DEDEKIND SUMS AND VALUES OF L-FUNCTIONS AT POSITIVE INTEGERS

ABDELMEJID BAYAD

ABSTRACT. In this paper, we study Dedekind sums and we connect them to the mean values of Dirichlet *L*-functions. For this, we introduce and investigate higher order dimensional Dedekind-Rademacher sums given by the expression

(1)
$$S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) = \frac{1}{a_0^{m_0+1}} \sum_{k=1}^{a_0-1} \prod_{j=1}^d \cot^{(m_j)} \left(\frac{\pi a_j k}{a_0} \right),$$

where $\overrightarrow{\mathbf{a_0}} = (a_0; a_1, \dots, a_d)$, $\overrightarrow{\mathbf{m_0}} = (m_0; m_1, \dots, m_d)$, a_0, a_1, \dots, a_d are positive integers pairwise coprime and m_0, m_1, \dots, m_d are nonnegative integers. In this paper, we prove that the sums (1) are rational numbers, satisfy a Dedekind reciprocity type law, and their denominators have explicit and universal bounds. Our results recover and improve the well-known reciprocity and rationality theorems in [3, 13] and others. In connection with Dedekind sums we study the mean values of *L*-functions. For a given positive integer $q \geq 2$ and Dirichlet characters $\chi_1, \dots, \chi_d \pmod{q}$, we investigate the mean value of the twisted product

$$\overline{\chi}_1(a_1)\cdots\overline{\chi}_d(a_d)L(m_1+1,\chi_1)\cdots L(m_d+1,\chi_d),$$

such that m_1, \dots, m_d have the same parity and

$$\chi_i(-1) = (-1)^{m_i+1}, i = 1, \cdots, d$$

as an application of our Dedekind reciprocity law, for the non twisted case we give explicit fromulae for this mean and we recover and improve the previous works of Walum [11], Louboutin Liu and Zhang [5, 6, 7, 14].

1. Higher dimensional Dedekind-Rademacher sums

Through this paper, for any $\overrightarrow{\mathbf{m}} = (m_0, \dots, m_d)$ be a (d+1)-tuple of nonnegative integers, we denote by

$$|\overrightarrow{\mathbf{m}}| = \sum_{i=0}^d m_i, \ \overrightarrow{\mathbf{m}}! = \prod_{0 \le i \le d} m_i! \ , \ M = d + |\overrightarrow{\mathbf{m}}| \ .$$

Let us recall some definitions.

1.1. **Dedekind-Rademacher sums.** Let d, a_i be positive integers, $a_0, \ldots, \widehat{a_i}, \ldots a_d$ are positive integers prime to a_i and m_0, \ldots, m_d be non-negative integers. For $i = 0, \ldots, d$, we consider the multiple Dedekind-Rademacher sum defined by

(2)
$$S_d(\overrightarrow{\mathbf{a_i}}, \overrightarrow{\mathbf{m_i}}) := \begin{cases} \frac{1}{a_i^{m_i+1}} \sum_{k=1}^{a_i-1} \prod_{\substack{j=0 \ j \neq i}}^d \cot^{(m_j)} \left(\frac{\pi a_j k}{a_i}\right) & \text{if } a_i \ge 2, \\ 0 & \text{if } a_i = 1, \end{cases}$$

where $\overrightarrow{\mathbf{a_i}} = (\mathbf{a_i}; a_0, \dots, \widehat{a_i}, \dots, a_d)$, $\overrightarrow{\mathbf{m_i}} = (\mathbf{m_i}; m_0, \dots, \widehat{m_i}, \dots, m_d)$ and as usual $\widehat{x_n}$ means we omit the term x_n . Throughout this paper, we set $M_i = d + \sum_{\substack{j \neq i \\ 0 \leq i \leq d}} m_j$, and $\mathbb N$ denotes

the set of nonnegative integers.

1.2. Bernoulli functions. The Bernoulli polynomials $B_k(x)$ are defined through the generating function

(3)
$$\frac{ze^{xz}}{e^z - 1} = \sum_{k \ge 0} \frac{B_k(x)}{k!} z^k$$

and the Bernoulli numbers are $B_k := B_k(0)$. The Bernoulli functions $\bar{B}_k(x)$ are the periodized Bernoulli polynomials:

$$\bar{B}_k(x) := \begin{cases} 0 & , \text{ if } x \in \mathbb{Z}, k = 1; \\ B_k(\{x\}), & \text{otherwise.} \end{cases}$$

2. Statement of the results on Dedekind sums

2.1. Rationality theorem.

Theorem 2.1.1. Let d, a_0 be positive integers, a_1, \ldots, a_d be positive integers prime to a_0 , and m_0, \ldots, m_d be non-negative integers. We set $H = \frac{2^{M-m_0}}{i^{(M-m_0)}(m_1+1)\cdots(m_d+1)}$. Then we have

$$a_0^{m_0+1}H^{-1}S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) = a_0^{M-m_0-d+1} \sum_{\substack{0 \le n_1, \dots, n_d \le a_0-1 \\ a_0|n_1a_1+\dots+n_da_d}} \overline{B}_{m_1+1}\left(\frac{n_1}{a_0}\right) \cdots \overline{B}_{m_d+1}\left(\frac{n_d}{a_0}\right) - \overline{B}_{m_d+1}(0) \cdots \overline{B}_{m_d+1}(0).$$

Remarks 2.1.2. Since the coefficients of Bernoulli polynomials $B_n(x)$ are rationals, then the sum $S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}})$ is a rational number. The denominator of this rational number is given by the Theorem 2.5.1 below.

