then D'|D; - - - Dy where D; is the denominator of?mﬁl (%) (G=1,...,d).If (mj,n;) #
(0,0), we have

" n mji+1 mi+ 1 n.\ Mtk
it <00> B <a0> ; ( k ) <a0) ¢
m;+1
1 ™ g m+1 m;+1—k
= e X (e
) k=1

By von Staudt’s Theorem, we know that if k is even, the denominator of By is H P,

p prime
p—1lk

and therefore

(10) Dilag"™ J[ » (G=1,...,4)

p<m;+2
P prime

Thus we obtain

d
d ,
(11) D/[Qdagzlj=1(mg+1) l [ I I ».

j=1 p<m;+2
p prime >3

Furthermore, if D” is the denominator of By, 41(0) - - - Bra,+1(0), all m; # 0 and all mj4y
are even, then we have

(12) o2t [ »

p<m;+2
p prime >3

169
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So it follows that

gmit-tma N
(13) a5+ Sy(ag, mo) = :
(my +1)--- (mg+1)ad™! H H D
_1 p<m +2
p prime >3

where N, € Z.
Obviously, (13) can be written as

g+mo(m1+l) (mg+1) (H H )Sd (@, mo) <z

omi+t--+mg
j=1 p<m +2

p>3 prime

End of the proof of Theorem 2.5.1. We shall now apply Theorem 2.3.1. We begin
by giving the denominator of the rational number R defined by (5). Write

ﬁa?j‘A-- - 4 B ..B.
wo O @)l @it T

where A € Z and denote by D the denominator of this rational number. By Lemma 2.6.1,
we have for all prime numbers p,

vy(D) < :O [ﬁ"l] < {i ﬁol} = L,Ai] '

i=0
Let
H p[p—l

2<p<M+1

p prime
It follows that
(14) Di2My.
It is then easy to deduce that the number R defined by (5) can be written as

N
R=—-1— (N, €2).
:u'Hz_O :nd—l

Therefore, by Theorem 2.3.1 we can write

d d
N
(15)20( 1™ m! Z H Z“[Sd @,m+ L )= , (N € Z).
" 10-:0";::1' +ld—m,‘ J#‘ H H a’m‘+1
=0

If we apply a formula similar to (13), we can write for some N; € Z

_}
(16) a1 Sy(ar, m; + Ly)
22,‘;&1 m;+4; Nz‘
a7 [[mi+ 4+ 0]] I] »
i j#i pSmitl
p prime >3
2m0+...+mdNi
o [Iems+6+D]T I »
J# J#L PSmytey

p prime >3
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d
under the condition Z £ =m;.

=0
J#L

d
We note that ,u/H H p € N, because m; + ¢; < M + 1 and the number of j such

3=0 p<mJ+£
J?ﬁ" p>3 prime

that p < m; + £; is less than

%ij + fj} = [Mpi‘i] . Therefore, we can write the
J#i
quantity in (15) as follows

d m,+1+£J 1 1 N
omot-tmy Z(_l)mimi! Z H - 21 cZ.
= R e H (m; + £ +1) H II»

i=0 p<m, +£J
J#l J#“ P prime >3

This gives

d mJ+l+2] T Py N

groteame y (~D)™mt Y H ’ 7 € TZ
i=0 eofo,;.ée:..‘ﬁz:fml J;' H mj +£;+1 H H jD

§=0 p<m +€
J#l J#‘ p prime >3
where T is the least common multiple of the numbers
d —~~
[Imi+e+1)i=0,... dilo+-+b+ - +ba=m,
2
Since the integers a; are pairwise coprime, it follows that for each i = 0,...,d
HmeJH +1) H 11 o
j=0 p<m +l
J#'L J#l J#z p prime >3
For instance, if 7 = 0 we have
N,
(17) 2 F since mo =0 and f; = -+ = £y = 0.
H mi+ D] I »
j=1 j=1 »p<my
P prime >3

By (13) and (17) we thus arrive at

d
18) ad(my+1)... (mg+ 1)(H H p)aoSa(ag, mp) € 2™t M7,
j=1 p<m;

p>3
p1aoSy(ag, me) € 2™+ maz,
This clearly implies the desired result that
2m1+--'+md
(19) aOSd(za II—]T(;) € Za

