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Abstmct: The characterization of the structure of palindromic regular and palindromic
context-free languages is described by S. Horv\’ath, J. Karhum\"aki, and J. Kleijn [5]. In
this paper alternative proofs are given for these characterizations. Moreover, a simple
observation is also given for palindromic context-sensitive (phrase-structural) languages.

1 Introduction
Characterization of palindromic regular and context-free languages is given
by [5], In this paper we give alternative proofs of these characterizations,
moreover, we characterize the palindromic context-sensitive languages. (The
palindromic phrase-structural languages have a trivial characterization).

2 Preliminaries
A word (over $\Sigma$ ) is a finite sequence of elements of some finite non-empty
set $\Sigma$ . We call the set $\Sigma$ an alphabet, the elements of $\Sigma$ letters. If $u$ and $v$
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are words over an alphabet $\Sigma$ , then their catenation $uv$ is also a word over
$\Sigma$ . Especially, for every word $u$ over $\Sigma,$ $u\lambda=\lambda u=u$ , where $\lambda$ denotes the
empty word. Two words $u,$ $v$ are said to be conjugates if there exists a word
$w$ with $uw=wv.$ $A$ nonempty word is called primitive if it is not a power of
another word. Otherwise we speak about nonprimitive word. Thus $\lambda$ is also
considered as a nonprimitive word.

The length $|w|$ of a word $w$ is the number of letters in $w$ , where each
letter is counted as many times as it occurs. Thus $|\lambda|=0$ . By the free
monoid $\Sigma^{*}$ generated by $\Sigma$ we mean the set of all words (including the empty
word $\lambda$ ) having catenation as multiplication. We set $\Sigma^{+}=\Sigma^{*}\backslash \{\lambda\}$ , where
the subsemigroup $\Sigma^{+}$ of $\Sigma^{*}$ is said to be the free semigroup generated by
$\Sigma$ . Subsets of $\Sigma^{*}$ are referred to as languages over $\Sigma$ . Denote by $|H|$ the
cardinality of $H$ for every set $H.$ $A$ language $L$ is said to be slender if there
exists a nonnegative integer $c$ having $|\{w\in L:|w|=n\}|\leq c.$

For a nonempty word $w=x_{1}\cdots x_{n}$ , where $x_{1},$ $\ldots,$
$x_{n}\in\Sigma$ , we denote

its reverse, $x_{n}\cdots x_{1}$ , by $w^{R}$ . Moreover, by definition, let $\lambda=\lambda^{R}$ , where $\lambda$

denotes the empty word of $\Sigma^{*}$ We say that a word $w$ is a palindrome (or
palindromic) if $w=w^{R}$ . Further, we call a language $L\subseteq\Sigma^{*}$ palindromic if
all of its elements are palindromes.

A language $L\subseteq\Sigma^{*}$ is called a paired loop language if it is of the form
$L=\{uv^{n}wx^{n}y|n\geq 0\}$ for some words $u,$ $v,$ $w,$ $x,$ $y\in\Sigma^{*}$

Finally, as usual, we write a generative grammar $G$ into the form $G=$

$(V, \Sigma, S, P)$ , where $V$ and $\Sigma$ are nonempty finite distinct sets, the set of
nonterminals, and the set of terminals, $S\in V$ is the start symbol, and $P$ is
the finite set of derivation rules. For every sentential form $W\in(V\cup\Sigma)^{*},$

$L_{G}(W)$ denotes the language genemted by $W$, and $L(G)(=L_{G}(S))$ denotes
the language generated by $G.$

We shall use the following classical results.

Theorem 1 [lJ Let $L$ be a regular language. Then there is a constant $n$ such
that if $z$ is any word in $L$ , and $|z|\geq n$ , we may write $z=uvw$ in such a
way that $|uv|\leq n,$ $|v|\geq 1$ , and for all $i\geq 0,$ $uv^{i}w$ is in L. Furthermore, $n$

is no greater than the number of states of the finite automaton with minimal
states accepting $L.$ $\square$

Theorem 2 The family of context-free languages is closed under the inverse
homomorphism. $\square$
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Theorem 3 [lJ The language $L\subseteq\Sigma^{*}$ is context-free if and only if for every
regular $lan9^{ua}geR\subseteq\Sigma^{*},$ $L\cap R$ is context-free. $\square$

Theorem 4 $[4J$ Given an alphabet $\Sigma$ , a nonempty word $w\in\Sigma^{+}$ , each context-
free language $L\subseteq w^{*}$ is regular having the form

$\bigcup_{i=1}^{k}w^{m_{i}}(w^{n_{i}})^{*}$ for some $m_{1},$ $n_{1},$
$\ldots,$ $m_{k},$ $n_{k}\geq 0$ . (1)

$\square$

Theorem 5 [6, 7, $9J$ Every slender context-free language is a finite disjoint
union of paired loop languages. $\square$

The following statement is well-known.

Proposition 6 Given a context-free grammar $G=(V, \Sigma, S, P)$ , a sentential
form $W\in(V\cup\Sigma)^{*}$ , the language $S_{G}(W)$ is also context-free. $\square$

Theorem 7 [1 $OJ$ Given a positive integer $i$ , a pair $u,$ $v\in\Sigma^{+}$ , let $uv=p^{i}$ for
some primitive word $p\in\Sigma^{+}$ . Then $vu=q^{i}$ for a primitive word $q.$

$\square$

Theorem 8 $[8J$ If $uv=vq,$ $u\in\Sigma^{+},$ $v,$ $q\in\Sigma^{*}$ , then $u=wz,$ $v=(wz)^{k}w,$ $q=$

$zw$ for some $w\in\Sigma^{*},$ $z\in\Sigma^{+}$ and $k\geq 0.$ $\square$

Theorem 9 $[8J$ The words $u,$ $v\in\Sigma^{*}$ are conjugates if and only if there are
words $p,$ $q\in\Sigma^{*}$ with $u=pq$ and $v=qp.$ $\square$

Theorem 10 $[2J$ Let $u,$ $v\in\Sigma^{*}u,$ $v\in w^{+}$ for some $w\in\Sigma^{+}$ if and only if
there are $i,$ $j\geq 0$ so that $u^{i}$ and $v^{j}$ have a common prefix (suffix) of length
$|u|+|v|-gcd(|u|, |v|)$ . $\square$

We shall use the following direct consequence of this result.

Theorem 11 If two non-empty words $p^{i}$ and $q^{j}$ share a prefix of length $|p|+$

$|q|$ , then there exists a word $r$ such that $p,$ $q\in r^{+}.$ $\square$
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3 Results
We start with alternative proofs of some results of S. Horv\’ath, J. Karhum\"aki,
J. Kleijn [5].

First we turn to consider regular languages.

Theorem 12 $[5JA$ regular language $L\subseteq\Sigma^{*}$ is palindromic if and only if it
is a union of finitely many languages of the form

$L_{p}=\{p\}, L_{q,r,s}=qr(sr)^{*}q^{R}, (p, q, r, s\in\Sigma^{*})$ , (2)

where $p,$ $r$ and $s$ are palindromes.

