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The conjecture in [1] and the background to it are reviewed. Another
good overview, from a rather different emphasis, was given in [2] by Cheng
and Duncan.

1 The modular $J$-function and the Monster

Consider the $J$-functionl

$J( \tau)=\frac{1}{q}+196884q+21493760q^{2}+864299970q^{3}+20245856256q^{4}+\cdots(1.1)$

where $q=\exp(2\pi i\tau)$ . This is the unique holomorphic function satisfying

$J(\tau)=J(\tau+1) , J(\tau)=J(-1/\tau)$ (1.2)

with a single pole of residue 1 at $q=0$ (up to an addition of a constant).
The famous observation is that

$196884=1+196883$ (13)
$21493760=1+196883+21296876$ (14)

$864299970=1+1+196883+196883+21296876+842609326$ (15)
$20245856256=1+1+196883+196883+196883+$

21296876 $+$ 21296876 $+$ 842609326 $+$ 19360062527 (1.6)

where 1, 196883, 21296876, 842609326, 19360062527 are the dimensions of
irreducible representations of the Monster simple group $\mathbb{M}$ . One notices that

lFor more on the content of this section and the next, see [3].
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the same irreducible representations appear repeatedly. Let us introduce the
Dedekind eta function $\eta(q)$

$\eta(q)=q^{1/24}\prod_{n>0}(1-q^{n})$ (1.7)

and decompose the $J$-function as

$J( \tau)=\frac{q^{1/24}}{\eta(q)}(\frac{1}{q}-1)+\frac{q^{1/24}}{\eta(q)}(196883q+$

$21296876q^{2}+842609326q^{3}+19360062527q^{4}+\cdots)$ (1.8)

We still have positive coefficients, and moreover, there is less repetition of
the dimension of the same irreducible representation. The coefficient of $q^{5}$

in (1.8) is
$312092484374=18538750076+293553734298$ , (1.9)

for example.

2 Vertex algebras and the Monster

Let us recall how this observation is understood using the vertex algebra, in a
very rough manner. For each even self-dua124-dimensional lattice $\Lambda$ , one can
associate a vertex operator algebra $VA(\mathbb{R}^{24}/\Lambda)$ , which contains a Virasoro
subalgebra of $c=24$ . Let us denote by $\mathcal{H}$ the underlying graded vector to a
vertex algebra. Then $\mathcal{H}$ is a representation of the Virasoro algebra and the
isometry group of $\Lambda$ , and

$q^{-1}tr_{\mathcal{H}}q^{L_{0}}=J(\tau)+24+\#$ ($ro$ots of $\Lambda$). (2. 1)

A representation of the Virasoro algebra of highest weight $w$ and central
charge $c=24$ has the character $ch_{w}$ given by

$ch_{0}(q)=\frac{q^{1/24}}{\eta(q)}(q^{-1}-1) , ch_{w}(q)=\frac{q^{1/24}}{\eta(q)}q^{w}$ (2.2)

This is why we chose to expand $J(\tau)$ as in (1.8).
Let us choose $\Lambda$ to be the Leech lattice, for which there is no root. Its

isometry group is denoted by $Co_{0}$ , which was found by Conway. One can
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consider the orbifold $VA(\mathbb{R}^{24}/\Lambda/\{\pm 1\})$ by the action of $\pm 1$ on $\mathbb{R}^{24}$ . Then we
have

$q^{-1}tr_{\mathcal{H}}q^{L_{0}}=J(\tau)+\#($roots $of \Lambda)/2$ . (2.3)

The orbifold construction guarantees that $\mathcal{H}$ has an action of the Virasoro
algebra times $2^{1+24}.Co_{1}$ , where $Co_{1}$ is Conway’s simple group $Co_{0}/\{\pm 1\}.$

This $2^{1+24}.$ $Co_{1}$ is a stabilizer of an involution of $\mathbb{M}$ . Now, the great feature
of this vertex algebra is that it admits additional symmetry, so that in fact
there is an action of the Virasoro algebra times $\mathbb{M}.$

3 The Jacobi form of index 1 and the Mathieu
group

Let us recall some terminology: We define the subgroup $\Gamma_{0}(N)\subset SL(2, \mathbb{Z})$

by

$\Gamma_{0}(N)=\{(\begin{array}{ll}a bc d\end{array})|c\equiv 0 (mod N)\}$ . (3.1)

A modular form of weight $k$ of the group $\Gamma_{0}(N)$ is a function $f(\tau)$ which
satisfies

$f( \frac{a\tau+b}{c\tau+d})=(c\tau+d)^{k}f(\tau)$ for $(\begin{array}{ll}a bc d\end{array})\in\Gamma_{0}(N)$ . (3.2)

A weak Jacobi form of weight $k$ and index $m$ of $\Gamma_{0}(N)$ is a function $f(\tau, z)$

on the upper half-plane times $\mathbb{C}$ , satisfying

$f( \frac{a\tau+b}{c\tau+d} , \frac{z}{c\tau+d})=(c\tau+d)^{k}e^{2\pi im\frac{cz^{2}}{c\tau+d}}f(\tau, z)$ , (3.3)

$f(\tau, z+a\tau+b)=e^{-2\pi im(a^{2}\tau+2az)}f(\tau, z)$ , (3.4)

again for $c\equiv 0(mod N)$ . We use $q=e^{2\pi i\tau}$ and $y=e^{2\pi iz}$ below.
Consider a very classic function

$Z( \tau, z)=8\sum_{i=2,3,4}(\frac{\theta_{i}(\tau,z)}{\theta_{i}(\tau,0)})^{2}$ (3.5)
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where

