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Abstract

The present paper 1s a survey article on algebraic structures of
automata In the first part, we consider representations of strongly
connected automata and in the second part, first we define the layers
of an automaton Then we deal with the poset of subautomata of an
automaton and we consider the class of single bottom automata, and
we provide the composition of a single loop automaton and a strongly
connected automaton together with 1ts automorphism group
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1 Introduction

Let X be a nonempty finite set, called an alphabet An element of X 1s
called a letter By X*, we denote the free monoid generated by X Let
XT = X*\ {€} where ¢ denotes the empty word of X*, 1e the identity of
X* An element of X* 1s called a word over X We denote the cardinality of
a finite set A by |A|

Let A = (S, X,8) where (1) S and X are nonempty finite sets called a
state set and an alphabet, respectively and (2) 6 1s a function called a state



120

transition function such that 6(s,a) € S for any s € S and any a € X. Then
A is called an automaton.

Notice that the above d can be extended to the following function in a
natural way, i.e. d(s,€) = s and 6(s,au) = §(d(s,a),u) for any s € S, any
u € X* and any a € X.

Regarding more detailed information on words and automata, see [3] and
[5].

Now we introduce some notions on posets (partially ordered sets). Let
(A, <) be a poset and let a € A. Then a is called a minimal element if b < a
and b € A imply b = a. Let b € A. Then b is called a mazimal element if
b<aand a € A imply a =b. Two posets (4, X1) and (A4;, <) are said to
be isomorphic, denoted by (A, X1) = (A2, X) if there exists a bijection p of
A; onto Aj satisfying the condition: For any a,b € A, a <; b if and only if
p(a) 22 p(b).

A poset (A, <) is called an upper semilattice if for any a,b € A there
exists the least upper bound of a and b. Notice that there exists a unique
maximal element, i.e. the maximum element in a finite upper semilattice.

2 Structures of strongly connected automata

In this section, we provide the structure of a strongly connected automaton
with respect to its automorphism group.

Definition 1 An automaton A = (S, X, §) is said to be strongly connected
if for any s,t € S, there exist words u,v € X* such that é(s,u) = ¢t and
§(t,v) = s.

Definition 2 Let A = (S, X,d) and B = (T, X, 6) be two automata. Then
a bijection p of S onto T is called an isomorphism of A onto B if p satisfies
the following condition: For any s € S and a € X, we have p(6(s,a)) =

0(p(s),a)).

If A = B, then an isomorphism is called an automorphism.

Notice that the set of all automorphisms forms a group. By G(A), we
denote the set of all automorphisms of A.

The following result can be seen in [2], [5] and [8].



Proposition 1 Let A = (S, X, d) be a strongly connected automaton and let
p, & be two automorphisms of A. Then p = € if p(s) = &(s) for some s € S.

By the above lemma, we have the following fundamental result (see [2],
[5] and [8]).

Theorem 1 Let A = (5,X,d) be a strongly connected automaton. Then
there exists a positive integer n such that |S| = n|G(A)|.

Before providing the structure of a strongly connected automaton, we
define a group-matrix type automaton.

Definition 3 Let G be a finite group. Then G° is the set G U {0} in which
we introduce two operations - and +:

(1) For any g,h € G, we define g - h as the group operation in G.

(2) For any g € G, we define g-0=0-g=0and 0-0=0.

(3) For any g € G, we define g+ 0=0+g=gand 0+0=0.

(4) For any g,h € G, g + h is not defined.

Definition 4 Let G be a finite group and let n be a positive integer. We
consider an n X n matrix (fy,), fpg € G%,p,¢=1,2,...,n. If an n X n matrix
(fpq) satisfies the following conditions, then (fpq) is called a group-matriz
of order n on G: For any p = 1,2,...,n, there exists a unique number
¢ =1,2,...,n such that fyy #0.

By M,(G), we denote the set of all group-matrices of order n on G. Then
M, (G) forms a semigroup under the following operation:

(fpa)(Gpg) = (Zf pkgkq>

Definition 5 Let G be a finite group and n be a positive integer. We con-
sider a vector (fy), f, € G%p =1,2,...,n. A vector (fp) is called a group-
vector of order n on G, if there exists a unique number p’ =1,2,...,n such
that fy # 0. We denote by V,(G) the set of all group-vectors of order n on
G. For any (f,) € Vo(G) and any (gpy) € M,(G), we define the following
multiplication:

fp gpq (kagkp>

Under this operation, we have (f,)(gpq) € Va(G).
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Definition 6 Let G be a finite group and n be a positive integer. An au-
tomaton A = (V,(G), X, dy) is called a group-matriz type automaton of order
n on G (or an (n,G)-automaton) if the following conditions are satisfied:

(1) Vo(G) is the set of states.

(2) X is a set of inputs.

(3) ¥ is a function of X into M,(G).