Proof: Clearly, any finite union of languages in (2) is both palindromic and
regular. Conversely, let $L$ be a palindromic regular language and $n$ be the
language-specific constant from Theorem 1. Naturally, there are finitely
many words shorter than $n$ , those will form the languages $L_{p}$ . For any
suitably long word $w\in L$ , according to Theorem 1, we have a factorization
$w=qvz$ , with $0<|qv|\leq n$ and $v\neq\lambda$ , such that $qv^{i}z\in L$ , for any $i\geq 0.$

The two cases being symmetric, we may assume $|q|\leq|z|$ , i.e., $z=xq^{R}$ , for
some $x\in\Sigma^{*}$ , with $v^{i}x$ being a palindrome. This gives us $x=r(v^{R})^{j}$ , for
some $r$ with $v^{R}=sr$ and some $j\geq 0$ . But, for large enough $i,$ $v^{i}x$ ends in
$sx=(v^{R}v^{R})^{R}x=(r^{R}s^{R})^{2}r(v^{R})^{j}$ and it starts with $v^{j+2}$ , so we instantly get
$v=r^{R}s$ and thus $s=s^{R}$ . It also follows, that $v^{R}=s^{R}r$ and $v^{R}=s^{R}r^{R},$

hence $r$ is a palindrome, too. Then, our original word $w$ can be written as
$qr(sr)^{j+k}q^{R}.$ $A$ similar decomposition, according to Theorem 1 is bound to
exist for all words longer than $n$ . All parts of the decomposition, $q,$ $r$ and $s$

are shorter than $n$ , therefore there are finitely many triplets like this.
$\square$

Next we prove the following simple observation.

Proposition 13 Given a pair of positive integers $i,$ $j$ , let $p,$ $r,$ $u,$ $w\in\Sigma^{*},$ $v\in$

$\Sigma^{+}$ be arbitmry with $|p|\leq|u|,$ $|r|\leq|w|$ and let $q\in\Sigma^{+}$ be a primitive word
having $|v^{j}|\geq|v|+3|q|$ such that $pq^{i}r=uv^{j}w$ . Then there exists a positive
integer $k$ such that $v$ and $q^{k}$ conjugate.

Proof: By our assumptions, there exists a pair of factorizations $u=pu’,$ $v=$

$v’q$ such that $q^{i}=u’v^{j}v’$ . Because $|v^{j}|\geq|v|+3|q|,$ $|u’v’|=|q^{i}|-|v^{j}|\leq$
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$|q^{i}|-|v|-3|q|<|q^{i-3}|$ , there are a positive integer $n$ , a suffix $q_{2}$ and a prefix
$q_{3}$ of $q$ such that $v^{j}=q_{2}q^{n}q_{3}$ . Hence $v^{j}=q_{2}(q_{1}q_{2})^{n}q_{3}=(q_{2}q_{1})^{n}q_{2}q_{3}$ for some
decomposition $q=q_{1}q_{2}$ and prefix $q_{3}$ of $q$ . By our conditions, $|v^{j}|-|q_{3}|\geq$

$|v|+3|q|-|q_{3}|\geq|v|+2|q|>|v|+|q|$ . Therefore, applying Theorem 11, we
obtain $v,$ $q_{2}q_{1}\in z^{+}$ for some primitive word $z\in\Sigma^{+}$ . By Theorem 7, $q_{2}q_{1}$ is
also primitive. Therefore, $z=q_{2}q_{1}$ . Hence $v=(q_{2}q_{1})^{k}$ for some $k>0$ . Then
Theorem 9 implies that $v$ and $q^{k}$ conjugate. $\square$

Now we continue with palindromic context-free languages.

Theorem 14 $[5J$ Every palindromic context-free language is linear.

Proof: Let $G=(V, \Sigma, S, P)$ be a context-free grammar generating the palin-
dromic language $L$ . Without loss of generality we can assume that $V$ is
reduced, i.e., for every $X\in V,$ $L_{G}(X)\neq\emptyset$ . In particular, we may assume for
every $X\in V,$ $|L_{G}(X)|=\infty$ . Indeed, if $|L_{G}(X)|<\infty$ , then we can eliminate
the derivation rules

$Yarrow W_{1}XW_{2}X\cdots W_{n}XW_{n+1}, Xarrow W\in P,$

$W,$ $W_{1},$ $W_{2},$
$\ldots,$

$W_{n+1}\in((V\backslash \{X\})\cup\Sigma)^{*}$ by new derivation rules of the form

$Yarrow W_{1}w_{1}W_{2}w_{2}\cdots w_{n}W_{n+1}, w_{1}, \ldots, w_{n}\in L_{G}(X)$ .

It can also be assumed that for every $Xarrow W\in P$, there are at most two (not
necessarily different) nonterminals appearing in $W$ Indeed, if
$Xarrow u_{1}A_{1}\cdots u_{n}A_{n}u_{n+1}\in P$ with $X,$ $A_{1},$

$\ldots,$
$A_{n}\in V,$ $u_{1},$

$\ldots,$
$u_{n}\in\Sigma^{*},$ $n>2$

then we can eliminate this derivation rule by the following new derivation
rules using some new nonterminals $A_{1}’,$

$\ldots,$
$A_{n-1}’$ :

$Xarrow u_{1}A_{1}u_{2}A_{2}’,$ $A_{2}’arrow A_{2}u_{3}A_{3}’,$
$\ldots,$

$A_{n-2}’arrow A_{n-2}u_{n-1}A_{n-1}’,$ $A_{n-1}’arrow A_{n-1}u_{n}.$

Next we show that the derivation rules of the form $Xarrow$ pAqBr with $p,$ $q,$ $r\in$

$\Sigma^{*},$ $A,$ $B\in V$ can be eliminated.
First we establish that for every $q_{1},$ $q_{2}\in\Sigma^{*},$

$A_{G}^{*}\Rightarrow q_{1},$ $A_{G}^{*}\Rightarrow q_{2},$
$q_{1}\neq q_{2}$

$*$ $*$

implies $|q_{1}|\neq|q_{2}|$ . Similarly, for every $r_{1},$ $r_{2}\in\Sigma^{*},$ $B_{G}\Rightarrow r_{1},$ $B_{G}\Rightarrow r_{2},$ $r_{1}\neq$

$r_{2}$ implies $|r_{1}|\neq|r_{2}|$ . Because $G$ is reduced, there are $u,$ $y\in\Sigma^{*}$ having
$S_{G}^{*}\Rightarrow uXy$ . Therefore, $A_{G}^{*}\Rightarrow q_{1}$ and $A_{G}^{*}\Rightarrow q_{2}$ imply that for every $r’\in L_{G}(B)$ ,
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$upq_{1}qr’ry,upq_{2}qr’ry\in L$ , i.e., both of them are palindromes. This is im-
possible if $|q_{1}|=|q_{2}|$ with $q_{1}\neq q_{2}$ . Similarly, $B_{G}^{*}\Rightarrow r_{1}$ and $B_{G}^{*}\Rightarrow r_{2}$ imply
that for every $q’\in L_{G}(A),$ $upq’qr_{1}ry,$ $upq’qr_{2}ry\in L$ , i.e., both of them are
palindromes. This is impossible if $|r_{1}|=|r_{2}|$ and $r_{1}\neq r_{2}.$

This means that all of the languages $L_{G}(A),$ $L_{G}(B)$ are slender context-
free languages. Using Theorem 5, $Xarrow$ pAqBr can be eliminated by con-
sidering some new nonterminals $A_{1},$

$\ldots,$
$A_{m},$ $B_{1},$

$\ldots,$
$B_{n}$ and for every $i=$

$1,$
$\ldots,$ $m,$ $j$ $=$ $1,$

$\ldots,$
$n$ , new derivation rules $X$ $arrow$ $pu_{i}A_{i}y_{i}qu_{j}B_{j}y_{j}r,$

$A_{i}arrow v_{i}A_{i}x_{i},$ $A_{i}arrow w_{i},$ $B_{j}arrow v_{j}’B_{j}x_{j}’,$ $Barrow w’\in P$, where $u_{i},$ $v_{i},$ $w_{i},$ $x_{i},$ $y_{i},$ $u_{i}’,$

