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Abstract

Let s = (s3,52) be complex variables, and 2 = (z;,23) complex parameters
with (21,22) € HT x H~, where #* (resp. #~) denotes the upper (resp. lower)
half-plane. The main object of this report is the double Eisenstein series (of two vari-
ables) C;: (s; z) defined by (2.1) below, which includes (as a particular case) the non-
holomorphic Eisenstein series (z2(s; z) (defined by (1.1)) attached to SL(2,Z).

We first show a Fourier-type series expansion for a two variable extension of the
bilateral Hurwitz zeta-function (Theorem 1), which further allows us to obtain a similar
type of series expansion for (z2(s; 2) (Theorem 2) by means of Mellin-Barnes type
integrals. This eventually leads us to establish complete asymptotic expansions for
(z2(8; z) in the descending order of z = z, — 22 as z — oo through the (upper-half)
sector 0 < arg z < 7 (Theorem 3). It can be shown from Theorem 3 certain functional
properties of (z2(s; z) (Corollaries 1-2), as well as several closed form evaluations for

specific values of (z2(8; z) at some integer lattice arguments (Corollary 3).

1 Introduction

Let s = o + it be a complex variable and let Ht = {z € C | 0 < arg(z) < 7} and
H™ ={2€ C | -7 < arg(z) < 0} be the complex half-planes. For an arbitrary
even integer k and the complex parameter z € H ™, the non-holomorphic Eisenstein series
Ex(s; z) of weight k attached to SL(2,Z) is defined by the meromorphic continuation of

the series )

_ —k —2s

Ex(s,2) = 5 Z (cz+d) Flez + d| (1.1)
(c,d)eZ?
GCD(c,d)=1

to the whole s-plane (see [10, Chap.4, Sect.3]). It is readily seen when k = O that the
relation

Eo(s; 2) = (z2(s; 2)/2¢(2s) (1.2)
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holds with the Riemann zeta-function {(s), and the Epstein zeta-function {z2(s; 2) defined
by
Cz2(s; 2) = E |m + nz|~2 (Res > 1), (1.3)
(m,n)€Z\{(0,0)}
which can be continued to a meromorphic function over the whole s-plane (cf. [1][2]).

The principal aim of this report is to introduce a class of double Eisenstein series (2.1)
below, which includes (as a particular case) the Epstein zeta-function (1.3) and so the non-
holomorphic (or real analytic) Eisenstein series (1.1), and further to present a Fourier-type
series expansion for the double Eisenstein series (of two variables) {z2(s; z) defined by
(2.1) below (Theorem 2). This eventually leads us to obtain complete asymptotic expansions
of (72 (s; z) in the descending order of z = 21 —23 as z — oo through the (upper-half) sector
0 < argz < m (Theorem 3). Certain functional properties of C’;z(s; z) (Corollaries 1-2),
as well as several closed form evaluations for specific values of CNZz(s; z) at some integer
lattice arguments will be presented (Corollary 3).

We give in what follows a brief overview of several results relevant to the present
direction of research. As to holomorphic Eisenstein series, complete asymptotic expan-
sions (with respect to the parameter z) were obtained by Matsumoto in [11, Corollary 1],
while Noda [12] studied an asymptotic formula for the non-holomorphic Eisenstein series
Ey(s; z) ast — +oo on the critical line 0 = 1/2. Katsurada [4] derived complete asymp-
totic expansions for (1.3) in the descending order of y = Im z as y — +00, where key roles
in the proofs were played by Mellin-Barnes type integrals. This result further allows him
to yield for (z2(s; z) a new proof of its functional equation and its Kronecker limit formula
when s — 1, as well as its closed form evaluations of certain specific values at integer
arguments. The main formula in [4, Theorem 1] is readily switched to an asymptotic ex-
pansion of Ey(s; z) as y — +oo by the relation (1.2). It is in fact possible to transfer from
Ey(s; 2) to Ey(s; 2) by using Maass’ weight change operators (see [10, Chap.4,(12),(13)]);
this leads the authors to establish in [5, Theorem 1] complete asymptotic expansions for
(1.1) as y — +oc with any even weight k. The main formula in [5, Theorem 1] yields
various consequences similar to those in the case of (1.2).