(4) by is defined by dy(f,a) = f¥(a) where f € V,(G) and a € X.

Theorem 2 ([4], [5]) Let A = (S, X, ) be a strongly connected automaton
with n = |S|/|G(A)|. Then there exists an (n, G)-automaton isomorphic to
A.

Definition 7 An (n,G)-automaton A is said to be regular if A is strongly
connected and G(.A) is isomorphic to G.

Necessary and sufficient conditions for a given group-matrix type au-
tomaton to be regular are provided in [4], [5] and [7]. The proof of following
theorem is given in [4] and [5].

Theorem 3 Let G be a finite group and let n be a positive integer. Then we
can determine all regular (n,G)-automata.

3 Layers of an automaton

Let A = (S, X, 6) be an automaton. We define the equivalence relation ~ on
S as follows: For s,t € S,s ~ t if and only if there exist u,v € X™* such that
d(s,u) =t and §(¢,v) = s hold.

Definition 8 Let A = (5, X, d) be an automaton. For p € S, we define the
subset T, of S by {s € S | p ~ s}. This subset T}, is called a layer of S.

For two layers T}, and T, we define a partial order < 4 as follows: T, < 4 T,
if there exists a word u € X* such that (q,u) = p.
By P(A), we denote the poset ({I, | p € S}, =4).

Theorem 4 ([6]) Let (A, <) be a finite poset. Then there exists an automa-
ton A = (S, X, §) such that P(A) = (4, ).



4 Classes of subautomata

In this section, first we characterize the structure of subautomata of an au-
tomaton A based on the layers of A.

Definition 9 Let A = (S, X,0) and B = (T, X, 0) be two automata. Then
B is called a subautomaton of A if the following conditions are satisfied: (i)
T CS. (ii) 6 = é|rxx, i.e. 6 is the restriction of § to T x X.

Theorem 5 ([6]) Let A = (S, X, §) be an automaton and let {T}, | p € S} be
the set of all layers of A. Then B = (T, X, 0) is a subautomaton of A if and
only if the following conditions are satisfied: (i) There exist Ty, Tp,, -, Ip,
such that T'= {g € S| Fi € {1,2,...,7}, T, 24 Tp,}. (ii) 0(s,a) = 4(s,a)
for s€ T and a € X.

Now we consider classes of subautomata of an automaton. By S(A), we
denote the set of all subautomata of A. Let B,C € S(A). By B C C, we
mean that B is a subautomaton of C. Then L is a partial order on S(A).
Hence (S(.A),C) is a poset.

Proposition 2 ([6]) (S(A),C) is a finite upper semilattice.

It might be conjectured that for any finite upper semilattice £ there exists
an automaton whose upper semilattice of subautomata is isomorphic to L.
Now we deal with this problem.

Definition 10 A finite upper semilattice £ = (4, X) is called a tree if it
satisfies the following condition: For any incomparabe elements b,c € A,
there is no element a € A such that a <band a <c.

Proposition 3 ([6]) Let £ = (A, <) be a tree. If the number of minimal
elements of L is greater than 2, then there is no automaton A such that
(S(A),C) = L.

We will give a full characterization of (S(.A), C) for an automaton .A. To
this end, we define @-compositions of posets and automata.
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Definition 11 Let P; = (4;, 1) and Py = (A2, X2) be two finite posets
with A; N Ay = 0. Moreover, let B be the set of all maximal elements of
P; and let C be the set of all minimal elements of P,. Assume that for any
b € B there exists a nonempty subset Cp of C with Upep Cp = C. Then we
can define the poset P; @ P, = (A4; U Ay, X) as follows: (1) For any ¢ = 1,2
and a,b € Aj,a Zbifa <X;b. (2) Forany be Band ce Cp,b < c.

Notic that P; @ P, is a finite upper semilattice if P; and P, are finite
upper semilattices.

Definition 12 Let A; = (51, X, 61) and Ay = (Sy, X, d2) be two automata
with 51 NSy = 0, let B be the set of all minimal layers of A; and let C be
the set of all maximal layers of A;. Assume that for any B € B there exists
a maximal layer Cp in C with {Cs | B € B} = C. Then a @&-composition
of A; and A,, A; & Az = (S1 U S,, X,d) can be defined as follows: (1)
8(s,z) = 61(s,z) if z € X,s € S; and s is not in a minimal layer of A;. (2)
0(t,x) = 0a(t,z) for any t € S; and z € X. (3) If s € B with B € B and
z € X, then any state in Cp can be assigned as d(s, x).

Then we have the following lemma.
Lemma 1 ([6]) Let A = B&C. Then (S(4),C)  (S(C), C) & (S(8), O).
Now we characterize the structure of (S(A),C) for an automaton .A.