$v_{i}’,$ $w_{i}’,$ $x_{i}’,$ $y_{i}’\in\Sigma^{*}$ Therefore, we may suppose that for every $Xarrow$ pAqBr $\in$

$P,$ $A,$ $B\in V,p,$ $q,$ $r\in\Sigma^{*},$ $Aarrow vAx,$ $Aarrow w,$ $Barrow v’Ax’,$ $Barrow w’\in$

$P,$ $v,$ $w,$ $x,$ $v’,w’,$ $x’\in\Sigma^{*}$ and $A,$ $B$ do not appear on the left side of any other
derivation rules. Thus

$L_{G}($pAqBr) $=\{17u^{i}wx^{i}qv^{\prime j}w’x^{\prime j}r|i, j\geq 0\}.$

To our statement it is enough to prove that at least one of the following
equalities is true: $wx=xw,$ $v’w’=w’v’$ . Indeed, if $wx=xw$ then $Xarrow$

pAqBr $\in P$ can be eliminated by linear derivation rules as follows:

omit the derivation rules $X$ $arrow$ pAqBr,
$Aarrow vAx,$ $Aarrow w$ and let $Xarrow pC,$ $Carrow vxC,$ $Carrow wqB$ be new ones
with the new nonterminal $C$ ;

similarly, if $v’w’=w’v’$ then $Xarrow$ pAqBr $\in P$ can be eliminated by the
following linear derivation rules:

omit the derivation rules $X$ $arrow$ pAqBr,
$Barrow v’Bx’,$ $Barrow w’$ and let $Xarrow pCr,$ $Carrow Cv’x’,$ $Carrow Aqw’$ be new
ones with the new nonterminal $C.$

Therefore, if one of $v,$ $x,$ $v’,$ $x’$ is empty then we are ready. Thus assume
that none of $v,$ $x,$ $v’,$ $x’$ is empty.

Let $s \frac{\wedge}{G}*u’Xy’$ for some $u’,$ $y’\in\Sigma^{*}$ with $|u’|\geq|y’|$ . Then for every
$z\in L_{G}($pAqBr)

$,$

$u’zy’\in L$ . Hence $u’zy’=(u’zy’)^{R}$ . Therefore, $u’=y^{\prime R}u$ for
some $u\in\Sigma^{*}$ such that for every $z\in L_{G}($pAqBr)

$,$

$uz=(uz)^{R}.$

Recall that $L_{G}($pAqBr) $=\{pv^{i}wx^{i}qv^{\prime j}w’x^{\prime j}r|i,j\geq 0\}$ with $|x’|>0.$

Let $z$ denote the primitive root of $v$ . Moreover, let $k$ be a nonnegative
integer such that $|up|\leq|x^{\prime k}r|$ . First choose $i$ and $j$ such that $|x^{Jk+1}|+3|z|\leq$

$|x^{\prime j-1}|\leq|upv^{i}|<|x^{\prime j}r|$ . Hence $|x’|+3|z|\leq|x^{\prime j-k-1}|$ and $(upv^{i})^{R}=x_{2}’x^{;R}r$ for
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some suffix $x_{2}’$ of $X’$ . Recall that $|up|\leq|x^{\prime k}r|$ . Therefore, applying Proposition
13, $x’$ and a power of $z^{R}$ conjugate.

Now we choose $i$ and $j$ such that $|v’w’x^{\prime j-\ell}r|+3|z|\leq|v\prime wx^{j-\ell}r|\leq$

$|upv^{i}|$ $\leq$ $|x^{\prime k}v^{i}|$ $<$ $|v^{\prime j}w’x^{\prime j}r|$ . Hence $|v’|+3|z|$ $\leq$ $|v^{\prime j-l}|$ and
$(upu^{i})^{R}=v=2’v^{\prime j-1}w’x^{\prime j-1}r$ , where $v_{2}’$ is a suffix of $v’$ . Applying Propo-
sition 13 again, we obtain that $v’$ and a power of $z^{R}$ also conjugate.

Consider a pair of nonnegative integers $s,$ $t\geq 0$ such that $|upv^{s}|=|x_{2}’x^{Jt}r|$

for some suffix $x_{2}’$ of $x’$ . Then, by our assumptions, for every $i\geq s,$ $j\geq t+1,$

$v^{i-s}wx^{i}qv^{\prime j}w’x^{\prime j-t-1}x_{1}’$ with $x’=x_{1}’x_{2}’$ is a palindrome. Consider a positive
integer $j$ such that $|v|<|v^{\prime j}|$ and let $i$ be given such that $i-s$ is the small-
est positive integer having $|w’x^{\prime j-t-1}x_{1}’|\leq|v^{i-s}|$ . Obviously, then $|v^{i-s}|\leq$

$|v^{\prime j}w’x^{Jj-t-1}x_{1}’|$ . Thus we may assume $(v^{i-s})^{R}=v_{2}’v^{\prime j-\ell-1}w’x^{\prime j-t-1}x_{1}’$ for some
$\ell\geq 0$ , for for some suffix $v_{2}’$ of $v’$ and some prefix $x_{1}’$ of $x’$ . Recall that $v’$ and
a power of $z^{R}$ , moreover, $x’$ and a power of $z^{R}$ conjugate. Hence $w’=z_{1}^{R}z^{a}z_{2}^{R}$

for some nonnegative $a$ , a suffix $z_{2}$ and a prefix $z_{1}$ of the primitive root $z$ of $v.$

Moreover, because $v’$ and a power of $z^{R}$ , and also $x’$ and a power of $z^{R}$ conju-
gate, $(v^{i-s})^{R}=v_{2}’v^{\prime j-\ell-1}w’x^{\prime j-t-1}x_{1}’$ and $w’=z_{1}^{R}(z^{R})^{a}z_{2}^{R}$ imply $v’=(z_{1}^{R}z_{4}^{R})^{b}$

and $x’=(z_{3}^{R}z_{2}^{R})^{c}$ for some $b,$ $c>0$ such that $z_{4}^{R}z_{1}^{R}=z_{2}^{R}z_{3}^{R}=z^{R}$ . Hence
$upv^{i}wx^{i}qv^{\prime j}w’x^{\prime j}r$ $=$ $upv^{i}wx^{i}p(r^{R}(z_{2}z_{3})^{bj}z_{2}z^{a}z_{1}(z_{4}z_{1})^{cj})^{R}$ $=$

$upv^{i}wx^{i}q(rz_{2}(z^{bj+a+cj}z_{1})^{R}$ $=$ $upv^{i}wx^{i}qz_{1}^{R}(\underline{z}^{R})^{bj+a+cj}z_{2}^{R}r$ $=$

$upv^{i}wx^{i}qz_{1}^{R}((z^{R})^{b})^{j}((z^{R})^{c})^{j}(z^{R})^{a}z_{2}^{R}r$ . Choose $\overline{q}=qz_{1},$ $v’=(z^{R})^{b},\overline{w}’=(z^{R})^{a},$

$\overline{x}’=(z^{R})^{c},\overline{r}=z_{2}^{R}r.$

Modify the grammar $G$ such that omit the derivation rules $Xarrow$ pAqBr,
$Barrow v’Bx’,$ $Barrow w’$ and let $Xarrow pA\overline{q}C\overline{r},$ $Carrow\overline{v}’C\overline{x}’,$ $Carrow\overline{w}’$ be new
derivation rules with the new nonterminal $C$ . Obviously, $L_{G}($pAqBr) $=$