$\theta_{1}(\tau, z)=-iq^{1/8}y^{1/2}\prod_{k=1}^{\infty}(1-q^{k})(1-y^{-1}q^{k-1})(1-yq^{k})$ , (3.6)

$\theta_{2}(\tau, z)=q^{1/8}y^{1/2}\prod_{k=1}^{\infty}(1-q^{k})(1+y^{-1}q^{k-1})(1+yq^{k})$, (3.7)

$\theta_{3}(\tau, z)=\prod_{k=1}^{\infty}(1-q^{k})(1+y^{-1}q^{k-1/2})(1+yq^{k-1/2})$ , (38)

$\theta_{4}(\tau, z)=\prod_{k=1}^{\infty}(1-q^{k})(1-y^{-1}q^{k-1/2})(1-yq^{k-1/2})$ (3.9)

are the standard theta functions. This function $Z(\tau, z)$ is a weak Jacobi form
of weight $0$ and index 1, which is essentially unique. It is known that the $z$

dependence can be extracted thus [4]:

$Z( \tau, z)=\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{3}}(24\mu(\tau, z)-2q^{-1/8}+q^{1/8}(90q+462q^{2}$

$+1540q^{3}+4554q^{4}+11592q^{5}+27830q^{6}+\cdots))$ , (3.10)

where $\mu(\tau, z)$ is the Appell function

$\mu(\tau, z)=\frac{-iy^{1/2}}{\theta_{1}(\tau,z)}\sum_{\ell\in \mathbb{Z}}\frac{(-1)^{\ell}y^{\ell}q^{\ell(\ell+1)/2}}{1-yq^{\ell}}$ . (3.11)

Note that $24=23+1$ , and

$90=45+45$ (3.12)
$462=231+231$ (3.13)

$1540=770+770$ (3.14)
$4554=2277+2277$ (3.15)

$11592=5796+5796$ (3.16)

$27830=3520+3520+10395+10395$ (3.17)

where 1, 23, 45, 231, 770, 2277, 3520, 5796, 10395 are the dimensions of
irreducible representations of the largest Mathieu group. For the data on
$M_{24}$ , we refer to the Atlas [5].

26



That this was not noticed unti12009 is somewhat surprising. Consider

$\phi_{-2,1}(\tau, z)=-\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{6}}$ (3.18)

which is the unique Jacobi form of weight $-2$ and index 1. Then consider
the specialization of the ratio of (3.5) and (3.18) at $z=-1$ :

$\frac{Z(\tau,-1)}{\phi_{-2,1}(\tau,-1)}=-2(\theta_{3}(\tau)^{4}+\theta_{4}(\tau)^{4})=-4-96q-96q^{2}-384q^{3}+\cdots,$ $(319)$

which is the unique modular form of $\Gamma_{0}(2)$ of weight 2. Also, consider

$\eta(\tau)^{3}\mu(\tau, -1)=\prod_{k\geq 1}\frac{(1-q^{k})^{2}}{(1+q^{k})(1+q^{k-1})}\sum_{\ell\in \mathbb{Z}}\frac{q^{\ell(\ell+1)/2}}{1+q^{\ell}} (320)$

$= \frac{1}{4}-4q^{2}+10q^{3}-12q^{4}+14q^{5}+\cdots$ (3.21)

Then, the equation (3.10) is equivalent to

$-(3.19)-24\cross(3.21)=-2+96q+192q^{2}+144q^{3}+384q^{4}+240q^{4}\cdots$ (3.22)

and this last equation thus inherits the decomposition from (3.10), resulting
in

$96=6\cross 1+2\cross 45$ , (3.23)
$192=-6\cross 45+2\cross 231$ , (3.24)
$144=-10\cross 1-6\cross 231+2\cross 770$ , (3.25)
$384=10\cross 45-6\cross 770+2\cross 2277$ (3.26)

But this is very hard to see directly.

4 The elliptic genus

The elliptic cohomology $E^{*}(X)$ is2 a generalized cohomology theory with

$E^{2k+1}(pt)=0$ , (4.1)
$E^{2k}(pt)=$ space of modular forms of $\Gamma_{0}(2)$ of weight $-k$ . (4.2)

2For the basics of elliptic genus, see [6] or [7].
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This theory has an integration-along-the-fiber map fi : $E^{*}(X)arrow E^{*-d}(Y)$

for a map $f$ : $Xarrow Y$ with the dimension of the fiber being $d$ . Let $\pi^{X}$ : $Xarrow$

$pt$ be the constant map, then

$\varphi_{E}(X)\equiv\pi_{!}^{X}(1)\in E^{-d}(pt)$ (4.3)

is the elliptic genus, which is a modular form of $\Gamma_{0}(2)$ of weight $\dim_{\mathbb{R}}X/2.$

So, for any manifold of dimension 4, its elliptic genus is a multiple of (3.19);
the constant term is the signature of $X$ divided by 4. Therefore, to explain
the appearance of the Mathieu group, we would like to consider a four-
dimensional manifold on which it acts.