A
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d
where A = ged (y; ad Y (mi+1)...(mg+1) H )
j

=1 xz<'mJ
p prime 23

3. Twisted mean values of L-functions: Introduction

Let g be a positive integer > 2 and x be a character modulo ¢, and L(s,x) be the
Dirichlet L-function corresponding to x:

x(n)

n>1

where Re (s) > 0 if x is non principal and Re (s) > 1 if x is the principal character. Let
my, ..., myg be non negative integers. We shall here be interested by the study of the mean
values

)
ST TIx(e)Limi+1,x0),

(1, xa) =1
where =" denotes summation over all characters x1,...,xa (mod g) such that:
Xixa= 1a(=1) = = xal=1) = ()™ = = (e,

Its well-known that in the case d = 2,m; = my = 0 and x; = %;, Walum [11] showed
that for prime ¢ = p > 3, the explicit formula

200 1\2(s _
(20) Y k=" 1202(” 2

x1 (mod p)
x1(~1)=~1

This result has extended by Louboutin [5] and Zhang [14] to any positive integer ¢ > 2
by the formula as follows

(21) Y LX)l = 1?2(2@ (q I1 (1+%)—3)

x1 (mod q) rla
x1(-1)=-1 p prime

where ¢(q) is the Euler function. Moreover, Louboutin [6] has considered the case
d=2,m; = my = k and proved the formula

2 2 _ 2’”)% z 2k
(22) — Y |Lkx)l? = 22%01 ,
o), “a

x1(—-1)=-1
where

wilg) = [] (1 - ;3) :

pla
. P prime

and the coefficients 74, are real numbers that were not given explicitly. In 2006, Liu and
Zhang [7] treated the mean values of L(m, x1)L(n,%;) at positive integers m,n > 1,

(23) 2 N Limxa)L(nX,) =

x1 (mod gq)
x1(-1)=-1

me—n m+n
— m+n -m-n _ Gm,n
R Lo (Z FmndP(@)¢ " = T2 BnBrpman-(9) |
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where

n\ ( a+b+1
Tmnl = Bmin—i Z Z B,,_ B, -2l b min-l ( )( )(m+n l) ‘

pur e a+b+1

4. Statement of results on mean values of L-functions

We have the interesting results

Theorem 4.0.2. Let d be an integer > 1 and m= (mq,...,mq) a d-tuple of positive

integers such that d + | m | is even. Let q be an integer > 2. Let ay,...,aq_1 be positive
such that (a;,q) =1 (i =1,...,d—1). We set ag = 1. Then we have

S TLmtettm+ 1,50 = A Yt (2) 56 )

=1 b|
(Xls 7Xd) g b;éql

where

- (-1)¢ 7
Ay(m) = W—)

The above theorem gives immediately

E)M(a)*, 0= (bias,...,a), Mo= (0;m,...,mg)

Corollary 4.0.3. Let m and n be positive having same parity. Let a be a positive integer
such that (a,q) = 1. Then we have

Y. X@Lim+1,x)Ln+1,%) =AY bu(g/b)Si(aq, mo)

x (mod g) blg
X(-1)=(-1)m+1 bl

»(a) 2 ) (.
where A = ‘lm,n,(q)m‘*"+ ag= (b;a,1), mg= (0;m,n).

For every real o > 0, let J, be the Jordan’s totient function defined for all positive
integer n by :

Jo(n) :==n* ﬁ(—@

me
m|n

where p is the Mobius function. Since the arithmetical function J,(n)/n* is multiplicative,

we can write
=n® H (1 - 7) , see [10, p.11,p.219].

pln
p prime

For o = 1, this is, of course, Euler’s function ¢.