$L_{G’}(pA\overline{q}C\overline{r}))$ and thus, $L(G)_{-}=-L(G’)--\cdot$ On the other hand, by our construc-
tions, for every $i,$ $j\geq 0,$ $v’w’=w’v’$ . Therefore, as we have already seen,
the derivation rules having the form $Xarrow pA\overline{q}B\overline{r},$ $Barrow\overline{v}’B\overline{x}’,$ $Barrow\overline{w}’$ can
be eliminated by the following new ones $Xarrow pCr,$ $Carrow Cv’x’,$ $Carrow Aqw’,$

where $C$ is a new nonterminal.
We assumed in the $pro$of that $S_{G}^{*}\Rightarrow u’Xy’$ such that $|u’|\geq|v’|$ . Changing

the roles of the right and left sides of the discussed strings, we can also
eliminate the derivation rules of the form $Xarrow$ pAqBR if $S_{G}^{*}\Rightarrow u’Xy’$ for
some $u’,$ $v’\in\Sigma^{*}$ with $|y’|\geq|u’|$ . Thus we receive that $L(G)$ can be generated
by a linear grammar. $\square$

Lemma 15 Given an alphabet $\Sigma$ , words $v,$ $z\in\Sigma^{*}$ , a non-empty word $w\in$
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$\Sigma^{+}$ , each context-free language $L\subseteq vw^{*}z$ is regular having the form
$v( \bigcup_{i=1}^{k}w^{m}t(w^{n_{i}})^{*})z$ for some $m_{1},$ $n_{1},$

$\ldots,$ $m_{k},$ $n_{k}\geq 0$ . (3)

Proof: Let $a,$ $b,$ $c$ distinct symbols and consider a homomorphism $\psi$ : $\{a, b, c\}arrow$

$\Sigma^{*}$ with $\psi(a)=v,$ $\psi(b)=w,$ $\psi(c)=z$ . Then $\psi^{-1}(L)\cap ab^{*}c=\{ab^{k}c$

$vw^{k}z\in L,$ $k\geq 0\}$ . On the other hand, using that $ab^{*}c$ is obviously a reg-
ular language, Theorem 2 and Theorem 3 imply that $\psi^{-1}(L)\cap ab^{*}c$ is also
context-free. Let $\psi’:\{a, b, c\}arrow b^{*}$ be a homomorphism with $\psi’(a)=$

$\psi’(c)=\lambda$ and $\psi’(b)=b$ . By Corollary 2, $\psi’(\psi^{-1}(L)\cap ab^{*}c)$ is also context-
free. On the other hand, $\psi’(\psi^{-1}(L)\cap ab^{*}c)=\{b^{k} vw^{k}z\in L, k\geq 0\},$

therefore, by Theorem 4, it is regular which can be written into the form
$\bigcup_{i=1}^{k}b^{m_{t}}(b^{n_{i}})^{*})z$ for some $m_{1},$ $n_{1},$ $\ldots,$ $m_{k},$ $n_{k}\geq 0$ . This fact and the equality
$\psi’(\psi^{-1}(L)\cap ab^{*}c)=\{w^{k}|vw^{k}z\in L, k\geq 0\}$ implies that $L$ is regular having
the form as in (3). $\square$

Lemma 16 Every palindromic context-free language can be generated by a
gmmmar $G=(V, \Sigma, S, P)$ having $P\subseteq\{Xarrow aYa|X, Y\in V, a\in\Sigma\}\cup$

$\{Xarrow a|X\in V, a\in\Sigma\}\cup\{Xarrow\Sigma\}.$

Proof.$\cdot$ Consider an arbitrary palindromic context-free language $L$ . By The-
orem 14, we have that $L$ is linear. Thus there exists a linear grammar
$G=(V, \Sigma, S, P)$ . Without restriction, we may assume that $G$ is reduced,
moreover, $P\subseteq\{Xarrow aYb|X\in V, Y\in V\cup\{\lambda\}, a, b\in\Sigma\cup\{\lambda\}, ab\neq\lambda\}.$

Indeed, if $Xarrow$ paYbq $\in P$ with $p,$ $q\in\Sigma^{*},pq\in\Sigma^{+},$ $a,$ $b\in\Sigma\cup\{\lambda\},$ $ab\neq$

$\lambda,$ $Y\in V\cup\{\lambda\}$ , then we can eliminate the derivation rule $Xarrow$ paYbq $\in P$

by introducing a new nonterminal symbol $Z$ and the new derivation rules
$Xarrow pZq,$ $Zarrow aYb$. Thus we get in finite-many steps that all derivation
rules have the form $Xarrow aYb,$ $X\in V,$ $a,$ $b\in\Sigma\cup\{\lambda\},$ $Y\in V\cup\{\lambda\}.$

Clearly, then

$L=\cup\{\{p\}L_{G}(X)\{q\}|S_{G}^{*}\Rightarrow pXq, X\in V,p, q\in\Sigma^{*}, |p|, |q|\leq|V|\}$. (4)

Next we prove that all of the derivation rules having one of the forms
$Xarrow aY,$ $X,$ $Y\in V,$ $a\in\Sigma$ or $Xarrow aY,$ $X,$ $Y\in V,$ $a\in\Sigma$ can be eliminated.

We say that a nonterminal $X\in V$ is non-balanced if there are $p,$ $q\in\Sigma^{*}$

with $|p|\neq|q|$ such that $X_{G}^{*}\Rightarrow pXq$ . Otherwise, we say that $X$ is balanced.
Now we eliminate the non-balanced nonterminals. Consider a non-balanced
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nonterminal $X$ , as above. Let us assume $X$ appears in a derivation at some
point as $S\Rightarrow uXv$ . Then because $X\Rightarrow pXq$ , we get $S\Rightarrow up^{i}Xq^{i}v$ , for all
$i\geq 1$ . Without loss of generality, we may assume $|u|\leq|v|$ , that is, since the
derived word will be a palindrome, $v=wu^{R}$ , for some $w\in\Sigma^{*}$ Now, to keep
arguments simple, let $X$ stand for any word in $L_{G}(X)$ . So, we know that
$p^{i}Xq^{i}w$ is a palindrome for any positive $i$ . For large enough $i$ , this gives us
that $w^{R}=\dot{\psi}p_{1}$ , for some $j\geq 0$ and $p_{1}\in\Sigma^{*}$ prefix of $p$ , hence $p^{i}Xq^{i}p_{1}^{R}(p^{R})^{j}$

is a palindrome. Again, if $i$ was big enough for $|p^{i}|>|q^{2}p_{1}^{R}(p^{R})^{j}|$ , then
by Theorem 10, we get that for a decomposition $q_{1}q_{2}$ of $q^{R}$ , its conju-
gate $q_{2}q_{1}$ has the same primitive root as $p$ , i.e., there exists some primi-
tive word $z\in\Sigma^{+},$ $m,$ $n\geq 1$ , such that $q_{2}q_{1}=z^{m}$ and $p=z^{n}$ . Rewrit-
ing $p^{i}Xq^{i}p_{1}^{R}(p^{R})^{j}$ with these powers of $z$ , we have $z^{ni}X(q_{2}^{R}q_{1}^{R})^{i}p_{1}(z^{R})^{nj}=$