2.2. Proof of the Theorem 2.1.1. We use the well-known lemma.

Lemma 2.2.1. Let m be a non-negative integer, a be an integer ≥ 2 and k be an integer not divisible by a. Then we have

(4)
$$\overline{B}_m(x) = -\frac{m!}{(2\pi i)^m} \sum_{\ell \in \mathbb{Z} \setminus \{0\}} \frac{e^{2\pi i \ell x}}{\ell^m}$$

and

$$\cot^{(m-1)}\left(\frac{\pi k}{a}\right) = \frac{1}{ma}\left(\frac{2a}{i}\right)^m \sum_{n=0}^{a-1} e^{-2\pi i k n/a} \overline{B}_m\left(\frac{n}{a}\right).$$

To use this lemma, we set

$$A = rac{1}{(m_1+1)\cdots(m_d+1)a_0^d} \left(rac{2a_0}{i}
ight)^{M-m_0}.$$

Then, we have

$$a_0^{m_0+1} S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) = A \sum_{t=1}^{a_0-1} \prod_{j=1}^d \sum_{n_j=0}^{a_0-1} \exp(\frac{-2\pi i n_j t a_j}{a_0}) \overline{B}_{m_j+1} \left(\frac{n_j}{a_0}\right)$$

$$= A \sum_{t=1}^{a_0-1} \sum_{0 \le n_1, \dots, n_d \le a_0-1} \exp\left(\frac{-2\pi i t}{a_0} \left(\sum_{j=1}^d n_j a_j\right)\right) \prod_{j=1}^d \overline{B}_{m_j+1} \left(\frac{n_j}{a_0}\right).$$

Since

$$\sum_{t=1}^{a_0-1} \exp\left(\frac{-2\pi i t}{a_0} (\sum_{j=1}^d n_j a_j)\right) = \begin{cases} a_0 - 1 & \text{if } a_0 | n_1 a_1 + \dots + n_d a_d \\ -1 & \text{otherwise,} \end{cases}$$

it follows that

$$a_{0}^{m_{0}+1}S_{d}(\overrightarrow{\mathbf{a_{0}}},\overrightarrow{\mathbf{m_{0}}}) = A\left(\sum_{\substack{0 \leq n_{1}, \dots, n_{d} \leq a_{0}-1 \\ a_{0}|n_{1}a_{1}+\dots+n_{d}a_{d}}} (a_{0}-1)\prod_{j=1}^{d} \overline{B}_{m_{j}}\left(\frac{n_{j}}{a_{0}}\right) - \sum_{\substack{0 \leq n_{1}, \dots, n_{d} \leq a_{0}-1 \\ a_{0}|n_{1}a_{1}+\dots+n_{d}a_{d}}} \prod_{j=1}^{d} \overline{B}_{m_{j}+1}\left(\frac{n_{j}}{a_{0}}\right)\right)$$

$$= A\left(a_{0}\sum_{\substack{0 \leq n_{1}, \dots, n_{d} \leq a_{0}-1 \\ a_{0}|n_{1}a_{1}+\dots+n_{d}a_{d}}} \prod_{j=1}^{d} \overline{B}_{m_{j}+1}\left(\frac{n_{j}}{a_{0}}\right) - \sum_{0 \leq n_{1}, \dots, n_{d} \leq a_{0}-1} \prod_{j=1}^{d} \overline{B}_{m_{j}+1}\left(\frac{n_{j}}{a_{0}}\right)\right).$$

Finally note that this last sum is equal to

$$\prod_{j=1}^{d} \sum_{n_{j}=0}^{a_{0}-1} \overline{B}_{m_{j}+1} \left(\frac{n_{j}}{a_{0}} \right) = \prod_{j=1}^{d} a_{0}^{-m_{j}} \overline{B}_{m_{j}+1}(0) = a_{0}^{-m_{1}-\cdots-m_{d}} \prod_{j=1}^{d} \overline{B}_{m_{j}+1}(0)$$

where we have used the classical Raabe formula [8]. This completes the proof of Theorem 2.1.1.

2.3. Dedekind Reciprocity Law.

Next we state the reciprocity law for these sums that allows us to compute them.

Theorem 2.3.1 ([1]). Let d be a positive integer, a_0, \ldots, a_d be pairwise coprime positive integers and $\overrightarrow{\mathbf{m}} = (m_0, \ldots, m_d)$ be a (d+1)-tuple of non-negative integers. Assume that $M = d + |\overrightarrow{\mathbf{m}}|$ is even. Then we have

$$\sum_{i=0}^{d} (-1)^{m_i} m_i! \sum_{(\ell_0, \dots, \ell_d)}^{\star_i} \left(\prod_{j=0 \atop j \neq i}^{d} \frac{a_j^{\ell_j}}{\ell_j!} \right) S_d(\overrightarrow{\mathbf{a_i}}, \overrightarrow{\mathbf{m_i}} + \overrightarrow{\mathbf{L_i}}) = \begin{cases} R + (-1)^{d/2} &, \text{ if all } m_i \text{ are zero;} \\ R &, \text{ otherwise} \end{cases}$$

where \sum^{*i} denotes summation over all $\ell_0, \ldots, \widehat{\ell_i}, \ldots, \ell_d \geq 0$ such that

$$|\overrightarrow{\mathbf{L_i}}| = m_i, \overrightarrow{\mathbf{L_i}} = (\ell_i; \ell_0, \dots, \widehat{\ell_i}, \dots, \ell_d)$$

and

(5)
$$R = \frac{(-1)^{M/2} 2^M}{\prod_{i=0}^d a_i^{m_i+1}} \sum_{\substack{j_0, \dots, j_d \ge 0 \\ j_0 + \dots + j_d = M/2}} \prod_{i=0}^d a_i^{2j_i} A_{i,j_i}.$$

and

$$A_{i,j_i} = \begin{cases} \frac{B_{2j_i}}{(2j_i-1-m_i)!(2j_i)} & \text{if } j_i \text{ is an integer } \ge (m_i+1)/2, \\ \\ (-1)^{m_i}m_i! & \text{if } j_i = 0, \\ \\ 0 & \text{otherwise.} \end{cases}$$