Furthermore, if $X$ of $\dim \mathbb{R}X=d$ is an almost complex manifold with
$c_{1}(X)=0$ , one can define its two-parameter elliptic genus $\varphi_{Ell}(X)$ which is
a weak Jacobi form of weight $0$ and index $d/4$ , such that

$\varphi_{E}(X)(\tau)=\frac{\varphi_{Ell}(X)(\tau,-1)}{\phi_{-2,1}(\tau,-1)^{d/4}}$ . (4.4)

As the space of weak Jacobi forms of weight $0$ and index 1 is one-dimensional,
any almost complex manifold with $c_{1}(X)=0$ gives a multiple of (3.5). $A$

good candidate is the K3 surface, which is a compact four-dimensional hy-
perk\"ahler manifold. In fact, the expression (3.5) is the two-parameter elliptic
genus $\varphi_{Ell}(K3)$ , and the expression (3.19) is the elliptic genus $\varphi_{E}(K3)$ .

In general, any genus $\varphi(X)$ of an almost complex manifold $X$ can be
expressed in the form

$\varphi(X)=\int_{X}\prod_{i}\frac{x_{i}}{f(x_{i})}$ (4.5)

where $f(x)$ is a formal power series, and $x_{i}$ are the Chern roots of the tangent
bundle $T_{\mathbb{C}}X$ . For our two-parameter elliptic genus, it is given by

$f_{Ell}(x; \tau, z)=\frac{\theta_{1}(\tau,\frac{x}{2\pi i})}{\theta_{1}(\tau,\frac{x}{2\pi i}-z)}$. (4.6)

Expressing the theta function in terms of infinite products, one finds

$\varphi_{Ell}(X)(\tau, z)=\int_{X}\prod_{i}\frac{x_{i}y^{-1}}{1-e^{-x_{i}}}\prod_{n>0}\frac{(1-yq^{n-1}e^{-x_{i}})(1-yq^{n}e^{x_{i}})}{(1-q^{n}e^{-x_{i}})(1-q^{n}e^{x_{i}})}$ (4.7)

$=\chi(X, E_{q,-y})$ (4.8)
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where $\chi(X, E)=\sum(-1)^{i}\dim H^{i}(X, E)$ is the index of the Dolbeault com-
plex valued in $E$ , and $E_{q,y}$ is the bundle

$E_{q,y}=y^{-\dim_{\mathbb{R}}X/2} \otimes\bigotimes_{n\geq 1}\bigwedge_{yq}{}_{n-1}\overline{T}\otimes\bigwedge_{yq^{n}}-1T\otimes S_{q^{n}}\overline{T}\otimes S_{q^{n}}T$
(4.9)

where

$\bigwedge_{q}V=\bigoplus_{d=0}^{\infty}q^{d}\wedge^{d}V, S_{q}V=\bigoplus_{d=0}^{\infty}q^{d}S^{d}V$ (4.10)

are the direct sum of antisymmetric and symmetric powers of $V$ . In other
words, let $\mathcal{H}$ be the vector space

$\mathcal{H}X=\bigoplus_{n,k,i}(-1)^{k+i}Q^{n}Y^{k}\mathcal{H}_{n,k}^{i}X=\bigoplus_{i}(-1)^{i}H^{i}(X, E_{Q,-Y})$
(4.11)

where $Q$ and $Y$ are one-dimensional representations of $\mathbb{C}^{\cross 2}$ , with the gen-
erator of Lie algebra $L_{0}$ and $J_{0}$ , respectively. The minus $sign$ in front of a
direct sum component should be regarded as specifying the $\mathbb{Z}/2\mathbb{Z}$ grading.
We use the convention that the part with odd degree contributes negatively
to the trace.

The elliptic genus is its graded dimension:

$\varphi_{Ell}(X)(\tau, y)=$ tr $(q^{L_{0}}y^{J_{0}}|\mathcal{H}X)$ . (4.12)

Note that the piece of $\mathcal{H}$ with $Q^{0}$ is just the ordinary cohomology groups
$\oplus_{i}(-1)^{i}H^{i}(X)$ , and therefore the term of order $q^{0}$ is the Euler number.

This $\varphi_{Ell}(X)$ can be defined for any almost complex $X$ of $d=\dim_{\mathbb{R}}X,$

and the left hand side becomes a weak Jacobi form of weight $0$ and index $d/4$

when $X$ has a complex structure with $c_{1}(X)=0$ . In fact, under the same
assumption, $\mathcal{H}X$ has the structure of a vertex algebra $VA$ ($X$ ), which has
$\mathcal{N}=2$ super Virasoro subalgebra, naturally associated to $X.$ $A$ holomorphic
map $f$ : $Xarrow X$ leads to a map $f$ : $VA(X)arrow VA(X)$ commuting with
the $\mathcal{N}=2$ super Virasoro action. If $X$ furthermore has a holomorphic
symplectic structure, $VA$ ($X$ ) has $\mathcal{N}=4$ super Virasoro subalgebra. If a map
$f$ : $Xarrow X$ preserves the holomorphic symplectic form, the corresponding
map $f$ : $VA(X)arrow VA$(X) commutes with the $\mathcal{N}=4$ super Virasoro action.
We will come back to the construction of $VA$ ($X$ ) later. For now let us accept
that there is such a method.
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5 $\mathcal{N}=4$ super Virasoro algebra

The $\mathcal{N}=4$ super Virasoro algebra in the $R$-sector has bosonic generators
$L_{m},$ $T_{m}^{i}(m\in \mathbb{Z}, i=1,2,3)$ and fermionic generators $G_{r}^{a},\overline{G}_{a,r}(r\in \mathbb{Z},$

$r=1,2)$ , which have the following commutation relations. Fist, the ones
among bosonic operators:

$[L_{m}, L_{n}]=(m-n)L_{m+n}+ \frac{k}{2}m(m^{2}-1)\delta_{m+n,0}$ , (5.1)