$z^{ni}Xq_{2}^{R}(q_{1}^{R}q_{2}^{R})^{i-1}q_{1}^{R}p_{1}(z^{R})^{nj}=z^{ni}Xq_{2}^{R}(z^{R})^{m(i-1)}q_{1}^{R}p_{1}(z^{R})^{nj}$ is a palindrome,
therefore $z^{n(i-j)}Xq_{2}^{R}(z^{R})^{m(i-1)}q_{1}^{R}p_{1}$ is, as well. This means $p_{1}^{R}q_{1}z^{2}$ is a pre-
fix of $z^{n(i-j)}$ , and we can apply Theorem 10 again to get that, since $z$ is
primitive, $p_{1}^{R}q_{1}=z^{k}$ , for some integer $k$ . Since $p_{1}^{R}$ is a suffix of $p^{R}=(z^{R})^{n}$

and $q_{1}$ is a suffix of $z^{m}$ , there exist non-negative integers $i_{1},$ $i_{2}$ and $z_{r}’$ suf-
fix of $z^{R},$ $z’$ suffix of $z$ , such that $z_{r}’(z^{R})^{i_{1}}z’z^{i_{2}}=z^{k}$ . From here, there is
some prefix $z_{r}"$ of $z^{R}$ , with $z_{r}"z_{r}’=z^{R},$ $z_{r}’z_{r}"=z$ , so both $z_{r}"$ and $z_{r}’$ are
palindromes and so are $p_{1}=z_{r}’(z_{r}"z_{r}’)^{i_{1}}$ and $q_{1}=(z_{r}"z_{r}’)^{k-i_{1}-1}z_{r}"$ . But $q_{2}q_{1}=$

$z^{m}=(z_{r}’z_{r}")^{m}$ , so $q_{2}=z_{r}’(z_{r}"z_{r}’)^{m-k+i_{1}+1}$ From here, $z^{ni}X(q_{2}^{R}q_{1}^{R})^{i}p_{1}(z^{R})^{nj}=$

$(z_{r}’z_{r}")^{ni}X(z_{r}’z_{r}")^{mi}z_{r}’(z_{r}"z_{r}’)^{i_{1}}(z_{r}"z_{r}’)^{nj}=(z_{r}’z_{r}")^{ni}X(z_{r}’z_{r}")^{mi+i_{1}+nj}z_{r}’$ is a palindrome
for all $i\geq 1$ . As our original assumption was $|p|\neq|q|$ , i.e., $m\neq n$ , for a
large enough $i$ , the word $X$ will be entirely to the left or right from the center
of a palindrome of the form $(z_{r}’z_{r}")^{j_{1}}X(z_{r}’z_{r}")^{j_{2}}z_{r}’$ . Since $z_{r}’z_{r}"$ is primitive, the
center of the palindrome has to be exactly $z_{r}’$ or $z_{r}"$ , and this means that
$X\in(z_{r}’z_{r}")^{+}$ . Then, the language $L_{G}(X)$ is isomorphic to a unary context-
free language, hence it is regular with rules of the form $Xarrow(z_{r}’z_{r}")^{m+n}X.$

This way, in our original grammar we can replace all rules with $X$ on the
left with balanced rules $Xarrow(z_{r}’z_{r}")^{\frac{m+n}{2}X(z_{r}’z_{r}")^{\frac{m+n}{2}}}$ , or if $m+n$ is odd, with
rules $Xarrow(z_{r}’z_{r}")^{m+n}X(z_{r}’z_{r}")^{m+n}$ and $Xarrow(z_{r}’z_{r}")^{m+n}|\lambda$ , etc. $\square$

Lemma 17 Every palindmmic context-free language can be genemted by a
gmmmar $G=(V, \Sigma, S, P)$ having $P\subseteq\{Xarrow aYa|X, Y\in V, a\in\Sigma\}\cup$

$\{Xarrow a|X\in V, a\in\Sigma\}\cup\{Xarrow\Sigma\}.$

Proof: Consider an arbitrary palindromic context-free language $L$ . By The-
orem 14, we have that $L$ is linear. Thus there exists a linear grammar
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$G=(V, \Sigma, S, P)$ . Without restriction, we may assume that $G$ is reduced,
moreover, $P\subseteq\{Xarrow aYb|X\in V, Y\in V\cup\{\lambda\}, a, b\in\Sigma\cup\{\lambda\}, ab\neq\lambda\}.$

Indeed, if $Xarrow$ paYbq $\in P$ with $p,$ $q\in\Sigma^{*},pq\in\Sigma^{+},$ $a,$ $b\in\Sigma\cup\{\lambda\},$ $ab\neq$

$\lambda,$ $Y\in V\cup\{\lambda\}$ , then we can eliminate the derivation rule $Xarrow$ paYbq $\in P$

by introducing a new nonterminal symbol $Z$ and the new derivation rules
$Xarrow pZq,$ $Zarrow aYb$ . Thus we get in finite-many steps that all derivation
rules have the form $Xarrow aYb,$ $X\in V_{)}a,$ $b\in\Sigma\cup\{\lambda\},$ $Y\in V\cup\{\lambda\}.$

Clearly, then

$L=\cup\{\{p\}L_{G}(X)\{q\}|S_{G}^{*}\Rightarrow pXq, X\in V,p, q\in\Sigma^{*}, |p|, |q|\leq|V|\}$. (5)

Next we prove that all of the derivation rules having one of the forms
$Xarrow aY,$ $X,$ $Y\in V,$ $a\in\Sigma$ or $Xarrow aY,$ $X,$ $Y\in V,$ $a\in\Sigma$ can be eliminated.

We say that a nonterminal $X\in V$ is non-balanced if there are $p,$ $q\in\Sigma^{*}$

with $|p|\neq|q|$ such that $X_{G}^{*}\Rightarrow pXq$ . Otherwise, we say that $X$ is balanced.
Now we eliminate the non-balanced nonterminals. To complete our proof,
for every $X\in V$ with $Xarrow vXx$ and $|v|\neq|x|$ , first we eliminate the
productions having the form $Xarrow aYb,$ $Y\in V\cup\{\lambda\},$ $a,$ $b\in\Sigma\cup\{\lambda\}.$

Obviously, then, $S_{G}^{*}\Rightarrow pXq,$ $X_{G}^{+}\Rightarrow w,$ $X_{G}^{+}\Rightarrow vXx$ imply that for every $i\geq 0,$

$pv^{i}wx^{i}q$ is a palindrome.
Therefore, for every non-negative integer $m$ , there exists a pair $k,$ $\ell\geq m$

with $pv^{k}=(x_{2}x^{\ell}q)^{R}$ for some suffix $x_{2}$ of $x$ . Indeed, if $|pu^{m}|\geq|x^{m}q|$ then
$pv^{m}=(x_{2}x^{p}q)^{R}$ for some $\ell\geq m$ and suffix $x_{2}$ of $x$ . Similarly, if $|pv^{m}|<|x^{m}q|$

then $pv^{k}=(x_{2}x^{m}q)^{R}$ for some $k\geq m$ and suffix $x_{2}$ of $x.$

Suppose $|v|>|x|$ . Then there exists a non-negative integer $i$ with $|pu^{i}|\geq$

$|wx^{i}q|$ . Hence, $pv^{i-j-1}v_{1}=(v_{2}v^{j}wx^{i}q)^{R}$ for some factorization $v=v_{1}v_{2}$ and
$j\geq 0$ . But then $v_{2}v_{1}=(v_{2}v_{1})^{R}$ , and thus, $v_{2}(v_{1}v_{2})^{j}wx^{i}q=(v_{2}v_{1})^{i-j-1}v_{1}^{R}p^{R},$

i.e., $w$ is a prefix of $v_{1}(v_{2}v_{1})^{i-j-1}v_{1}^{R}p^{R}$ Hence, $w=z_{1}z^{k}z_{2}$ for some $k\geq 0,$

where $z_{1}$ is a proper prefix of $v_{1}v_{2}v_{1},$ $z\in(v_{2}v_{1})^{*}$ , and $z_{2}$ is a proper prefix of
$v_{2}v_{1}v_{1}^{R}p^{R}.$