Example. When all m_i are zero, we have M = d and $A_{i,j_i} = \frac{(-1)^{j_i} 2^{2j_i} B_{2j_i}}{(2j_i)!}$, hence the right member of the reciprocity formula in Theorem 2.3.1 becomes

(6)
$$R + (-1)^{d/2} = (-1)^{d/2} \left(1 - \frac{2^d}{a_0 \dots a_d} \sum_{\substack{j_0, \dots, j_d \ge 0 \\ j_0 + \dots + j_d = d/2}} \prod_{i=0}^d \frac{B_{2j_i}}{(2j_i)!} a_i^{2j_i} \right).$$

2.4. Proof of the reciprocity Theorem 2.3.1. Let us consider the function f of the complex variable z defined by

$$f(z) = \prod_{j=0}^{d} \cot^{(m_j)}(\pi a_j z).$$

Let ε be a fixed real number with $\varepsilon \in]0$, $\min_{0 \le j \le d} 1/a_j[$. Let y > 0 be a real parameter. We set $A = (1 - \varepsilon) + yi$, $B = -\varepsilon + yi$, $C = \overline{B}$ and $D = \overline{A}$, and we consider the rectangular path $\gamma := [A, B, C, D, A]$. We want to integrate f along γ by applying Cauchy's Residue Theorem. The poles of f lying inside γ are:

- the point $z_0 = 0$ which is a pole of order M + 1;
- the points k_j/a_j , where $k_j = 1, \ldots, a_j 1$, $a_j \neq 1$ and $j = 0, \ldots, d$, which are distinct since the integers a_j are pairwise coprime. Every point k_j/a_j is a pole of f of order $(m_j + 1)$. By Cauchy's Residue Theorem, we have

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \dot{z} = \text{Res}(f, 0) + \sum_{j=0}^{d} \sum_{k=1}^{a_j - 1} \text{Res}(f, k/a_j).$$

Since 1 is a period of f, we see that

$$\int_{[D,A]} f(z)z = -\int_{[B,C]} f(z)z.$$

Furthermore, setting $\delta = \pm 1$, we have for all real t

$$\lim_{y \to +\infty} \cot^{(m)}(t + \delta yi) = \begin{cases} -\delta i & \text{if } m = 0, \\ 0 & \text{if } m \ge 1. \end{cases}$$

Hence

$$\int_{\gamma} f(z) \dot{\mathbf{z}} = \begin{cases} 2i^{d+1} & \text{if all } m_i \text{ are zero and } d \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$

• Note that if $a_j = 1$ the sum over k is equal to 0. Therefore, we obtain

(7)
$$\sum_{j=0}^{d} \sum_{k=1}^{a_j-1} \operatorname{Res}(f, k/a_j) = \begin{cases} -\operatorname{Res}(f, 0) + i^d/\pi & \text{if all } m_i \text{ are zero and } d \text{ is even,} \\ -\operatorname{Res}(f, 0) & \text{otherwise.} \end{cases}$$

Now, we need to evaluate the two sides of (7).

1. Residue of f at z=0. The Laurent expansion of the cotangent at 0:

$$\cot(w) = \frac{1}{w} + \sum_{j=1}^{+\infty} \frac{(-1)^j 2^{2j} B_{2j}}{(2j)!} w^{2j-1} \qquad (0 < |w| < \pi)$$

implies

$$w^{m+1}\cot^{(m)}(w) = (-1)^m m! + \sum_{\substack{j \text{ integer} \\ 2j = m-1}} \frac{(-1)^j 2^{2j-1} B_{2j}}{(2j-1-m)!j} w^{2j}$$

for every integer $m \geq 1$.

For $i \in \{0, \ldots, d\}$, let us set

(8)
$$A_{i,j_i} = \begin{cases} \frac{B_{2j_i}}{(2j_i - 1 - m_i)!(2j_i)} & \text{if } j_i \text{ integer } \ge (m_i + 1)/2, \\ (-1)^{m_i} m_i! & \text{if } j_i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

So, we have

$$\operatorname{Res}(f,0) = \pi^{-M-1} \prod_{i=0}^{d} a_{i}^{-m_{i}-1} \sum_{\substack{(j_{0}, \dots, j_{d}) \in \mathbb{N}^{d+1} \\ j_{0} + \dots + j_{d} = M/2}} \prod_{i=0}^{d} (-1)^{j_{i}} (2\pi a_{i})^{2j_{i}} A_{i,j_{i}}$$

$$= \frac{(-1)^{M/2} 2^{M}}{\pi \prod_{i=0}^{d} a_{i}^{m_{i}+1}} \sum_{\substack{(j_{0}, \dots, j_{d}) \in \mathbb{N}^{d+1} \\ j_{0} + \dots + j_{d} = M/2}} \prod_{i=0}^{d} a_{i}^{2j_{i}} A_{i,j_{i}}.$$