$[T_{m}^{i}, T_{n}^{j}]= i\epsilon^{ijk}T_{m+n}^{k}+\frac{k}{2}m\delta_{m+n,0}\delta^{ij}$ , (5.2)

$[L_{m}, T_{n}^{i}]=-nT_{m+n}^{i}$ . (5.3)

The ones involving fermionic operators are:

$\{G_{r}^{a}, G_{S}^{b}\}=\{\overline{G}_{r,a},\overline{G}_{b,s}\}=0$ , (5.4)

$\{G_{r}^{a},\overline{G}_{b,s}\}=2\delta_{b}^{a}L_{r+s}-2(r-s)\sigma^{ia}{}_{b}T_{r+s}^{i}+\frac{k}{2}(4r^{2}-1)\delta_{r+s,0}\delta_{b}^{a}$, (5.5)

$[T_{m}^{i}, G_{r}^{a}]=- \frac{1}{2}\sum_{b}\sigma_{b}^{ia}G_{m+r}^{b}$ , (5.6)

$[T_{m}^{i}, \overline{G}_{a,r}]=\frac{1}{2}\sum_{b}\sigma_{a}^{ib}\overline{G}_{b,m+r}$ , (5.7)

$[L_{m}, G_{r}^{a}]=( \frac{m}{2}-r)G_{m+r}^{a}$ , (5.8)

$[L_{m}, \overline{G}_{a,r}]=(\frac{m}{2}-r)\overline{G}_{a,m+r}$ . (5.9)

Here $\{A, B\}=AB+BA$ is the anti-commutator, and $\epsilon^{ijk}$ is the completely-
antisymmetric tensor such that $\epsilon^{123}=1$ , and $\sigma^{1}=(_{10}^{01}),$ $\sigma^{2}=(\begin{array}{ll}0 i-i0 \end{array}),$ $\sigma^{3}=$

$(_{0-1}^{10})$ , the representation matrices of $SU(2)$ . We also introduce $J_{0}=2T_{0}^{3}.$

Note that the relation (5.2) is the affine $SU(2)$ algebra at level $k$ , and the
relation (5.1) is the Virasoro algebra with central charge $c=6k$ . When $X$

is a $d$-dimensional hyperk\"ahler manifold, $VA$ ( $X$ ) contains the $\mathcal{N}=4$ super
Virasoro algebra with $k=d/4.$

We are interested in the case $d=4$, and physical consideration says
that $VA$ ($X$ ) should form a unitary lowest-weight representation. With $k=$

$d/4=1$ , the affine $SU(2)$ algebra can have two types of irreducible unitary
representation, which severely constrains the super Virasoro representation
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theory too. Let an irreducible unitary lowest-weight representation $\mathcal{V}$ have
the decomposition

$\mathcal{V}=\bigoplus_{k=0}^{\infty}V_{k+h}$ (5.10)

where $k+h$ is the eigenvalue of $L_{0}$ . It is known that $h\geq 0$ . Furthermore,
when $h>0$ , we have

$V_{h}=X_{0}\oplus-X_{1/2}\oplus X_{0}$ (5.11)
as a representation of $SU(2)$ generated by $T_{0}^{i}$ , where $X_{0}$ is the one-dimensional
representation and $X_{1/2}$ is the defining two-dimensional representation of
$SU(2)$ . The character is

$ch_{h}(\tau, z)=tr(q^{L_{0}-c/24}y^{J_{0}}|\mathcal{V}_{h})=q^{h-1/8}\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{3}}$ . (5.12)

When $h=0,$ $V_{h}$ can either be $X_{0}$ or $-X_{1/2}$ . We denote corresponding irre-
ducible representations by $\mathcal{V}_{0,0}$ and $\mathcal{V}_{0,1/2}$ respectively. They have characters

$ch_{0,0}(\tau, z)=$ tr $(q^{L_{0}-c/24}y^{J_{0}}| \mathcal{V}_{0,0})=\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{3}}\mu(\tau, z)$ , (5.13)

$ch_{0,1/2}(\tau, z)=tr(q^{L_{0}-c/24}y^{J_{0}}|\mathcal{V}_{0,1/2})=\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{3}}(q^{-1/8}-2\mu(\tau, z))$ . (5.14)

Then $\mathcal{V}_{0}=\mathcal{V}_{0,0^{\oplus 2}}\oplus \mathcal{V}_{0,1/2}$ has the character $ch_{0}(\tau, z)$ . These characters were
first determined in the physics literature in [8, 9]. Mathematical analysis was
done in [10].

Then, the expansion of the weak Jacobi form (3.10) means
$VA(K3)=W_{0,0}\otimes \mathcal{V}_{0,0}-W_{0}\otimes \mathcal{V}_{0}+W_{1}\otimes \mathcal{V}_{1}+W_{2}\otimes \mathcal{V}_{2}+W_{3}\otimes \mathcal{V}_{3}+\cdots(5.15)$

as the representation of the $\mathcal{N}=4$ super Virasoro algebra, with

$W_{0,0}=\mathbb{C}^{24}, W_{0}=\mathbb{C}^{2}, W_{1}=\mathbb{C}^{90}, W_{2}=\mathbb{C}^{462}, \ldots$ . (5.16)

Then, the observation of the agreement of the coefficients 24, 90, 462, and the
dimensions of the irreducible representations of the largest Mathieu group
$M_{24}$ suggests that $W_{d}$ are representations of $M_{24}$ , so that there is a commut-
ing action of $M_{24}$ and the $\mathcal{N}=4$ super Virasoro algebra on $VA(K3)$ . This
will be automatic if there is a K3 surface with the action of $M_{24}$ preserving
its $Sp(1)$ structure, or in other words, a K3 whose group of holomorphic
symplectic automorphisms is $M_{24}$ . In the following by an automorphism of
K3 we mean a holomorphic symplectic one.
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6 K3 and the Mathieu group

The geometry of $K3$ comes close to admitting an action of $M_{24}$ . Let $G$ be
the group of automorphisms of a $K3$ . It is known [11, 12] that it is naturally
a subgroup of $M_{23}\subset M_{24}$ , the second largest Mathieu group, and that the
action of $G$ on 24 points naturally induced from it has at least five orbits.
Furthermore, any such subgroup of $M_{23}$ can act on a $K3$ as holomorphic
symplectic automorphisms.