For a; = ... = ag = 1 from Theorem 4.0.2 and Theorem 2.3.1, we obtain the following
theorem
Theorem 4.0.4. Let q be an integer > 2. Let d be an integer > 1 and m= (mq,...,ma)

a d-tuple of positive integers such that the number M := d + | m | is even.
Then

i) if (ma,...,mq) # (0,...,0) we have

d M/2 d .
S IIEm+1x) = D)(X (% HAi,ji)g-?ﬂ-g—,szo(q))
(X1,-0Xa) =1 Jo=1 1 reerdg 20 i=1 Jo):

J1++ig=M/2-j5g
7;=0 ou >(m;+1)/2
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where
—

Dy(mh) = (—1)M/2M Ay(mm).
i) for (my,...,mq) = (0,...,0) we have

d L B2g B2]0
( Z ) HLl %) = Prl0 )(2_ oo Z—-l( Z>o H(%S‘ (2o )‘Jzﬂ’(Q))

j1+ +Jd=d/2—m

where Dq(a) = (—1)42 (%)dSO(Q)d_l

As an immediate consequence, taking d = 2,m; = my; = 0 we obtain a sensitive
improvement of Louboutin, Liu and Zhang results [5, 6, 14, 7].

Theorem 4.0.5. Let m and n be two positive integers having same parity. Then
o If (m,n) # (1,1), we have

—2 1 min [ 27 mtn
@ X HmxLmX)= 5D (7) (My + M, + Ms)
x(~1)§(—1)m
where 5
m+n
M]. (m+n)’ m+n(9),
_q [m/2]
(o™t B N B
M (n—1)!m! ‘= \2j/m+n QJB'ZJJ%(Q)a
—1 [/
(=11 n\ Bmin-z
M (m — 1)!17,' — 2j/m+n— 25 2JJ2J(Q)

e [fm=n=1, we have

2 2 _ ™ p(q) 1
o 2 HP=5 (e Tl a+-3).

x(-1)=-1 p prime

Proof. For the proof we refer to [2]. a

REFERENCES

[1] A. Bavap, A. RAouJ, Arithmetic of higher dimensional Dedekind-Rademacher sums, Journal of
Number theory 132 (2012), pp. 332-347.
[2] A. BAYAD, A. RAOUJ, Mean values of L-functions and Dedekind sums, Journal of Number theory
132 (2012), pp. 1645-1652.
(3] M. BECK, Dedekind cotangent sums, Acta Arith. 109 (2003), pp. 109-130.
[4] G.H HArDY, E.M WRIGHT, ” The Theorem of von Staud” and ” Proof of von Staudt’s Theorem”,
§7.9-7.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press,
pp. 90-93, 1979.
[5] S. LOUBOUTIN, On the mean value of |L(1, x)|? for odd primitive Dirichlet characters, Proceedings
of Japan Academy Series A Mathematical Sciences 75 (1999), pp. 143-145.
[6] S. LOUBOUTIN, The mean value of |L(k,X)|*> at positive rational integers k¥ > 1, Colloquium
Mathematicum 90 (2001), pp. 69-76.
[7] H. Ly, W. ZHANG, On the mean value of L(m,x)L{n,X) at positive integers m,n > 1, Acta
Arith. 122 (2006), pp. 51-56.
[8] J.L. RAABE, Zuriicbfithrung eineger Summen und bestimmten Integrale auf die Jacob-Bernoullische
Funktion,J. reine Angew. Math. 42 (1995), pp. 348-367.
[9] R. RADO, A New Proof of a Theorem of V. Staudt, J. London Math. Soc. 9(1934), pp. 85-88.
[10] M. RAM MURTY , Problems in Analytic Number Theory, Springer-Verlag (2001).
[11] H. WALUM, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), pp. 1-3.



175

ABDELMEJID BAYAD

[12] K.G.C. vON STAUDT, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen,J. reine angew.
Math. 21(1840), pp. 372-374.

[13] D. ZAGIER , Higher order Dedekind sums, Math. Ann. 202, (1973), pp. 149-172.

(14] W. ZHANG, On the mean values of Dedekind sums, Journal de Théorie des Nombres de Bordeauz 8
(1996), pp. 429-442.

ABDELMEJID BAYAD. DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE D'EVRY VAL D’ESSONNE,
Bp. F. MITTERRAND, 91025 EVRYy CEDEX, FRANCE,
E-mail address: abayad@maths.univ-evry.fr