2. Residue of f at the other poles. For any integer $a_i > 1$ and $1 \le k \le a_i - 1$, we have

$$\operatorname{Res}(f, k/a_i) = (-1)^{m_i} \frac{m_i!}{a_i^{m_i+1}\pi} \sum_{\substack{(\ell_0, \dots, \hat{\ell_i}, \dots, \ell_d) \in \mathbb{N}^d \\ \ell_0 + \dots + \hat{\ell_i} + \dots + \ell_d = m_d \\ j \neq i}} \prod_{\substack{j=0 \\ j \neq i}}^d \frac{a_j^{\ell_j}}{\ell_j!} \cot^{(m_j + \ell_j)} \left(\frac{\pi k a_j}{a_i}\right).$$

Consequently, we have obtained the relation

$$\sum_{\substack{i=0\\a_i\neq 1}}^{d}\sum_{k=1}^{a_i-1}\mathrm{Res}(f,k/a_i) = \frac{1}{\pi}\sum_{i=0}^{d}(-1)^{m_i}\frac{m_i!}{a_i^{m_i+1}}\sum_{\substack{(\ell_0,\dots,\widehat{\ell_i},\dots,\ell_d)\in \mathbb{N}^d\\\ell_0+\dots+\widehat{\ell_i}+\dots+\ell_d=m_i}}\Big(\prod_{\substack{j=0\\j\neq i}}^{d}\frac{a_j^{\ell_j}}{\ell_j!}\Big)\sum_{k=1}^{a_i-1}\prod_{\substack{j=0\\j\neq i}}^{d}\cot^{(m_j+\ell_j)}\Big(\frac{\pi k a_j}{a_i}\Big).$$

2.5. Universal Bounds.

In the following theorem we study the universal bound for the denominator of the higher order dimensional Dedekind sums.

Theorem 2.5.1. Let d, a_0 be positive integers, a_0, a_1, \ldots, a_d be positive integers relatively prime to a_0 and m_0, \ldots, m_d be non-negative integers. We set

$$\mu := \prod_{\substack{3 \le p \le M+1 \\ p \text{ prime}}} p^{\left[\frac{M}{p-1}\right]}, \ \Delta := \gcd\left(\mu; \ a_0^{d-1}(m_1+1) \cdots (m_d+1) \prod_{j=1}^d \prod_{\substack{p \le m_j \\ p \text{ prime} > 3}} p\right).$$

Then we have

$$a_0S_d(\overrightarrow{\mathbf{a_0}},\overrightarrow{\mathbf{m_0}}) \in \frac{2^{m_1+\cdots+m_d}}{\Delta}\mathbb{Z}.$$

Remark 7. The reason, that we are interested in μ and Δ is that these are the universal bounds for the denominator of our higher order dimensional Dedekind sums. For any d, a_0 be a positive integer, a_1, \ldots, a_d be positive integers prime to a_0 we obtain

$$a_0 \Delta S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) \in 2^{m_1 + \dots + m_d} \mathbb{Z}$$

For instance, if $m_0 = \cdots = m_d = 0$, we obtain $a_0 \mu S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) \in \mathbb{Z}$, this is the rationality theorem of Zagier [13, p.160]. Our method gives us a simple and new way to get this theorem of Zagier.

2.6. Proof of the universal bound Theorem 2.5.1. For the classical von Staudt-Clausen theorem we can see [4, 9, 12]. For any non negative integer m and any prime number p, let $v_p(m)$ denote the p-adic valuation of m. We have the useful lemma.

Lemma 2.6.1. Let n be an integer ≥ 1 . We denote by D_n the denominator of $\frac{B_n}{n!}$. For any prime p, we have

$$(9) v_p(D_n) \le \left\lceil \frac{n}{p-1} \right\rceil.$$

Proof. Using the classical von Staudt theorem, it's easy to see that

$$v_p(\text{denominator of } B_n) = \begin{cases} 1 & \text{, if } p-1|n; \\ 0 & \text{, otherwise.} \end{cases}$$

On the other hand, we have the well known fact. For every prime number p

$$v_p(n!) \leq \begin{cases} [n/(p-1)] &, \text{ if } p-1 \text{ does not divide } n; \\ \\ [n/(p-1)]-1 &, \text{ if } p-1 \text{ divides } n. \end{cases}$$

This yields the desired lemma.

Proof of Theorem 2.5.1. From the Theorem 2.1.1 we study the denominator of $a_0^{m_0+1}S_d(\overrightarrow{\mathbf{a_0}},\overrightarrow{\mathbf{m_0}})$. Let D' be the denominator of $\sum_{\substack{0 \leq n_1,\ldots,n_d \leq a_0-1\\a_0|n_1a_1+\cdots+n_da_d}} \overline{B}_{m_1+1}\left(\frac{n_1}{a_0}\right)\cdots\overline{B}_{m_d+1}\left(\frac{n_d}{a_0}\right)$.