For example, take a K3 $X$ with an order-2 automorphism $g$ . We can
consider its twisted elliptic genus

$\varphi_{Ell}(X, g)(\tau, z)=tr(gq^{L_{0}}y^{J_{0}}|VA(X))$ . (6.1)

From general argument, this is a weak Jacobi form of $\Gamma_{0}(2)$ . This was cal-
culated, and can be expanded as

$\varphi_{Ell}(X, g)(\tau, z)=\frac{1}{3}Z(\tau, z)+\frac{4}{3}\phi_{2}^{(2)}(\tau)\phi_{-2,1}(\tau, z)$ (6.2)

$=8ch_{0,0}-2ch_{0}-6ch_{1}+14ch_{2}-28ch_{3}+42ch_{4}+\cdots$

(6.3)

Here, $\phi_{2}^{(N)}$ is a modular form of $\Gamma_{0}(N)$ of weight 2 given by

$\phi_{2}^{(N)}=\frac{24}{N-1}q\frac{\partial}{\partial q}\log\frac{\eta(N\tau)}{\eta(\tau)}$ (64)

Take the corresponding element $g$ in $M_{24}$ , called $2A$ in the atlas. We can
indeed check

tr $(g|W_{0,0})=8$ , tr $(g|W_{1})=-6$ , tr $(g|W_{2})=14$ , (6.5)

tr $(g|W_{3})=-28$ , tr $(g|W_{4})=42,$ $\cdots$ (6.6)

where

$W_{0,0}=R_{1}+R_{23}, W_{0}=R_{1}+R_{1}$ , (6.7)
$W_{1}=R_{45}+R_{\overline{45}} W_{2}=R_{231}+R_{\overline{231}}$ , (6.8)
$W_{3}=R_{770}+R_{\overline{770}}, W_{4}=R_{2277}+R_{\overline{2277}}, \ldots$ (6.9)

where $R_{d}$ is a irreducible representation of dimension $d$ ; we distinguish a
complex conjugate pair by $R_{d}$ and $R_{\overline{d}}$ . Recall the leading piece $W_{0,0}$ of
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$VA(K3)$ can be naturally identified with $H^{*}(K3)$ . So, it behaves as if it is
the representation associated to the natural permutation presentation on 24
points.

There are K3 surfaces $X$ with automorphism $g$ of order 3, 4, 5, 6, 7, 8.
The corresponding conjugacy classes in $M_{24}$ are respectively called $3A,$ $4B,$

$5A,$ $6A,$ $7A,$ $8A$ in the atlas. The corresponding twisted elliptic genus can
be also calculated, and gives

$\varphi_{Ell}(X, g)(\tau, z)=$ tr $(gq^{L_{0}}y^{J_{0}}| VA(X))$

$= \frac{tr(g|H^{*}(K3))}{24}Z(\tau, z)+T_{g}(\tau)\phi_{-2,1}(\tau, z)$ (6.10)

where $T_{g}(\tau)$ is tabulated in Appendix $A$ , and indeed we find agreement

$\varphi_{Ell}(X, g)(\tau, z)=\frac{tr(g|W_{0,0})}{24}Z(\tau, z)ch_{0,0}-2ch_{0}+\sum_{k}tr(g|W_{k})ch_{k}$ . (6.11)

Encouraged by these observations, people tried to find $\varphi_{Ell}(X, g)(\tau, z)$ of
the form (6.10) for other $g$ of order $n_{g}$ in $M_{23}$ or in $M_{24}$ , which would be a
weak Jacobi form of weight $0$ and index 1 of $\Gamma_{0}(n_{g})$ , so that the expansion
(6.11) holds. They indeed succeeded and the results are again tabulated
in Appendix $A$ , with an important caveat: when $g$ is not in $M_{23}$ , the corre-
sponding $\varphi_{Ell}(X, g)$ was not strictly in $\Gamma_{0}(n_{g})$ but with a multiplier system in
(3.3), i.e. a factor with absolute value 1 depending on the element in $SL(2, \mathbb{Z})$

and $\mathbb{Z}^{2}$ . Furthermore, it was found that it is in $\Gamma_{0}(N_{g})$ , where $N_{g}/n_{g}$ is the
length of the shortest cycle in the cycle shape of $g$ , as acting on 24 points.