Next we assume $|v|<|x|$ . Then for an appropriate non-negative inte-
ger $i,$ $pv^{i}wx^{j}x_{1}=(x_{2}x^{i-j-1}q)^{R}$ for some factorization $x=x_{1}x_{2}$ and non-
negative integer $j\geq 0$ . This implies $x_{2}x_{1}=(x_{2}x_{1})^{R}$ and that $pv^{i}wx^{j}x_{1}=$

$q^{R}x_{2}^{R}x_{2}^{R}(x_{2}x_{1})^{i-j-2}x_{1}^{R}$ , i.e., $w$ is a suffix of $q^{R}x_{2}^{R}(x_{2}x_{1})^{i-2j-2}x_{1}^{R}.$

Hence, $w=z_{1}z^{k}z_{2}$ for some $k\geq 0$ , where $z_{1}$ is a proper suffix of $q^{R}x_{2}^{R}x_{2}x_{1},$

$z\in(x_{2}x_{1})^{*}$ , and $z_{2}$ is a proper suffix of $x_{2}x_{1}x_{1}^{R}.$

In both cases we receive that $w\in z_{1}z^{*}z_{2}$ for an appropriate primitive
palindrome $z$ and words $z_{1)}z_{2}\in\Sigma^{*}$
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By Proposition 6 and Lemma 15,

$L_{G}(X)=z_{1}( \bigcup_{i=1}^{k}z^{m\iota}(z^{n_{i}})z_{2}$ for some $m_{1)}n_{1},$ $\ldots,$ $m_{k},$ $n_{k}\geq 0$ . (6)

Introducing some new nonterminals and derivation rules, such that each
$Z$ of them has the property that $Z_{G}^{*}\Rightarrow pZq,$ $P,$ $q\in\Sigma^{*}$ implies $|p|=|q|$ . we can
derive the language $L_{G}(X)$ as follows.

Omit all derivation rules of the form $Xarrow w,$ $w\in(V\cup\Sigma)^{*}$ , and let
$z_{1}=a_{1}\cdots a_{k},$ $z_{2}=b_{1}\cdots b_{\ell},$ $z=c_{1}\cdots c_{m}.$ $Co$nsider the new derivation rules
$Xarrow a_{1}X_{1},$ $X_{1}arrow a2X_{2},$

$\ldots,$
$X_{k-1}arrow a_{k}X_{k},$ $X_{k}arrow Y_{\ell}b_{\ell},$ $Y_{\ell}arrow Y_{\ell-1}b_{\ell-1},$

$\ldots,$

$Y_{2}arrow Y_{1}b_{1}$ , where $X_{1},$
$\ldots,$

$X_{k},$ $Y_{1)}\ldots,$ $Y_{\ell}$ new nonterminals. Obviously, then
$x\Rightarrow G*z_{1}Y_{1}z_{2}$ . Now, let $m,$ $n\geq 0$ with $m+m>0,$ $z=c_{1}\ldots c_{S}dc_{s}\ldots c_{1},$

$c_{1},$
$\ldots,$

$c_{s}\in\Sigma,$ $d\in\Sigma\cup\{\lambda\}$ . We distinguish the following cases.
Case 1 If $m=0$ then let $Y_{1}arrow\lambda.$

Case 2 If $m$ $=$ $2i$ for some $i$ $>$ $0$ , then let $Y_{1}$ $arrow$ $c_{1}A_{1}c_{1},$

$A_{1}$ $arrow c_{2}A_{2}c_{2},$
$\ldots,$

$A_{s-2}arrow c_{s-1}A_{s-1}c_{s-1},$ $A_{s-1}arrow c_{s}A_{s}c_{s},$ $A_{s}arrow dB_{1}d,$

$B_{1}arrow c_{s}A_{s+1}c_{s},$ $A_{s+1}arrow c_{s-1}A_{s+2}c_{s-1},$
$\ldots,$

$A_{2s-1}arrow c_{1}A_{2s}c_{1},$ $A_{2s}arrow dB_{2}d,$

. . . , $B_{2i-1}$ $arrow$ $c_{s}A_{2(i-1)s+1}c_{s},$ $A_{2(i-1)s+1}$ $arrow$ $c_{s-1}A_{2(i-1)s+2^{C}s-1},$ $\ldots,$

$A_{2is-1}arrow c_{1}A_{2is}c_{1},$ $A_{2is}arrow\lambda$ be new derivation rules with some new non-
terminals $A_{1},$

$\ldots,$
$A_{2is},$ $B_{1},$

$\ldots,$
$B_{2i-1}.$

Case 3 If $m=2i+1$ for some $i>0$ , then similarly as before, let
$Y_{1}arrow c_{1}A_{1}c_{1},$

$\ldots,$
$A_{s-1}arrow c_{s}A_{s}c_{s},$ $A_{s}arrow dB_{1}d,$

$\ldots,$
$B_{2i-1}arrow c_{8}A_{2(i-1)s+1}c_{s},$

$\ldots,$

$A_{2is-1}arrow c_{1}A_{2is}c_{1}$ . Moreover, let $A_{2is}arrow c_{1}A_{2is+1}c_{1},$ $A_{2is+1}arrow c_{2}A_{2is+2}c_{2},$
$\ldots,$

$A_{(2i+1)s-1}arrow c_{s}A_{2(i+1)s}c_{S},$ $A_{2(i+1)s}arrow d$ be new derivation rules containing
some new nonterminals $A_{1},$

$\ldots,$
$A_{2(i+1)s},$ $B_{1},$

$\ldots,$
$B_{2i-1}.$

Case 4 Finally, if $m=1$ , then analogously to the previous case, let
$Y_{1}arrow c_{1}A_{1}c_{1},$ $A_{1}arrow c_{2}A_{2}c_{2},$

$\ldots,$
$A_{s-1}arrow c_{s}A_{S}c_{s},$ $A_{s}arrow d$ be new derivation

rules, where $A_{1},$
$\ldots,$

$A_{s}$ be new nonterminals.
Obviously, in all of the above cases, $X_{G}^{*}\Rightarrow z_{1}z^{m}z_{2}$ . Therefore, if $n=0,$

then $z_{1}z^{m}(z^{n})^{*}z_{2}\subseteq L_{G}(X)$ .
If $n>0$ , then we introduce a new derivation rule $A_{ms}arrow c_{1}A_{1}’c_{1}$ , more-

over, analogously to the above Cases, distinguishing the cases $n=2j$ or $n=$

$2j+1$ for some $j>0$ , or $n=1$ , we introduce further new derivation rules with
some new nonterminals. In particular, for every above defined new deriva-
tion rule having one of the forms $A_{e}arrow c_{f}A_{e+1}c_{f},$ $A_{ns}arrow\lambda,$ $A_{ns}arrow d,$ $A_{gs}arrow$

$dB_{g}d,$ $B_{g}arrow c_{s}A_{2gs+1}c_{s}$ , we consider appropriate further new derivation rules
with of the form, in order, $A_{e}’$ $arrow$ $c_{f}A_{e+1}’cf,$
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$A_{ns}’arrow\lambda,$ $A_{ns}’arrow d,$ $A_{gs}’arrow dB_{g}’d,$ $B_{g}’arrow c_{S}A_{2gs+1}’c_{s},$ $A_{e}’arrow c_{f}A_{g}’c_{f}$ , where
$A_{e}’,$ $A_{e+1}’,$ $A_{ns}’,$ $A_{gs}’,$ $A_{2gs+1}’,$ $B_{g}’$ denote new nonterminals.