Then $D'|D_1 \cdots D_d$ where D_j is the denominator of $\overline{B}_{m_j+1}\left(\frac{n_j}{a_0}\right)$ $(j=1,\ldots,d)$. If $(m_j,n_j) \neq (0,0)$, we have

$$\overline{B}_{m_j+1}\left(\frac{n_j}{a_0}\right) = B_{m_j+1}\left(\frac{n_j}{a_0}\right) = \sum_{k=0}^{m_j+1} {m_j+1 \choose k} \left(\frac{n_j}{a_0}\right)^{m_j+1-k} B_k
= \frac{1}{a_0^{m_j+1}} \left(n_j^{m_j+1} + \sum_{k=1}^{m_j+1} {m_j+1 \choose k} a_0^k n_j^{m_j+1-k} B_k\right).$$

By von Staudt's Theorem, we know that if k is even, the denominator of B_k is $\prod_{\substack{p \text{ prime} \\ p-1 \mid k}} p$,

and therefore

(10)
$$D_{j}|a_{0}^{m_{j}+1}\prod_{\substack{p\leq m_{j}+2\\ 2\text{ prime}}}p \qquad (j=1,\ldots,d).$$

Thus we obtain

(11)
$$D'|2^{d}a_{0}^{\sum_{j=1}^{d}(m_{j}+1)}\prod_{\substack{j=1\\ n \text{ prime } > 3}}^{d}\prod_{\substack{p \leq m_{j}+2\\ n \text{ prime } > 3}}p.$$

Furthermore, if D'' is the denominator of $\overline{B}_{m_1+1}(0)\cdots\overline{B}_{m_d+1}(0)$, all $m_j\neq 0$ and all m_{j+1} are even, then we have

$$(12) D''|2^d \prod_{\substack{p \le m_j+2\\ p \text{ prime } > 3}} p.$$

So it follows that

(13)
$$a_0^{m_0+1} S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) = \frac{2^{m_1+\dots+m_d} N_0}{(m_1+1)\dots(m_d+1)a_0^{d-1} \prod_{j=1}^d \prod_{\substack{p \le m_j+2\\ p \text{ prime } \ge 3}} p}$$

where $N_0 \in \mathbb{Z}$.

Obviously, (13) can be written as

$$a_0^{d+m_0}\frac{(m_1+1)\dots(m_d+1)}{2^{m_1+\dots+m_d}}\Big(\prod_{j=1}^d\prod_{\substack{p\leq m_j+2\\ p\geq 3 \text{ prime}}}p\Big)S_d(\overrightarrow{\mathbf{a_0}},\overrightarrow{\mathbf{m_0}})\in\mathbb{Z}.$$

End of the proof of Theorem 2.5.1. We shall now apply Theorem 2.3.1. We begin by giving the denominator of the rational number R defined by (5). Write

$$\prod_{i=0}^{d} a_i^{2j_i} A_{i,j_i} = \frac{A}{(2j_0)! \cdots (2j_d)!} B_{2j_0} \cdots B_{2j_d}$$

where $A \in \mathbb{Z}$ and denote by D the denominator of this rational number. By Lemma 2.6.1, we have for all prime numbers p,

$$v_p(D) \le \sum_{i=0}^d \left[\frac{2j_0}{p-1}\right] \le \left[\sum_{i=0}^d \frac{2j_0}{p-1}\right] = \left[\frac{M}{p-1}\right].$$

Let

$$\mu := \prod_{\substack{2$$

It follows that

$$D|2^M\mu.$$

It is then easy to deduce that the number R defined by (5) can be written as

$$R = \frac{N_1'}{\mu \prod_{i=0}^d a_i^{m_i+1}} \qquad (N_1' \in \mathbb{Z}).$$

Therefore, by Theorem 2.3.1 we can write

$$(15)\sum_{i=0}^{d}(-1)^{m_i}m_i!\sum_{\substack{\ell_0,\ldots,\ell_i,\ldots,\ell_d\geq 0\\\ell_0+\cdots+\ell_i+\cdots+\ell_d=m_i}}\prod_{j=0\atop j\neq i}^{d}\frac{a_j^{\ell_j}}{\ell_j!}S_d(\overrightarrow{\mathbf{a_i}},\overrightarrow{\mathbf{m_i}}+\overrightarrow{\mathbf{L_i}})=\frac{N}{\mu\prod\limits_{i=0}^{d}a_i^{m_i+1}},\ (N\in\mathbb{Z}).$$

If we apply a formula similar to (13), we can write for some $N_i \in \mathbb{Z}$

$$a_{i}^{m_{i}+1}S_{d}(\overrightarrow{\mathbf{a}_{i}},\overrightarrow{\mathbf{m}_{i}}+\overrightarrow{\mathbf{L}_{i}})$$

$$=\frac{2^{\sum_{j\neq i}m_{j}+\ell_{j}}N_{i}}{a_{i}^{d-1}\prod_{j\neq i}(m_{j}+\ell_{j}+1)\prod_{j\neq i}\prod_{\substack{p\leq m_{j}+\ell_{j}\\ p \text{ prime }\geq 3}}p}$$

$$=\frac{2^{m_{0}+\cdots+m_{d}}N_{i}}{a_{i}^{d-1}\prod_{j\neq i}(m_{j}+\ell_{j}+1)\prod_{j\neq i}\prod_{\substack{p\leq m_{j}+\ell_{j}\\ p \text{ prime }> 3}}p}$$

under the condition $\sum_{\substack{j=0\\i\neq i}}^d \ell_j = m_i$.