Now, it is a simple matter to re-construct the irreducible decomposition
of $W_{d}$ by computer. They are found to be always a genuine representation
of $M_{24^{3}}$. It is important that what is guaranteed from the construction is
only the action of certain subgroups of $M_{23}$ , and we need to understand how
there can be ‘additional symmetry elements’ which makes it to $M_{24}$ . This
sounds familiar: in the Monster vertex algebra, the action of $2^{1+24}.Co_{1}$ was
guaranteed by construction, but we needed an ‘additional symmetry element’
which makes it to $\mathbb{M}.$

3The author checked it up to $d=500.$

33



7Construction of the vertex algebra

The action on $M_{24}$ on $VA(K3)$ remains a conjecture. Before closing, let
us discuss the vertex algebra $VA(K3)$ associated to a K3. Physically, for
any compact Calabi-Yau manifold $X$ of complex dimension $d$ , we expect to
have a two-dimensional $\mathcal{N}=(2,2)$ superconformal theory CFT($X$ ). This
has an underlying Hilbert space $\mathcal{H}$ (CFT$(X)$ ), on which two copies of $\mathcal{N}=2$

super Virasoro algebra act, corresponding to the holomorphic and the anti-
holomorphic sides of the world sheet. This Hilbert space is unitary, and the
spectrum of the primary states is discrete. The central charge of both of the
Virasoro algebras is $3d$ . When $X$ is hyperk\"ahler, CFT($X$ ) is a $\mathcal{N}=(4,4)$

superconformal theory, and has the action of two copies of small $\mathcal{N}=4$ super
Virasoro algebras. CFT($X$ ) depends on the metric on $X$ . Thanks to Yau’s
theorem, this is equivalent to the dependence on the K\"ahler class and the
complex structure of $X.$

$VA$ ($X$ ) is obtained from CFT($X$ ) by keeping only the vacuum states on
the anti-holomorphic side. In other words, two copies of Virasoro generators
$L_{m}$ and $L_{m}$ act on $\mathcal{H}$ (CFT$(X)$ ), and we keep only the states with $\overline{L}_{0}=0.$

This $VA$ ($X$ ) is a vertex algebra, with $\mathcal{N}=2(\mathcal{N}=4)$ super Virasoro subal-
gebra when $X$ is Calabi-Yau (hyperkahler). The central charge is given by
$c=3d.$ $VA$ ($X$ ) still depends on the K\"ahler class and the complex structure.

Physicists have many constructions of $\mathcal{N}=(2,2)$ conformal field the-
ories with central charge 6, some based on geometry and some based on
representation theory. For an overview, see [13]. So far, all known examples
automatically have $\mathcal{N}=(4,4)$ conformal symmetry, and their elliptic genera
are either zero (when the conformal field theory comes from $T^{4}$ ) or are equal
to (3.5). Moreover, they can always be modified continuously so that they
become CFT($X$ ) for $X=T^{4}$ or $X=K3$ with large radius.

This motivates the following conjecture: under mild assumptions,

$\bullet$ Vertex algebras with $\mathcal{N}=2$ super Virasoro subalgebra with central
charge $c=6$ automatically have $\mathcal{N}=4$ super Virasoro subalgebra.

$\bullet$ The moduli space of such objects consists of two pieces, one associated
to $T^{4}$ and another associated to $K3.$

The large radius limit of $VA$ ($X$ ) for a Calabi-Yau manifold $X$ was con-
structed mathematically by Malikov, Schechtman and Vaintrob [14], and its
relevance to the elliptic genus is explained by Borisov and Libgober in [15].
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See also [16, 17]. Let us denote it by MSV($X$ ). This depends on the complex
structure of $X$ , but is independent of its K\"ahler structure. The construction
is fairly straightforward. Let us recall the prototypical vertex algebra with
$\mathcal{N}=2$ super Virasoro symmetry with central charge $3d$ , which are given
by free bosonic fields $\phi^{a}(z),\overline{\phi}_{a}(z)$ and free fermionic fields $\psi^{a}(z),\overline{\psi}_{a}(z)$ ,
$(a=1, \ldots, d)$ , with the operator product expansion

$\partial\phi^{a}(z)\partial\overline{\phi}_{b}(z)\sim-\frac{\delta_{b}^{a}}{(z-w)^{2}}, \psi^{a}(z)\overline{\psi}_{b}(z)\sim\frac{\delta_{b}^{a}}{z-w}$. (7.1)

Then

$L(z)= \sum_{a}[\partial\phi^{a}\partial\overline{\phi}_{a}(z)+\frac{1}{2}\overline{\psi}_{a}\partial\psi^{a}(z)+\frac{1}{2}\psi^{a}\partial\overline{\psi}_{a}(z)]$ , (7.2)

$G^{-}(z)= \sum_{a}\sqrt{2}\overline{\psi}_{a}\partial\phi^{a}(z)$ , (7.3)

$G^{+}(z)= \sum_{a}\sqrt{2}\psi^{a}\partial\overline{\phi}_{a}(z)$ , (7.4)

$J(z)= \sum_{a}\overline{\psi}_{a}\psi^{a}(z)$ (7.5)

gives the $\mathcal{N}=2$ Virasoro subalgebra of central charge $3d$ . When $d=2k$
is even, we can consider the holomorphic symplectic two-form $\omega_{a,b}=-\omega b,a$

such that $\omega_{i,i+k}=1$ and zero otherwise. Then

$T^{+}(z)= \sum_{a,b}\omega_{a,b}\psi^{a}\psi^{b}(z) , T^{-}(z)=\sum_{a,b}\omega_{a,b}\overline{\psi}_{a}\overline{\psi}_{b}(z)$
, (7.6)

together with $J(z)$ generate the affine $SU(2)$ subalgebra of level $k.$ $G^{a}$ and $\overline{G}^{a}$

can similarly be defined, and we then have the $\mathcal{N}=4$ Virasoro subalgebra.
Malikov, Schechtman and Vaintrob took $\phi^{a}(z)$ and $p_{a}(z)=\partial\overline{\phi}_{a}(z)$ as the

basic fields. Then we have

$\phi^{a}(z)p_{b}(w)\sim\underline{\delta_{b}^{a}}.$ (7.7)
$z-w$

$L(z),$ $G^{+}(z),$ $G^{-}(z)$ and $J(z)$ can be written in terms of $\phi^{a}(z)$ and $p_{a}(z)$ .
Now, consider a complex manifold with dimension $d$ , with two patches