The classical Lipschitz formula (see (2.4) below) was recently extended in [6][7] into
a form of two variables, where the pair of parameters (21, z,) belongs to either (H*)? or
(H#7)2. As an application, they further derived a transformation formula for a class of
double Eisenstein series, which can be regarded as a two variable analogue of the Fourier
series expansion of the holomorphic Eisenstein series attached to SL(2,Z).

The class of double Eisenstein series such as in (2.1) can be regarded as one of those
of double bilateral Dirichlet series. Double and further multiple Dirichlet series have been
the subject of recent extensive research, where its major portion covers multiple unilateral
Dirichlet series. We mention here several results relevant to (2.1). The functional equations
of some Euler-type double Eisenstein series were recently given in [8], while Pasles and
Pribitkin [13] have shown a kind of triple and quadruple analogues of the Lipschitz formula,
which give generalizations of the Maass-type formula. They also applied their results to
study a class of generalized non-analytic automorphic forms.
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2 Statement of results

Let s = (s1,s2) be complex variables, and z = (z1,22) be complex parameters with
z = (z1,22) € H* x H~. Throughout this report, the notation (s) = s1 + s will be used.
We define the double Eisenstein series of Maass-type by

(z2(8;2) = z (m+nz1) " (m+ n2p) ™2, VA
(m,n)€Z2\{(0,0)}

Here the argument of (m + nz) for z € H+ U H ™~ is chosen so as | arg(m + nz)| < 7.
More precisely, for negative integer n in (m + nz), we let arg(n) = —x for 2 € H* and
arg(n) = = for z € H~. Similarly, for negative integer m in (m + nz) when n = 0, we
define arg(m) = —x for z € H* and arg(m) = n for z € H~. The argument of m € Z in
(m + w) forw € Ht UH™ is defined as follows:

0 if m >0,
arg(m) = lim arg(m+6w)=q7  if m<0 and weH',  (22)
- if m<0 and weH.

The complex power is defined by w® = exp{(o + it)(log |w| + i arg(w)) }. The right-hand
side of (2.1) converges absolutely and locally uniformly for Re(s) > 2.

As usual, I'(s) and {(s) denote the gamma and the Riemann zeta function respectively.
We write 05(1) = 3554, d° and use the notation e(z) = ™. Let U(a,v; Z) be the
confluent hypergeometric function of the second kind, defined by

1 o0
Ule,v; Z) = m/o e P u (1 4 u) "> du

for Re(a) > 0 and |arg(Z)| < m/2 (see [3, 6.5.(2)]). Further, we let (z(s; z) be the
bilateral Hurwitz zeta-function defined by

Cz(s;2) = Z (m+2z)~° (Res > 1), 2.3)
for 2 € H* or z € H~. Then the Lipschitz formula (cf. [6, Proposition 2])
_ \s o0
(=2mi) I le(lz) ifzeHT,
I'(s)
@(552) =\ (gri)e . (2.4)
1°7le(—12) ifzeH,
I'(s) ; (-i2)

holds. Here the l-sum on the right side converges absolutely for all complex s, and hence
(2.4) provides the holomorphic continuation of {z(s; z) to the whole s-plane. This includes
the classical Lipschitz formula, which asserts that

oo

-k _ (=2mi)* & k-1 ; +
Z (z+m) z n*~" exp(2minz) (z € HT),
n=1

(k= 1)!

m=—00



for any integer k > 2 (cf. [9]). We next define the bilateral Hurwitz zeta-function of
two variables, {z(s; z) for complex variables s = (s1, s2) and complex parameters z =

(Zl, 22) e HT x H~, by

Cz(s;2) = Z (m+21)" % (m+ 22) %2 (Re(s) > 1). (2.5)

In this paper, we first extend the Lipschitz formula (2.4) into a form of two variables.

Theorem 1. Let z = (2),25) € Ht x ™, and define

v I (s2)e(lz1)U(s2, (s); 2mil (22 — z1))  fl>0,
asiz) =1 o _ (2.6)
{ (s1)e(lz2)U(s1, (8); 2mi|l|(z2 — 21)) ifl <.