Finally, we als $0$ consider a new derivation rule $A_{ns}’arrow Y_{1}$ with the further
new nonterminal $A_{ns}’.$

Obviously, in all cases, $X_{G}^{*}\Rightarrow z_{1}z^{m}(z^{n})^{*}z_{2}$ . Therefore, $z_{1}z^{m}(z^{n})^{*}z_{2}\subseteq L_{G}(X)$ .
By $(6, L_{G}(X)$ consists of finite-many languages having the above form.
Therefore, we receive in finite-many steps that $L_{G}(X)$ can be generated by
new derivation rules containing only balanced nonterminal on their right-
hand sides.

Now we assume that $V$ contains only balanced nonterminals, i.e., for
every derivation, $X_{G}^{*}\Rightarrow uXx,$ $X\in V,$ $u,$ $x\in\Sigma^{*},$ $|u|=|v|$ . Then, for every
$X\in V,p,$ $q\in\Sigma^{*},$

$S_{G}^{*}\Rightarrow pXq$ implies $||p|-|q||<|V|$ . Indeed, assume the
contrary and, for the simplicity, put $X_{0}=S$ . Then there exists a derivation

$X_{0_{G}^{\Rightarrow}}x_{1}X_{1}y_{1_{GG}^{\Rightarrow\ldots\Rightarrow}}x_{n-1}X_{n-1}y_{n-1}\cdots y_{1_{G}^{\Rightarrow}}x_{1}\cdots x_{n}X_{n}y_{n}\cdots y_{1}$, (7)

where $X_{0},$
$\ldots,$

$X_{n}$ $\in$ $V$, and by our assumptions, $x_{1},$ $\ldots,$ $x_{n},$ $y_{1},$ $\ldots,$
$y_{n}$

$\in\Sigma\cup\{\lambda\}$ . On the other hand, if $X_{i}=X_{j}$ for some $i,j$ with $1\leq i<j\leq n$ then
$X_{i_{G}}^{*}\Rightarrow x_{i+1}\cdots x_{j}X_{i}y_{j}\cdots y_{i+1}$ also holds.

If $|x_{i+1}\cdots x_{j}|\neq|y_{j}\cdots y_{i+1}|$ then it contradicts to our conditions. Other-
wise, $||x_{1}\cdots x_{i-1}x_{j}\cdots x_{n}|-|y_{n}\cdots y_{j}y_{i-1}\cdots y_{1}||\geq|V|$ and

$X_{0_{G}^{\Rightarrow}}^{*}x_{1}\cdots x_{i-1}x_{j}\cdots x_{n}X_{n}y_{n}\cdotsy_{j}y_{i-1}\cdots y_{1}$

also holds. Following this treatment, in finite steps we can reach $x_{0}\Rightarrow G*$

$a_{1}\cdots a_{k}Xb_{k}\cdots b_{1},$ $a_{1},$ $\ldots,$
$a_{k},$ $b_{1},$

$\ldots,$
$b_{k}\in\Sigma\cup\{\lambda\}$ with $||a_{1}\cdots a_{k}|-|b_{k}\cdots b_{1}||\geq$

$|V|$ such that $k<|V|$ , which is impossible. Therefore, for every $X\in V,$ $p,$ $q\in$

$\Sigma^{*},$
$S_{G}^{*}\Rightarrow pXq$ implies $||p|-|q||<|V|.$

Now, for every derivation step, we order two pip-line stores, called left
store and right store. Either both of them is empty, or one of them is empty
and the another one contains a non-empty terminal string of length less than
$|V|.$

At the start, both stores are empty. This status remains until the applied
derivation rules are of the form $Xarrow aYa,$ $X,$ $Y\in V,$ $a\in\Sigma\cup\{\lambda\}$ . If the
applied derivation rule has the form $Xarrow aY,$ $X,$ $Y\in V,$ $a\in\Sigma$ , then there are
two cases: if the left store is empty, then we drop the terminal letter $a$ into
the top of the right store; otherwise we delete the terminal letter contained at
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the bottom of the left store. (In the second case, the bottom of the left store
should contain the same terminal letter $a$ . Otherwise the generated word will
not be palindrome.) Similarly, if the applied derivation rule has the form
$Xarrow Yb,$ $X,$ $Y\in V,$ $b\in\Sigma$ , then we have two cases: if the left store is empty,
then we drop the terminal letter $b$ into the top of the left store; otherwise
we delete the terminal letter contained at the bottom of the right store. $((In$

the second case again, the bottom of the left store should contain the same
terminal letter $b$ . Otherwise the generated word will not be palindrome.)

If the applied derivation rule has the form $Xarrow aYb,$ $X,$ $Y\in V,$ $a,$ $b\in\Sigma,$

then we have the following possibilities: If one of the stores is not empty,
then our procedure works as in the previous cases (like, in order, applying
a derivation rule $Xarrow aZ,$ $a\in\Sigma,$ $X,$ $Z\in V$, and then a derivation rule
$Zarrow Yb,$ $b\in\Sigma,$ $Z,$ $Y\in V)$ ; if both stores are empty then $a=b$ should hold.
(Otherwise the generated string will not be palindrome.) After applying the
considered derivation rule $Xarrow aYb,$ $X,$ $Y\in V,$ $a,$ $b\in\Sigma$ , the contents of the
stores remain the same.

We will construct our grammar such that a derivation rule of the form
$Xarrow a,$ $a\in\Sigma\cup\{\lambda\},$ $X\in V$ can be applied only if either one of the stores
contain the letter $a$ or both stores are empty.

In addition, if both stores are empty, and $X_{G}^{*}\Rightarrow w$ may hold for the non-
terminal $X$ contained on the left-hand side of the applied derivation rule,
then $w$ should be a palindrome. In addition, if $|w|<|V|)$ then either $w=b$
with $b\in\Sigma\cup\{\lambda\}$ , or $w=c_{1}\cdots c_{t}dc_{t}\cdots c_{1}$ for some $c_{1},$

$\ldots,$
$c_{t}\in\Sigma,$ $d\in$

$\Sigma\cup\{\lambda\},$ $1\leq t<|V|$ . For the second case, we assume the existence of
some derivation rules of the form $Xarrow c_{1}Z_{1}c_{1},$ $Z_{1}arrow c_{2}Z_{2}c_{2},$

$\ldots,$
$Z_{t-1}arrow$

$c_{t}Z_{t}c_{t},$ $Z_{t}arrow d,$ $Z_{1},$
$\ldots,$

$Z_{t}\in V$

Having this properties, formally we define the following derivation rules,
where the (new) nonterminals are supplied by pile-line stores discussed pre-
viously.

