A G-family of quandles and handlebody-knots

Masahide Iwakiri

Graduate School of Science and Engineering, Saga University

We introduce the notion of a G-family of quandles and use it to construct invariants for handlebody-knots. Our invariant can detect the chiralities of some handlebody-knots including unknown ones. This is a joint work with Atsushi Ishii, Yeonhee Jang and Kanako Oshiro ([8]).

1 Handlebody-links

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere S^3 . Two handlebody-links are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. A spatial graph is a finite graph embedded in S^3 . Two spatial graphs are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. When a handlebody-link H is a regular neighborhood of a spatial graph K, we say that K represents H, or H is represented by K. In this paper, a trivalent graph may contain circle components. Then any handlebody-link can be represented by some spatial trivalent graph. A diagram of a handlebody-link is a diagram of a spatial trivalent graph which represents the handlebody-link.

An IH-move is a local spatial move on spatial trivalent graphs as described in Figure 1, where the replacement is applied in a 3-ball embedded in S^3 . Then we have the following theorem.

Theorem 1.1 ([6]). For spatial trivalent graphs K_1 and K_2 , the following are equivalent.

- K_1 and K_2 represent an equivalent handlebody-link.
- K_1 and K_2 are related by a finite sequence of IH-moves.
- Diagrams of K_1 and K_2 are related by a finite sequence of the moves depicted in Figure 2.

Figure 2:

2 A G-family of quandles

A quantity [12, 16] is a non-empty set X with a binary operation $*: X \times X \to X$ satisfying the following axioms.

- For any $x \in X$, x * x = x.
- For any $x \in X$, the map $S_x : X \to X$ defined by $S_x(y) = y * x$ is a bijection.
- For any $x, y, z \in X$, (x * y) * z = (x * z) * (y * z).

When we specify the binary operation * of a quandle X, we denote the quandle by the pair (X,*). An Alexander quandle (M,*) is a Λ -module M with the binary operation defined by x*y=tx+(1-t)y, where $\Lambda:=\mathbb{Z}[t,t^{-1}]$. A conjugation quandle (G,*) is a group G with the binary operation defined by $x*y=y^{-1}xy$.

Let G be a group with identity element e. A G-family of quandles is a non-empty set X with a family of binary operations $*^g: X \times X \to X \ (g \in G)$ satisfying the following axioms.

- For any $x \in X$ and any $g \in G$, $x *^g x = x$.
- For any $x, y \in X$ and any $g, h \in G$,

$$x *^{gh} y = (x *^g y) *^h y$$
 and $x *^e y = x$.

• For any $x, y, z \in X$ and any $g, h \in G$,

$$(x *^g y) *^h z = (x *^h z) *^{h^{-1}gh} (y *^h z).$$

When we specify the family of binary operations $*^g: X \times X \to X \ (g \in G)$ of a G-family of quandles, we denote the G-family of quandles by the pair $(X, \{*^g\}_{g \in G})$.

Proposition 2.1. Let G be a group. Let $(X, \{*^g\}_{g \in G})$ be a G-family of quandles.

- (1) For each $g \in G$, the pair $(X, *^g)$ is a quandle.
- (2) We define a binary operation $\triangleright : (X \times G) \times (X \times G) \rightarrow X \times G$ by

$$(x,g) \triangleright (y,h) = (x *^h y, h^{-1}gh).$$

Then $(X \times G, \triangleright)$ is a quandle.

We call the quandle $(X \times G, *)$ in Proposition 2.1 the associated quandle of X.

Example 2.2. (1) Let (X, *) be a quandle. Let $S_x : X \to X$ be the bijection defined by $S_x(y) = y * x$. Let m be a positive integer such that $S_x^m = \operatorname{id}_X$ for any $x \in X$ if such an integer exists. We define the binary operation $*^i : X \times X \to X$ by $x *^i y = S_y^i(x)$. Then X is a \mathbb{Z} -family of quandles and a \mathbb{Z}_m -family of quandles, where $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$. (2) Let R be a ring, and G a group with identity element e. Let X be a right R[G]-module, where R[G] is the group ring of G over G. We define the binary operation $*^g : X \times X \to X$ by $x *^g y = xg + y(e - g)$. Then X is a G-family of quandles.

3 Colorings

Let D be a diagram of a handlebody-link H. We set an orientation for each edge in D. Then D is a diagram of an oriented spatial trivalent graph K. We may represent an orientation of an edge by a normal orientation, which is obtained by rotating a usual orientation counterclockwise by $\pi/2$ on the diagram. We denote by $\mathcal{A}(D)$ the set of arcs of D, where an arc is a piece of a curve each of whose endpoints is an undercrossing or a vertex. For an arc α incident to a vertex ω , we define $\epsilon(\alpha;\omega) \in \{1,-1\}$ by

$$\epsilon(\alpha; \omega) = \begin{cases} 1 & \text{if the orientation of } \alpha \text{ points to } \omega, \\ -1 & \text{otherwise.} \end{cases}$$