We note that $\mu/\prod_{\substack{j=0\\j\neq i}}^d\prod_{\substack{p\leq m_j+\ell_j\\p\geq 3 \text{ prime}}}p\in\mathbb{N}$, because $m_j+\ell_j\leq M+1$ and the number of j such

that $p \leq m_j + \ell_j$ is less than $\left[\frac{1}{p}\sum_{j\neq i}m_j + \ell_j\right] = \left[\frac{M-d}{p}\right]$. Therefore, we can write the quantity in (15) as follows

$$2^{m_0+\dots+m_d} \sum_{i=0}^d (-1)^{m_i} m_i! \sum_{\substack{\ell_0,\dots,\ell_i,\dots,\ell_d \geq 0\\ \ell_0+\dots+\ell_i+\dots+\ell_d=m_i}} \prod_{\substack{j=0\\j\neq i}}^d \frac{a_j^{m_j+1+\ell_j}}{\ell_j!} \frac{1}{\prod_{\substack{j=0\\j\neq i\\j\neq i}}^d (m_j+\ell_j+1)} \prod_{\substack{j=0\\j\neq i\\j\neq i\\j\neq i}}^d \prod_{\substack{p \leq m_j+\ell_j\\p \leq m_j+\ell_j$$

This gives

$$2^{m_0+\dots+m_d} \sum_{i=0}^d (-1)^{m_i} m_i! \sum_{\substack{\ell_0,\dots,\ell_i,\dots,\ell_d \geq 0 \\ \ell_0+\dots+\ell_i+\dots+\ell_d = m_i \\ j \neq i}} \prod_{\substack{j=0 \\ j \neq i}}^d \frac{a_j^{m_j+1+\ell_j}}{\prod_{\substack{j=0 \\ j \neq i \\ j \neq i}}} \frac{T}{\prod_{\substack{j=0 \\ j \neq i \\ p \text{ prime } > 3}}} \frac{N_i}{a_i^{d-1}} \in T\mathbb{Z}$$

where T is the least common multiple of the numbers

$$\prod_{\stackrel{j=0}{i\neq i}}^{d}(m_j+\ell_j+1): i=0,\ldots,d; \ell_0+\cdots+\widehat{\ell_i}+\cdots+\ell_d=m_i$$

Since the integers a_i are pairwise coprime, it follows that for each $i=0,\ldots,d$

$$2^{m_0+\cdots+m_d}\frac{m_i!}{\prod\limits_{\substack{j=0\\j\neq i}}^d\ell_j!}\frac{T}{\prod\limits_{\substack{j=0\\j\neq i}}^d(m_j+\ell_j+1)}\frac{\mu}{\prod\limits_{\substack{j=0\\j\neq i}}^d\prod\limits_{\substack{p\leq m_j+\ell_j\\p \text{ prime }\geq 3}}}\frac{N_i}{a_i^{d-1}}\in T\mathbb{Z}.$$

For instance, if i = 0 we have

(17)
$$a_0^{d-1} \left| \frac{N_0}{\prod_{j=1}^d (m_j + 1)} \frac{\mu}{\prod_{j=1}^d \prod_{\substack{p \le m_j \\ p \text{ prime } \ge 3}} p \right|$$
 since $m_0 = 0$ and $\ell_1 = \dots = \ell_d = 0$.

By (13) and (17) we thus arrive at

(18)
$$\begin{cases} a_0^{d-1}(m_1+1)\dots(m_d+1)(\prod_{j=1}^d \prod_{\substack{p \leq m_j \\ p \geq 3}} p)a_0S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) \in 2^{m_1+\dots+m_d}\mathbb{Z} \\ \mu a_0S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) \in 2^{m_1+\dots+m_d}\mathbb{Z}. \end{cases}$$

This clearly implies the desired result that

(19)
$$a_0 S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}}) \in \frac{2^{m_1 + \dots + m_d}}{\Lambda} \mathbb{Z},$$

where
$$\Delta = \gcd \left(\mu \; ; \; a_0^{d-1}(m_1+1) \ldots (m_d+1) \prod_{j=1}^d \prod_{\substack{p \leq m_j \\ p \; \text{prime} > 3}} p \right).$$

3. Twisted mean values of L-functions: Introduction

Let q be a positive integer ≥ 2 and χ be a character modulo q, and $L(s,\chi)$ be the Dirichlet L-function corresponding to χ :

$$L(s,\chi) = \sum_{n>1} \frac{\chi(n)}{n^s},$$

where $\Re e(s) > 0$ if χ is non principal and $\Re e(s) > 1$ if χ is the principal character. Let m_1, \ldots, m_d be non negative integers. We shall here be interested by the study of the mean values

$$\sum_{(\chi_1,\cdots,\chi_d)}^* \prod_{i=1}^d \overline{\chi}_i(a_i) L(m_i+1,\chi_i),$$

where \sum^* denotes summation over all characters $\chi_1, \ldots, \chi_d \pmod{q}$ such that:

$$\chi_1 \dots \chi_d = 1, \chi_1(-1) = \dots = \chi_d(-1) = (-1)^{m_1+1} = \dots = (-1)^{m_d+1}.$$

Its well-known that in the case $d=2, m_1=m_2=0$ and $\chi_2=\overline{\chi}_1$, Walum [11] showed that for prime $q=p\geq 3$, the explicit formula

(20)
$$\sum_{\substack{\chi_1 \pmod{p} \\ \chi_1(-1)=-1}} |L(1,\chi_1)|^2 = \frac{\pi^2(p-1)^2(p-2)}{12p^2}.$$

This result has extended by Louboutin [5] and Zhang [14] to any positive integer $q \ge 2$ by the formula as follows

(21)
$$\sum_{\substack{\chi_1 \pmod{q} \\ \chi_1(-1)=-1}} |L(1,\chi_1)|^2 = \frac{\pi^2}{12} \frac{\varphi^2(q)}{q^2} \left(q \prod_{\substack{p \mid q \\ p \text{ prime}}} (1 + \frac{1}{p}) - 3 \right)$$

where $\varphi(q)$ is the Euler function. Moreover, Louboutin [6] has considered the case $d=2, m_1=m_2=k$ and proved the formula