Definition 13 Let n be a positive integer. Then a finite upper semilattice
L(n) is an upper semilattice such that £(n) = (P({1,2,...,n}),C) where
P({1,2,...,n}) is the set of all subsets of {1,2,...,n} and C is the inclusion
relation on P({1,2,...,n}).

Then we have the following:

Proposition 4 ([6]) Let A = (5, X, ) be an automaton. Then there exist
positive integers ni, ng, .. .,ng such that (S(A),C) = L(n)) ® L(ny) ® -+ &
L ().

Definition 14 An upper semilattice £ is said to be of Ps-typeif £ = L(n,)®
L(ng) @ --- & L(ng) for some positive integers ny, ny, .. ., ng.
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Proposition 5 ([6]) Let £ be a Ps-type upper semillatice, i.e. £ = L({n;)®
L(ng)®---® L(n,). Then there exists an automaton .4 such that (S(A), C)
= L(n)®L(N2) DB L(ny).

By the above propositions, we have:

Theorem 6 ([6]) Let £ be a finite upper semilattice. Then there exists an
automaton A such that (S(A),C) = £ if and only if £ is a Ps-type upper
semilattice.

5 Cyclic automata and single bottom
automata

In this section, we deal with two kinds of special automata.

Definition 15 An automaton A = (S, X, §) is said to be cyclic if the follow-
ing conditions are satisfied: (1) There exists sy € S which is called a generator
of A. (2) For any s € S, there exists u € X* such that 6(sg,u) = s.

Proposition 6 ([6]) Let A = (S, X, ) be a cyclic automaton. Then 4 has
a unique maximal layer, which is maximum in P(A).

In [6], it is proven that any automaton has at least one minimal layer.
Now we define single bottom automata.

Definition 16 An automaton which has a unique minimal layer is called a
single bottom automaton.

An automaton A = (S, X, 6) is said to be directable if for any s,t € S,
there exists a word w € X* such that 0(s,u) = 6(¢,u).

Remark 1 Let A = (5, X, d) be a directable automaton. Then there exists
a word w € X* such that for any s,t € S,d(s,w) = §(¢t, w).

Remark 2 Directable automata were first introduced by J. Cerny ([1]) and
studied by many people with different names, e.g. synchronizable automata,
cofinal automata, reset automata etc.

Proposition 7 ([6]) A directable automaton is a single bottom automaton.
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6 Decomposition of automata

In this section, we decompose a single bottom automaton into a single loop
automaton and a strongly connected automaton.

Definition 17 A single bottom automaton A = (S, X, §) is called a single
loop automaton if the minimal layer consists of a single state.

Let A = (S, X,d) be a single bottom automaton. Based on A, a single
loop automaton B = ((S'\ T,) U {¢}), X, ) can be defined as follows: (i) T},
is the unique minimal layer of A and ¢ is a new state. (ii) For s € S\ T,
and a € X,0(s,a) = §(s,a) if 6(s,a) € S\ T, (ili) For s € S\ T, and
a € X,0(s,a) =t if §(s,a) € Tp. (iv) For a € X,0(t,a) =1t.

Remark 3 B is a homomorphic image of A.

Definition 18 Let C = (T}, X, |1, xx) where T}, is the unique minimal layer
of A, and B is defined as before. Then {B,C} is called a decomposition of A.

Regarding the decomposition of a directable automaton, we have:

Proposition 8 ([6]) Let .A be a single bottom automaton and let {B,C} be
its decomposition. Then A is directable if and only if C is directable.

7 Composition of automata

In this section, we consider compositions of automata.

Let B = (BU{t}, X, 0) be a single loop automaton where {¢} is a minimal
layer and let C = (C, X, ) be a strongly connected automaton with BNC =

0.

Definition 19 An automaton A = (B U C, X, ) is defined as follows: (i)
For b € B and a € X,6(b,a) = 6(b,a) if 8(b,a) € B. (ii) For b € B and
a € X,6(b,a) € C if (b,a) ¢ B. (iii) For c € C and a € X,0(c,a) = v(c, a).
Then the above automaton A is called a composition of B and C.

Note that in (ii) any state in C can be assigned to §(b, a). Therefore, we
can construct many different compositions from the same automata.
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Let {B,C} be the decomposition of an automaton A in Definition 18.
Then A can be regarded as a composition of B and C. Now consider the
automorphism group of A.

Proposition 9 ([6]) Let p € G(A). Then p|z, € G(C) holds and there exists
a € G(B) which satisfies the following conditions: (i) a|s\z, = pls\z,- (ii)
at) =t.

From the above proposition, we may be interested in the subgroup {p|z,
| p € G(A)} of G(C).

Theorem 7 ([6]) Let G be a subgroup of G(C) and let {B,C} be the de-
composition of an automaton A. If there exists a homomorphism g of G(B)
onto G, then there exists a composition A’ of B and C such that G = {p|z, |

p € G(A}.
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