Let $\overline{V}=\{X\in V|X_{G}^{*}\Rightarrow w, w\in\Sigma^{+}, |w|<|V|\}$ and define, in order,
$V’=\{X_{\lambda,\lambda} X\in V\}\cup\{X_{a_{1}\cdots a_{k},\lambda} X\in V, a_{1}, \ldots, a_{k}\in\Sigma, k<|V|\}$

$\cup\{X_{\lambda,b_{1}\cdots b_{k}}|X\in V, b_{1}, \ldots, b_{k}\in\Sigma, k<|V|\}$

and
$P’=\{X_{a_{1}\cdots a_{k},\lambda}arrow aY_{a_{1}\cdots a_{k}a,\lambda}a,$ $X_{\lambda,a_{1}\cdots a_{k}}$ $arrow Y_{\lambda,a_{1}\cdots a_{k-1}},$ $X_{\lambda,\lambda}arrow aY_{a,\lambda}a$

$X$ $arrow$ $Ya$ $\in$ $P,$ $X,$ $Y$ $\in$ $V,$ $a_{1},$
$\ldots,$

$a_{k},$ $a$ $\in$ $\Sigma,$ $k$ $<$ $|V|\}\cup$

$\{X_{a_{1}\cdots a_{k},\lambda}$ $arrow$ $Y_{a_{1}\cdots a_{k-1},\lambda},X_{\lambda,a_{1}\cdots a_{k}}$ $arrow$ $aY_{\lambda,a_{1}\cdots a_{k}a}a,$ $X_{\lambda,\lambda}$ $arrow$ $aY_{\lambda,a}a$

$X$ $arrow$ $aY$ $\in$ $P,$ $X,$ $Y$ $\in$ $V,$ $a_{1},$ $\ldots,$ $a_{k},$ $a$ $\in$ $\Sigma,$ $k$ $<$ $|V|\}\cup$

13



$\{X_{a_{1}\cdots a_{k},\lambda}$ $arrow$ $bY_{a_{1}\cdots a_{k-1}b,\lambda}b,$ $X_{\lambda,a_{1}\cdots a_{k}}$ $arrow$ $aY_{\lambda,a_{1}\cdots a_{k-1}a}a,$ $X_{\lambda,\lambda}$ $arrow$ $aY_{\lambda,\lambda}b$

$X$ $arrow$ $aYb$ $\in$ $P,$ $X,$ $Y$ $\in$ $V,$ $a_{1},$ $\ldots,$ $a_{k},$ $a,$
$b$ $\in$ $\Sigma\cup\{\lambda\}\}\cup$

$\{X_{a_{1}\cdots a_{k},\lambda}$ $arrow$ $Y_{a_{1}\cdots a_{k},\lambda},$ $X_{\lambda,a_{1}\cdots a_{k}}$ $arrow$ $Y_{\lambda,a_{1}\cdots a_{k)}}X_{\lambda,\lambda}$ $arrow$ $Y_{\lambda,\lambda}$

$Xarrow Y\in P,$ $X,$ $Y\in V,$ $a_{1},$ $\ldots,$
$a_{k},$ $\in\Sigma\cup\{\lambda\}\}\cup\{X_{a,\lambda}arrow\lambda,$ $X_{\lambda,a}arrow\lambda,$

$X_{\lambda,\lambda}$ $arrow$ a $X$ $arrow$ $a$ $\in$ $P,$ $X$ $\in$ $V,$ $a$ $\in$ $\Sigma\}\cup$

$\{X_{\lambda,\lambda} arrow \lambda X arrow \lambda \in P\}\cup\{X_{\lambda,\lambda}$ $arrow$ $c_{1}Z_{1_{X\lambda,\lambda}}c_{1},$

$Z_{1_{X\lambda,\lambda}}arrow c_{2}Z_{2x\lambda,\lambda^{C_{2}}},$ $\ldots,$
$Z_{t-1_{X\lambda,\lambda}}arrow c_{t}Z_{t_{X\lambda,\lambda}}c_{t},$ $Z_{t_{X\lambda,\lambda}}arrow d$

$X\in\overline{V},$

$*$

$X_{G}\Rightarrow c_{1}\cdots c_{t}dc_{t}\cdots c_{1},$ $c_{1},$ $\ldots,$
$c_{t}\in\Sigma,$ $d\in\Sigma\cup\{\lambda\}\}.$

Thus we can receive that $L(G)=L(G’)$ , where $G’=(V’, \Sigma, S_{\lambda},{}_{\lambda}P’)$ . $\square$

Theorem 18 $[5JA$ context-free language $L\subseteq\Sigma^{*}$ is palindromic if and only
if it is a disjoint union of $|V|$ number of languages of the form $\{pap^{R}|p\in$

$L_{a}\}$ , where the $L_{a}(a\in\Sigma\cup\{\lambda\})$ are regular languages (uniquely determined
by $L)$ .

Proof: Given an alphabet $\Sigma$ , for every $a\in\Sigma\cup\{\lambda\}$ consider a regular language
$L_{a}$ . It is clear that $L= \bigcup_{a\in\Sigma\cup\{\lambda\}}$ $\{$pap : $p\in L_{a}\}$ is palindromic and linear
(and thus, it is also context free). Conversely, consider a palindromic context-
free language $L$ . By Lemma 17, it can be generated by a grammar $G=$

$(V, \Sigma, S, P)$ having $P\subseteq\{Xarrow aYa X, Y\in V, a\in\Sigma\}\cup\{Xarrow a$

$X\in V,$ $a\in\Sigma\}\cup\{Xarrow\lambda|X\in\Sigma\}$ . For every $a\in\Sigma\cup\{\lambda\}$ , define the
grammar $G_{a}=(V, \Sigma, S, P_{a})$ with $P_{a}=P\backslash \{Xarrow b|b\in\Sigma\cup\{\lambda\}, b\neq a\})$ .
Obviously, $L(G)= \bigcup_{a\in\Sigma}\cup\{\lambda\}L(G_{a})$ . Moreover. for every $a,$ $b\in\Sigma\cup\{\lambda\},$

$L(G_{a})\cap L(G_{b})\neq\emptyset$ if and only if $a=b$ . Therefore, $L$ is a disjoint union of the
languages $L(G_{a}),$ $a\in\Sigma\cup\{\lambda\}$ . By the construction of $G_{a},$ $a\in\Sigma\cup\{\lambda\}$ , it is
clear that $G_{a,\ell}=(V,$ $\Sigma,$ $S,$ $P_{a,\ell}$ with $P_{a,\ell}=\{Xarrow Yb|Xarrow bYb\in P_{a},$ $X,$ $Y\in$

$V,$ $a\in\Sigma\}\cup\{Xarrow b|Xarrow b\in P_{a}, X\in V, a\in\Sigma\cup\{\lambda\}\}$ is a regular
language. Similarly, $G_{a,r}=(V,$ $\Sigma,$ $S,$ $P_{a,r}$ with $P_{a,r}=\{Xarrow bY|Xarrow bYb\in$

$P_{a},$ $X,$ $Y\in V,$ $a\in\Sigma\}\cup\{Xarrow b|Xarrow b\in P_{a}, X\in V, a\in\Sigma\cup\{\lambda\}\}$ is regular.
Moreover, $L_{a}=L(G_{a,\ell})=L(G_{a,r})$ , and $L= \bigcup_{a\in\Sigma\cup\{\lambda\}}$ $\{$pap $:p\in L_{a}\}.$ $\square$

Of course, every palindromic context-sensitive (phrase-structured) lan-
guage has the form

$L= \bigcup_{a\in\Sigma\cup\{\lambda\}}$

$\{$pap $:p\in L(a)\},$

where the $L(a)(a\in\Sigma\cup\{\lambda\})$ are context-sensitive (phrase-structured) lan-
guages (uniquely determined by $L$). Next we prove that unlike the regular
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and context-free cases, the above languages $L(a),$ $a\in\Sigma\cup\{\lambda\}$ can be arbitrary
context-sensitive (phrase-structured) languages.

Theorem 19 Given an alphabet $\Sigma$ , for every $a\in\Sigma\cup\{\lambda\}$ consider an arbi-
tmry context-sensitive (phrase-structured) language $L(a)$ . Then

$L= \bigcup_{a\in\Sigma\cup\{\lambda\}}$

$\{$pap $:p\in L(a)\}$

$i_{\mathcal{S}}$ not only palindromic but context-sensitive (phrase-structured) as well.
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