(22)
$$\frac{2}{\varphi(q)} \sum_{\substack{\chi_1 \pmod{q} \\ \chi_1(-1)=-1}} |L(k,\chi_1)|^2 = \frac{(2\pi)^{2k}}{2((k-1)!)^2} \sum_{l=0}^{2k} r_{k,l} \varphi_l(q) q^{l-2k},$$

where

$$arphi_l(q) := \prod_{p \mid q top p ext{ prime}} \left(1 - rac{1}{p^l}
ight),$$

and the coefficients $r_{k,l}$ are real numbers that were not given explicitly. In 2006, Liu and Zhang [7] treated the mean values of $L(m,\chi_1)L(n,\overline{\chi}_1)$ at positive integers $m,n \geq 1$,

(23)
$$\frac{2}{\varphi(q)} \sum_{\substack{\chi_1 \pmod{q} \\ \chi_1(-1)=-1}} L(m,\chi_1) L(n,\overline{\chi}_1) = \frac{(-1)^{\frac{m-n}{2}} (2\pi)^{m+n}}{(2m!n!)!} \left(\sum_{l=0}^{m+n} r_{m,n,l} \varphi_l(q) q^{l-m-n} - \frac{\epsilon_{m,n}}{q} B_m B_n \varphi_{m+n-1}(q) \right).$$

where

$$r_{m,n,l} = B_{m+n-l} \sum_{a=0}^{m} \sum_{b=0}^{n} B_{m-a} B_{n-b} \frac{\binom{m}{a} \binom{n}{b} \binom{a+b+1}{m+n-l}}{a+b+1}.$$

4. Statement of results on mean values of L-functions

We have the interesting results

Theorem 4.0.2. Let d be an integer ≥ 1 and $\overrightarrow{\mathbf{m}} = (m_1, \ldots, m_d)$ a d-tuple of positive integers such that $d + |\overrightarrow{\mathbf{m}}|$ is even. Let q be an integer ≥ 2 . Let a_1, \ldots, a_{d-1} be positive such that $(a_i, q) = 1$ $(i = 1, \ldots, d-1)$. We set $a_d = 1$. Then we have

$$\sum_{(\chi_1,\dots,\chi_d)}^* \prod_{i=1}^d \overline{\chi}_i(a_i) L(m_i+1,\chi_i) = A_q(\overrightarrow{\mathbf{m}}) \sum_{\substack{b \mid q \\ b \neq 1}} b\mu\left(\frac{q}{b}\right) S_d(\overrightarrow{\mathbf{a_0}},\overrightarrow{\mathbf{m_0}})$$

where

$$A_q(\overrightarrow{\mathbf{m}}) = \frac{(-1)^d}{2^d(\overrightarrow{\mathbf{m}}!)} (\frac{\pi}{q})^M \varphi(q)^{d-1}, \overrightarrow{\mathbf{a_0}} = (b; a_1, \dots, a_d), \overrightarrow{\mathbf{m_0}} = (0; m_1, \dots, m_d)$$

The above theorem gives immediately

Corollary 4.0.3. Let m and n be positive having same parity. Let a be a positive integer such that (a, q) = 1. Then we have

$$\sum_{\substack{\chi \pmod{q} \\ \chi(-1) = (-1)^{m+1}}} \overline{\chi}(a) L(m+1,\chi) L(n+1,\overline{\chi}) = A \sum_{\substack{b \mid q \\ b \neq 1}} b\mu(q/b) S_d(\overrightarrow{\mathbf{a_0}}, \overrightarrow{\mathbf{m_0}})$$

where
$$A = \frac{\varphi(q)}{4m!n!} (\frac{\pi}{q})^{m+n+2}, \overrightarrow{\mathbf{a_0}} = (b; a, 1), \overrightarrow{\mathbf{m_0}} = (0; m, n).$$

For every real $\alpha > 0$, let J_{α} be the Jordan's totient function defined for all positive integer n by :

$$J_{\alpha}(n) := n^{\alpha} \sum_{m|n} \frac{\mu(m)}{m^{\alpha}},$$

where μ is the Mobius function. Since the arithmetical function $J_{\alpha}(n)/n^{\alpha}$ is multiplicative, we can write

$$J_{\alpha}(n) = n^{\alpha} \prod_{\substack{p|n \ p \text{ prime}}} \left(1 - \frac{1}{p^{\alpha}}\right), \text{ see } [10, \text{ p.11,p.219}].$$

For $\alpha = 1$, this is, of course, Euler's function φ .

For $a_1 = ... = a_d = 1$ from Theorem 4.0.2 and Theorem 2.3.1, we obtain the following theorem