$U$ and $\hat{U}$ , with coordinates $(x^{1}, \ldots , x^{d})$ and $(\hat{x}^{1}, \ldots,\hat{x}^{d})$ . The functions
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$\hat{x}^{a}(x^{1}, \ldots, x^{n})$ are holomorphic. Define

$\hat{\phi}^{a}(z)=\hat{x}^{a}$ , (7.8)

$\hat{\psi}^{a}(z)=\sum_{b}\psi^{b}(z)\frac{\partial\hat{x}^{a}}{\partial x^{b}}$ , (7.9)

$\hat{\frac{}{\psi}}a(z)=\sum_{b}\overline{\psi}_{b}(z)\frac{\partial x^{a}}{\partial\hat{x}^{b}}$ , (7.10)

$\hat{p}_{a}(z)=\sum_{b}\frac{\partial x^{a}}{\partial\hat{x}^{b}}p_{b}(z)+\sum_{b,c}\frac{\partial^{2}x^{b}}{\partial\hat{x}^{a}\partial\hat{x}^{c}}\frac{\partial\hat{x}^{c}}{\partial x^{d}}\overline{\psi}_{b}\psi^{d}$ (7.11)

where, in the right hand side, the partial derivatives of $x^{a}$ and $\hat{x}$ are regarded
as functions of $(x^{1}, \ldots, x^{n})$ and then we let $x^{a}=\phi^{a}(z)$ ; this is a consistent
procedure because the fields $\phi^{a}(z)$ do not have nontrivial operator product
expansions among themselves. They showed that the hatted fields $\hat{\phi}^{a}(z)$ ,
$\hat{p}_{a}(z),\hat{\psi}^{a}(z)$ and $\hat{\frac{}{\psi}}a(z)$ have the same operator product expansions as the
original fields $\phi^{a}(z),$ $p_{a}(z)\psi^{a}(z)$ and $\overline{\psi}_{a}(z)$ .

Now, let us define $\hat{L}(z),\hat{G}^{\pm}(z)$ and $\hat{J}(z)$ as in (7.2) from hatted fields.
They showed that

$\hat{L}_{top}(z)=L_{top}(z) , \hat{G}^{+}(z)=G^{+}(z)$ (7.12)

while

$\hat{J}(z)-J(z)\propto\log\det\frac{\partial\hat{x}^{a}}{\partial x^{b}},$
$\hat{G}^{-}(z)-G^{-}(z)\propto\sum_{c}\psi^{c}\frac{\partial}{\partial\hat{x}^{c}}\log\det\frac{\partial x^{a}}{\partial\hat{x}^{b}}.$

(7.13)
Here $L_{top}(z)=L(z)-\partial J(z)/2$ is another Virasoro element in the vertex
algebra, with central charge $0$ . Therefore, $\hat{J}(z)=J(z)$ and $\hat{G}^{-}(z)=G^{-}(z)$

if and only if $c_{1}(X)=0$ . Similarly, when one defines $\hat{T}^{\pm}(z)$ in terms of fields
with hatted fields, $\hat{T}^{\pm}(z)=T^{\pm}(z)$ if and only if the $co$ordinate transforma-
tion preserves the holomorphic symplectic form $\omega_{ab}.$

This means that,

1. for any complex manifold $X$ , there is a bundle of vertex operator alge-
bras $\mathcal{M}S\mathcal{V}(X)$ with central charge $0.$

2. If $c_{1}(X)=0$ , it is a bundle of vertex algebras with $\mathcal{N}=2$ super
Virasoro subalgebra, with central charge $3d.$
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3. If $X$ is holomorphic symplectic, it is a bundle of vertex algebras with
$\mathcal{N}=4$ super Virasoro subalgebra, again with central charge $3d.$

Then we let
MSV($X$ )

$= \bigoplus_{i}(-1)^{i}H^{i}(X, \mathcal{M}S\mathcal{V}(X))$ (7.14)

in a suitable sense; this is a vertex operator algebra for any $X$ , which has
$\mathcal{N}=2$ super Virasoro subalgebra if $c_{1}(X)=0$ and has $\mathcal{N}=4$ super Virasoro
subalgebra if $X$ is holomorphic symplectic. The underlying graded vector
bundle to $\mathcal{M}S\mathcal{V}(X)$ and the underlying graded vector space to MSV($X$ ) are
naturally identified with the bundle (4.9) and the graded vector space (4.11)
which was in the definition of the elliptic genus.

This natural appearance of the bundle (4.9) is the reason why we spent
some time here to review its construction; it is possible that there is a suit-
able K3 $X$ such that MSV($X$ ) thus constructed has the symmetry $M_{24}.$

However, MSV($X$ ) is physically speaking the large-radius limit of a more
general $VA$ ($X$ ) which depends on the K\"ahler class of $X$ . So, it might also
be possible that $M_{24}$ can only act on $VA$ ($X$ ) with suitably chosen complex
structure and the K\"ahler class. It might even be the case that the mod-
uli space of vertex algebras with $\mathcal{N}=4$ super Virasoro subalgebra with
$c=6$ contains a few exceptional objects, with the same elliptic genus (3.5),
and that $M_{24}$ only acts on those exceptional things. Vertex algebras with
$\mathcal{N}=4$ super Virasoro subalgebra with $c=6$ can also be approached purely
representation-theoretically, and that might give us the required object.