Let X be a G-family of quandles, and Q the associated quandle of X. Let p_X (resp. p_G) be the projection from Q to X (resp. G). An X-coloring of D is a map $C: \mathcal{A}(D) \to Q$ satisfying the following conditions at each crossing χ and each vertex ω of D (see Figure 3).

ullet Let χ_1,χ_2 and χ_3 be respectively the under-arcs and the over-arc at a crossing χ

Figure 3:

such that the normal orientation of χ_3 points from χ_1 to χ_2 . Then

$$C(\chi_2) = C(\chi_1) \triangleright C(\chi_3).$$

• Let $\omega_1, \omega_2, \omega_3$ be the arcs incident to a vertex ω arranged clockwise around ω . Then

$$(p_X \circ C)(\omega_1) = (p_X \circ C)(\omega_2) = (p_X \circ C)(\omega_3),$$

$$(p_G \circ C)(\omega_1)^{\epsilon(\omega_1;\omega)}(p_G \circ C)(\omega_2)^{\epsilon(\omega_2;\omega)}(p_G \circ C)(\omega_3)^{\epsilon(\omega_3;\omega)} = e.$$

We denote by $\operatorname{Col}_X(D)$ the set of X-colorings of D. For two diagrams D and E which locally differ, we denote by $\mathcal{A}(D,E)$ the set of arcs that D and E share.

Lemma 3.1. Let X be a G-family of quandles. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on A(D, E). For $C \in \operatorname{Col}_X(D)$, there is a unique X-coloring $C_{D,E} \in \operatorname{Col}_X(E)$ such that $C|_{A(D,E)} = C_{D,E}|_{A(D,E)}$.

Remark 3.2. Let X be a \mathbb{Z} -family of quandles or a \mathbb{Z}_m -family of quandles defined as in Example 2.2 (2). Then an X-coloring be regarded as an X-coloring defined in [7].

Let X be a G-family of quandles, and Q the associated quandle of X. An X-set is a non-empty set Y with a family of maps $*^g: Y \times X \to Y$ satisfying the following axioms, where we note that we use the same symbol $*^g$ as the binary operation of the G-family of quandles.

• For any $y \in Y$, $x \in X$, and any $g, h \in G$,

$$y *^{gh} x = (y *^g x) *^h x$$
 and $y *^e x = y$.

Figure 4:

• For any $y \in Y$, $x_1, x_2 \in X$, and any $g, h \in G$,

$$(y *^g x_1) *^h x_2 = (y *^h x_2) *^{h^{-1}gh} (x_1 *^h x_2).$$

Put $y \triangleright (x,g) := y *^g x$ for $y \in Y$, $(x,g) \in Q$. Then the second axiom implies that $(y \triangleright q_1) \triangleright q_2 = (y \triangleright q_2) \triangleright (q_1 \triangleright q_2)$ for $q_1, q_2 \in Q$. Any G-family of quandles $(X, \{*^g\}_{g \in G})$ itself is an X-set with its binary operations. Any singleton set $\{y\}$ is also an X-set with the maps $*^g$ defined by $y *^g x = y$ for $x \in X$ and $g \in G$, which is a trivial X-set.

Let D be a diagram of an oriented spatial trivalent graph. We denote by $\mathcal{R}(D)$ the set of complementary regions of D. Let X be a G-family of quandles, and Y an X-set. Let Q be the associated quandle of X. An X_Y -coloring of D is a map $C: \mathcal{A}(D) \cup \mathcal{R}(D) \to Q \cup Y$ satisfying the following conditions.

- $C(\mathcal{A}(D)) \subset Q$, $C(\mathcal{R}(D)) \subset Y$.
- The restriction $C|_{\mathcal{A}(D)}$ of C on $\mathcal{A}(D)$ is an X-coloring of D.
- For any arc $\alpha \in \mathcal{A}(D)$, we have

$$C(\alpha_1) \triangleright C(\alpha) = C(\alpha_2),$$

where α_1, α_2 are the regions facing the arc α so that the normal orientation of α points from α_1 to α_2 (see Figure 4).

We denote by $Col_X(D)_Y$ the set of X_Y -colorings of D.

For two diagrams D and E which locally differ, we denote by $\mathcal{R}(D, E)$ the set of regions that D and E share.

Lemma 3.3. Let X be a G-family of quandles, Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on A(D, E). For $C \in \operatorname{Col}_X(D)_Y$, there is a unique X_Y -coloring $C_{D,E} \in \operatorname{Col}_X(E)_Y$ such that $C|_{A(D,E)} = C_{D,E}|_{A(D,E)}$ and $C|_{R(D,E)} = C_{D,E}|_{R(D,E)}$.