Then the formula

(- — 2255 — F((S)—l) _ ~(s
CZ(S,Z) = 27!'22 1m(21 22)1 ( )

(27T)<8) ;5281 (s)-1 .
+ F(S]_)F(Sz) #ZO |l| a’l(s) z) (2'7)

holds for Re(s) > 1. Here the l-sum on the right side converges absolutely for all s € C?,
and hence (2.7) provides the meromorphic continuation of (z(8; z) to the whole s-space

c2.

__ Theorem 1 yields the following transformation formula (Fourier-type expansion) for
Cz2(8; 2). |

Theorem 2. Let z = (21,22) € HT x H™, define

Eo(s;2) = {1+ em(sl_sz)}{g((s)) + 27#282_11%(3%

x (21 — )@ ¢((s) - 1)}, @8)

and let a)(s; z) be as in Theorem 1. Then the formula

2m)(eis =

Cz(8:2) = Eolsi2) + "o STy

1£0

holds. Here the l-sum on the right side converges for all s € C?, and hence (2.9) provides
the meromorphic continuation of (z2(s; z) to the whole s-space C2.

{1+ Y "o 1 (Dai(s;z)  (29)
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For s; € C, we write s; = 0 + it (j = 1,2). Further let (s)p, = I'(s +n)/I'(s) for
any integer n be the shifted factorial of s, and

P, s(e(w)) = i h"k*e(hkw) = ior_g(l)lse(lw), (2.10)
=1

h,k=1
the function first introduced by Ramanujan [14]; this converges absolutely for all (r,s) €
C? when w € H™, and defines there an entire function.
Theorem 3. Let z = (21,22) € HY X H™ and 21 — z2 = z € H*. Then for any integer
Ni > 1 and Ny > 1, the asymptotic expansion

— ){8)
(z2(8; 2) = Eo(s; z)+2(ﬁ(s)1) cos{m(s1 — s2)/2} {S1,n,(8; 2) + Rin, (8;2)}
2(2m) )
+ [(53) cos{m(s1 — 82)/2} {S2.N,(8; 2) + Ra,N,(8;2) },

2.11)

holds in the region of s with —N3 < 01 < 1+ Ny and — Ny < g3 < 1+ Na. Here &y(s, )
is defined as in Theorem 2,

S1,n. (85 2)
= N~ () st - $ngs (e(21)) (21re‘%"iz) o (2.12)
o n' s1—n—1,—sa—n 1 ) .
Sa. N, (8;2)
3~ (£ (50)a(1 = s2)n i) "
- Z g By, n1—s,—n(e(—22)) (27re—5“z) C@13)
and
. _ (_1)N1 (32)N1(1 - Sl)Nl — ()~
Rin (852) = N, — 11 h,%z:l e(hkz1)h 1
1
X / g2~ (1 — MU (sg + Ny, (s); 2mhke ™22 /£)dE,  (2.14)
0
R2’N2(S;Z) — (_1)N2 (Sl)Nz(l - SZ)Nz i e(—hkzz)h<8>_1

)1
(N2 = 1)! hyk=1

1
X /0 =1~ Na(1 — )Na=1pi (s + Ny, (8); 2rhke ™ /22/€)dE.  (2.15)

Let 0 = arg(—iz), then the expansion above gives the asymptotic series in the descending
order of z, and R; n; (j = 1,2) is the remainder terms satisfying the estimates

Ry (852) = O (e 2|~ M) | (2.16)

Ro vy (83 2) = O (£mm(en) |1 =82 ) @17



as z — oo through the sector § < arg z < m—§ with any small § > 0. Here the O-constants
depend on N;, t; (j = 1,2) and 6.

From Theorems 2 and 3, we can determine the singularities of Q; (s; 2), and to derive
the functional equations under some natural conditions. In order to describe our results, we
put for any m € Z,

My, = {8 = (51,82) € C?; 51 — 53 = m},

N = {8 = (s1,82) € C?; (8) = 81 + 52 = m},

P= {S = (Sla 32) € (C25 <5> € {2a 1,0,-2,—-4,-- }}7

Q= {s=(s1,82) €C%s1€{0,-1,-2,---}orsp € {0,—-1,-2,---}}.
Generally, it is possible to explain that the singularities (and a part of zeros) and the func-

tional equation come from &y(s; z), which is called “the constant term” of the Eisenstein
series. In our case, this fact is stated as follows. :

Corollary 1. (i) For anyl € Z and any s* = (s}, s3) € Moy1 with s* ¢ P,
Q;;(s*; z) =0,
namely, Moyy1 \ P is the set of the zeros of(szz (s; 2).