Theorem 4.0.4. Let q be an integer ≥ 2 . Let d be an integer ≥ 1 and $\overrightarrow{\mathbf{m}} = (m_1, \ldots, m_d)$ a d-tuple of positive integers such that the number $M := d + |\overrightarrow{\mathbf{m}}|$ is even. Then

i) if
$$(m_1, ..., m_d) \neq (0, ..., 0)$$
 we have

$$\sum_{(\chi_{1},\dots,\chi_{d})}^{*} \prod_{i=1}^{d} L(m_{i}+1,\chi_{i}) = D_{q}(\overrightarrow{\mathbf{m}}) \Big(\sum_{\substack{j_{0}=1\\j_{1}+\dots,j_{d}\geq 0\\j_{1}+\dots,j_{d}\neq m/(2-j_{0})\\j_{1}+\dots,j_{d}\neq m/(2-j_{0})\\j_{1}+\dots,j_{d}\neq m/(2-j_{0})\\j_{1}+\dots,j_{d}\neq m/(2-j_{0})} \prod_{i=1}^{d} A_{i,j_{i}} \Big) \frac{B_{2j_{0}}}{(2j_{0})!} J_{2j_{0}}(q) \Big)$$

where

$$D_q(\vec{\mathbf{m}}) = (-1)^{M/2} 2^M A_q(\vec{\mathbf{m}}).$$

ii) for $(m_1, ..., m_d) = (0, ..., 0)$ we have

$$\sum_{(\chi_1,\dots,\chi_d)}^* \prod_{i=1}^d L(1,\chi_i) = D_q(\overrightarrow{0}) \Big(2^{-d} \varphi(q) - \sum_{j_0=1}^{d/2} \Big(\sum_{\substack{j_1,\dots,j_d \geq 0 \\ j_1+\dots+j_d = d/2 - j_0}} \prod_{i=1}^d \frac{B_{2j_i}}{(2j_i)!} \Big) \frac{B_{2j_0}}{(2j_0)!} J_{2j_0}(q) \Big).$$

where
$$D_q(\overrightarrow{0}) = (-1)^{d/2} \left(\frac{\pi}{q}\right)^d \varphi(q)^{d-1}$$
.

As an immediate consequence, taking $d=2, m_1=m_2=0$ we obtain a sensitive improvement of Louboutin, Liu and Zhang results [5, 6, 14, 7].

Theorem 4.0.5. Let m and n be two positive integers having same parity. Then \bullet If $(m,n) \neq (1,1)$, we have

$$\frac{2}{\varphi(q)} \sum_{\substack{\chi(-1) = (-1)^m \\ \chi(-1) = (-1)^m}} L(m,\chi) L(n,\overline{\chi}) = \frac{1}{2} (-1)^{\frac{m+n}{2}} \left(\frac{2\pi}{q}\right)^{m+n} (M_1 + M_2 + M_3)$$

where

$$M_{1} = \frac{B_{m+n}}{(m+n)!} J_{m+n}(q),$$

$$M_{2} = \frac{(-1)^{m-1}}{(n-1)!m!} \sum_{j=1}^{[m/2]} {m \choose 2j} \frac{B_{m+n-2j}}{m+n-2j} B_{2j} J_{2j}(q),$$

$$M_{3} = \frac{(-1)^{n-1}}{(m-1)!n!} \sum_{j=1}^{[n/2]} {n \choose 2j} \frac{B_{m+n-2j}}{m+n-2j} B_{2j} J_{2j}(q).$$

• If m = n = 1, we have

$$\frac{2}{\varphi(q)} \sum_{\substack{\chi \\ \chi(-1)=-1}} |L(1,\chi)|^2 = \frac{\pi^2}{6} \frac{\varphi(q)}{q^2} \Big(q \prod_{\substack{p \mid q \\ p \ prime}} (1 + \frac{1}{p}) - 3 \Big).$$

Proof. For the proof we refer to [2].

REFERENCES

- A. BAYAD, A. RAOUJ, Arithmetic of higher dimensional Dedekind-Rademacher sums, Journal of Number theory 132 (2012), pp. 332-347.
- [2] A. BAYAD, A. RAOUJ, Mean values of L-functions and Dedekind sums, Journal of Number theory 132 (2012), pp. 1645-1652.
- [3] M. BECK, Dedekind cotangent sums, Acta Arith. 109 (2003), pp. 109-130.
- [4] G.H HARDY, E.M WRIGHT, "The Theorem of von Staud" and "Proof of von Staudt's Theorem", §7.9-7.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 90-93, 1979.
- [5] S. LOUBOUTIN, On the mean value of $|L(1,\chi)|^2$ for odd primitive Dirichlet characters, *Proceedings* of Japan Academy Series A Mathematical Sciences 75 (1999), pp. 143-145.
- [6] S. LOUBOUTIN, The mean value of $|L(k,\chi)|^2$ at positive rational integers $k \geq 1$, Colloquium Mathematicum 90 (2001), pp. 69-76.
- [7] H. LIU, W. ZHANG, On the mean value of $L(m,\chi)L(n,\overline{\chi})$ at positive integers $m,n\geq 1$, Acta Arith. 122 (2006), pp. 51-56.
- [8] J.L. RAABE, Zurüchführung eineger Summen und bestimmten Integrale auf die Jacob-Bernoullische Funktion, J. reine Angew. Math. 42 (1995), pp. 348-367.
- [9] R. RADO, A New Proof of a Theorem of V. Staudt, J. London Math. Soc. 9(1934), pp. 85-88.
- [10] M. RAM MURTY, Problems in Analytic Number Theory, Springer-Verlag (2001).
- [11] H. WALUM, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), pp. 1-3.

ABDELMEJID BAYAD

- [12] K.G.C. VON STAUDT, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen, J. reine angew. Math. 21(1840), pp. 372-374.
- [13] D. ZAGIER, Higher order Dedekind sums, Math. Ann. 202, (1973), pp. 149-172.
- [14] W. Zhang, On the mean values of Dedekind sums, Journal de Théorie des Nombres de Bordeaux 8 (1996), pp. 429-442.

ABDELMEJID BAYAD. DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ D'EVRY VAL D'ESSONNE, BD. F. MITTERRAND, 91025 EVRY CEDEX, FRANCE,

E-mail address: abayad@maths.univ-evry.fr