One completely baseless speculation is the following. Consider the vertex
algebra associated to an orbifold of a torus $VA(\mathbb{R}^{6}/\Lambda/\Gamma)$ where $\Lambda$ is a lattice
and $\Gamma$ is a subgroup of the automorphism group of $\Lambda$ . It has central charge
$c=6$ . It is known that by choosing $\Lambda$ and $\Gamma$ carefully, the vertex algebra can
have $\mathcal{N}=4$ super Virasoro subalgebra. Note also that the largest Mathieu
group has a subgroup $2^{1+6}.L_{3}(2)$ as the centralizer of $2A$ , and $2\cross L_{3}(2)$ is the
automorphism group of a six-dimensional lattice, as explained in the atlas
[5]. All this sounds very similar to the situation for the monster.
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A Table of $\varphi_{Ell}(K3, g)$

Here we tabulate the twisted elliptic genus

$\varphi_{Ell}(X, g)(\tau, z)=$ tr $(gq^{L_{0}}y^{J_{0}}| VA(X))$

$= \frac{tr(g|H^{*}(K3))}{24}Z(\tau, z)+T_{g}(\tau)\phi_{-2,1}(\tau, z)$ . ($A$ . 1)
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for all conjugacy classes in $M_{24}$ , by listing $T_{g}(\tau)$ for each $g$ . Those which act
on $K3$ are:

$T_{2A}=$ $\frac{4}{3}\phi_{2}^{(2)}(\tau)$ , $T_{3A}= \frac{3}{2}\phi_{2}^{(3)}(\tau)$ ,

$T_{4B}=- \frac{1}{3}\phi_{2}^{(2)}(\tau)+2\phi_{2}^{(4)}(\tau)$ , $T_{5A}= \frac{5}{3}\phi_{2}^{(5)}(\tau)$ ,

$T_{6A}=- \frac{1}{6}\phi_{2}^{(2)}(\tau)-\frac{1}{2}\phi_{2}^{(3)}(\tau)+\frac{5}{2}\phi_{2}^{(6)}(\tau)$, $T_{7A,7B}= \frac{7}{4}\phi_{2}^{(7)}(\tau)$ ,

$T_{8A}=- \frac{1}{2}\phi_{2}^{(4)}(\tau)+\frac{7}{3}\phi_{2}^{(8)}(\tau)$ .

Those which do not act on $K3$ but in $M_{23}$ are:

婿 $1A=$ $\frac{11}{6}\phi_{2}^{(11)}(\tau)-\frac{22}{5}[\eta(\tau)\eta(11\tau)]^{2}$

$T_{14A,14B}=- \frac{1}{36}\phi_{2}^{(2)}(\tau)-\frac{7}{12}\phi_{2}^{(7)}(\tau)+\frac{91}{36}\phi_{2}^{(14)}(\tau)-\frac{14}{3}\eta(\tau)\eta(2\tau)\eta(7\tau)\eta(14\tau)$ ,

$T_{15A,15B}=- \frac{1}{16}\phi_{2}^{(3)}(\tau)-\frac{5}{24}\phi_{2}^{(5)}(\tau)+\frac{35}{16}\phi_{2}^{(15)}(\tau)-\frac{15}{4}\eta(\tau)\eta(3\tau)\eta(5\tau)\eta(15\tau)$ ,

$T_{23A,23B}=$ $\frac{23}{12}\phi_{2}^{(23)}(\tau)-\frac{188}{11}\eta(\tau)^{2}\eta(23\tau)^{2}-\frac{23}{11}[\frac{\eta(\tau)^{3}\eta(23\tau)^{3}}{\eta(2\tau)\eta(46\tau)}$

$+4\eta(\tau)\eta(2\tau)\eta(23\tau)\eta(46\tau)+4\eta(2\tau)^{2}\eta(46\tau)^{2}].$

Those which are not in $M_{23}$ :

乃 $B=2 \frac{\eta(\tau)^{8}}{\eta(2\tau)^{4}},$ $T_{4A}=2 \frac{\eta(2\tau)^{8}}{\eta(4\tau)^{4}},$

乃 $c=2 \frac{\eta(\tau)^{4}\eta(2\tau)^{2}}{\eta(4\tau)^{2}},$ $T_{3B}=2 \frac{\eta(\tau)^{6}}{\eta(3\tau)^{2}},$

$T_{6B}=2 \frac{\eta(\tau)^{2}\eta(2\tau)^{2}\eta(3\tau)^{2}}{\eta(6\tau)^{2}}, T_{12B}=2\frac{\eta(\tau)^{4}\eta(4\tau)\eta(6\tau)}{\eta(2\tau)\eta(12\tau)},$

$T_{10A}=2 \frac{\eta(\tau)^{3}\eta(2\tau)\eta(5\tau)}{\eta(10\tau)}$ $T_{12A}=2 \frac{\eta(\tau)^{3}\eta(4\tau)^{2}\eta(6\tau)^{3}}{\eta(2\tau)\eta(3\tau)\eta(12\tau)^{2}},$

$T_{21A,21B}= \frac{7}{3}\frac{\eta(\tau)^{3}\eta(7\tau)^{3}}{\eta(3\tau)\eta(21\tau)}-\frac{1}{3}\frac{\eta(\tau)^{6}}{\eta(3\tau)^{2}}.$
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