(ii) Q’sz(s; 2) has singularities on 8 € P. In particular, C;;(s; z) has indeterminacy
singularitieson s € PN Qorons € PN Moy foranyl € Z.

The functional equation of C’VZz (s; z) come into existence under the condition s € Mo
(k € Z), which seems to be a natural generalization of the functional equation of the non-
holomorphic Eisenstein series Ej(s, z) attached to SL(2,Z) (see Corollary 5 below). It
is also possible to obtain a functional equation under a different kind of the condition that
s € Ny1 (I € Z) upon subtracting the constant term Ey(s; z) of the double Eisenstein
series. In the following, we use the notation 1—s= (1 — 82,1 — s1) for s = (s1, 82)-

Corollary 2. (i) The functional equation

S omi\' ™ I(s)) ~,
(z2(1 — 832) = (—> m(;zz(s’z)

z
holds on the hyper-plane My, (k € Z) except on the poles.
(ii) The functional equation

o~ — P .\ 1—(s)

holds on the hyper-planes Moy, (k € Z) or Noj11 (I € Z) except on the poles.

{Gals2) - &ols:2) |

_From Theorem 3, we obtain the following closed form expressions for specific values
of (z2(s, z) at positive integer lattice arguments:
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Corollary 3. For anym = (my,mp) € N2 (N={1,2,---}) with (m) > 2,

Ti(m;z) Ta(m;z)
m—D! " (ma— 1)!}'

Ezvz(m; z) = &(m;z) + 2(27r)<m) cos{m(my — mg)/2} {

(2.18)
Here
(27T)<m)’im1_m2 COS{?T(ml - mg)/Q}B(m)
Eo(m;2) = —
cos(m(m)/2)(m)!
4mil™=1((m) — 2)! cos{m(m1 — m2)/2}¢((m) — 1) 2.19)
(m1 - 1)!(m2 - 1)‘(21 - Zg)(m)_l ’ '
where B,, is the m-th Bernoulli number and
ml_l my — 1 1. —ma—n
n (m; z) = Z ( n ) (mZ)n¢m1—n—l,—mg—n(6(21)) (271'6—51”2) ,
n=0
(2.20)
ma—1
-1 1. \—mi-n
Ta(myz) = Z (mzn ) (M1)nPmz—n—1,—m;—n(e(—22)) (27re é7”2:) .
n=0
(2.21)
From Theorems 1 and 2, the following two corollaries are readily derived.
Corollary 4 (Maass [10]). Let z = z + iy € H™*, and define
an(y; 51, 82) = 272 (27r)(®
n® =11 (s1) 71U (52, (8); 4nny) ifn >0,
X § 1[I (s9) U (s1, (8); 4rinly) ifn <0,

I(s1)7'0(s2) 7' T ({s) — 1)(4my)' =@ ifn=0.

Then the formula

o0 o0

Y +m)yE+m) = > aa(y; s1, s2)e(nz +ilnly)

m=-—0co n=—oco

holds, where the n-sum (with n # 0) on the right side converges for all (s1, s3) € C?, and
this formula provides the meromorphic continuation of the left side to the whole (s1, s2)-
space C2.

Corollary 5 (Maass [10]). Under the same notation as in Corollary 4, we have

Ex(s,z) =1+ g—(2,6—(%%{2—;)—9ao(y; k+s,s)
+ C—(k—_l}_“‘z's—) Z o1-k—2s(D)ai(y; k + s, s)e(lx + i|ly),
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and the functional equation

7~ °I'(s)¢(2s)y° Ex(s, 2)
=gl th (1l — s — k)C(2 — 25 — 2k)yt TR E (1 — 5 — K, 2).

Remark. The double Lipschitz formula and the Fourier series expansion of non-holomorphic
Eisenstein series were shown by Maass [10], in which he described his results in terms of
Whittaker functions. Equivalent statements described in terms of confluent hypergeometric
functions can be found, for e.g., in [15, p. 132].
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