4 A homology

Let X be a G-family of quandles, and Y an X-set. Let (Q, \triangleright) be the associated quandle of X. Let $B_n(X)_Y$ be the free abelian group generated by the elements of $Y \times Q^n$ if $n \ge 0$, and let $B_n(X)_Y = 0$ otherwise. We put

$$((y,q_1,\ldots,q_i)\triangleright q,q_{i+1},\ldots,q_n):=(y\triangleright q,q_1\triangleright q,\ldots,q_i\triangleright q,q_{i+1},\ldots,q_n)$$

for $y \in Y$ and $q, q_1 \dots, q_n \in Q$. We define a boundary homomorphism $\partial_n : B_n(X)_Y \to B_{n-1}(X)_Y$ by

$$\partial_n(y, q_1, \dots, q_n) = \sum_{i=1}^n (-1)^i (y, q_1, \dots, q_{i-1}, q_{i+1}, \dots, q_n)$$
$$- \sum_{i=1}^n (-1)^i ((y, q_1, \dots, q_{i-1}) \triangleright q_i, q_{i+1}, \dots, q_n)$$

for n > 0, and $\partial_n = 0$ otherwise. Then $B_*(X)_Y = (B_n(X)_Y, \partial_n)$ is a chain complex (see [1, 2, 4, 5]).

Let $D_n(X)_Y$ be the subgroup of $B_n(X)_Y$ generated by the elements of

$$\bigcup_{i=1}^{n-1} \left\{ (y, q_1, \dots, q_{i-1}, (x, g), (x, h), q_{i+2}, \dots, q_n) \middle| \begin{array}{l} y \in Y, x \in X, g, h \in G \\ q_1, \dots, q_n \in Q \end{array} \right\}$$

and

$$\bigcup_{i=1}^{n} \left\{ (y, q_1, \dots, q_{i-1}, (x, gh), q_{i+1}, \dots, q_n) \middle| \begin{array}{l} y \in Y, x \in X, \\ g, h \in G, \\ q_1, \dots, q_{i-1}, (x, g), q_{i+1}, \dots, q_n) \\ -((y, q_1, \dots, q_{i-1}) \triangleright (x, g), (x, h), q_{i+1}, \dots, q_n) \middle| \begin{array}{l} q \in Y, x \in X, \\ q, h \in G, \\ q_1, \dots, q_n \in Q \end{array} \right\}.$$

We remark that

$$(y, q_1, \ldots, q_{i-1}, (x, e), q_{i+1}, \ldots, q_n)$$

and

$$(y, q_1, \dots, q_{i-1}, (x, g), q_{i+1}, \dots, q_n)$$

+ $((y, q_1, \dots, q_{i-1}) \triangleright (x, g), (x, g^{-1}), q_{i+1}, \dots, q_n)$

belong to $D_n(X)_Y$.

Lemma 4.1. For $n \in \mathbb{Z}$, we have $\partial_n(D_n(X)_Y) \subset D_{n-1}(X)_Y$. Thus $D_*(X)_Y = (D_n(X)_Y, \partial_n)$ is a subcomplex of $B_*(X)_Y$.

We put $C_n(X)_Y = B_n(X)_Y/D_n(X)_Y$. Then $C_*(X)_Y = (C_n(X)_Y, \partial_n)$ is a chain complex. For an abelian group A, we define the cochain complex $C^*(X; A)_Y = \text{Hom}(C_*(X)_Y, A)$. We denote by $H_n(X)_Y$ the nth homology group of $C_*(X)_Y$.

Figure 5:

5 Cocycle invariants

Let X be a G-family of quandles, and Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. For an X_Y -coloring $C \in \operatorname{Col}_X(D)_Y$, we define the weight $w(\chi;C) \in C_2(X)_Y$ at a crossing χ of D as follows. Let χ_1, χ_2 and χ_3 be respectively the under-arcs and the over-arc at a crossing χ such that the normal orientation of χ_3 points from χ_1 to χ_2 . Let R_χ be the region facing χ_1 and χ_3 such that the normal orientations χ_1 and χ_3 point from R_χ to the opposite regions with respect to χ_1 and χ_3 , respectively. Then we define

$$w(\chi; C) = \epsilon(\chi)(C(R_{\chi}), C(\chi_1), C(\chi_3)),$$

where $\epsilon(\chi) \in \{1, -1\}$ is the sign of a crossing χ . We define a chain $W(D; C) \in C_2(X)_Y$ by

$$W(D;C) = \sum_{\chi} w(\chi;C),$$

where χ runs over all crossings of D.

Lemma 5.1. The chain W(D;C) is a 2-cycle of $C_*(X)_Y$. Further, for cohomologous 2-cocycles θ, θ' of $C^*(X;A)_Y$, we have $\theta(W(D;C)) = \theta'(W(D;C))$.

Lemma 5.2. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on A(D, E). For $C \in \operatorname{Col}_X(D)_Y$ and $C_{D,E} \in \operatorname{Col}_X(E)_Y$ such that $C|_{A(D,E)} = C_{D,E}|_{A(D,E)}$ and $C|_{R(D,E)} = C_{D,E}|_{R(D,E)}$, we have $[W(D;C)] = [W(E;C_{D,E})] \in H_2(X)_Y$.

We denote by G_H (resp. G_K) the fundamental group of the exterior of a handlebody-link H (resp. a spatial graph K). When H is represented by K, the groups G_H and G_K are identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition

of an X_Y -coloring C of D, the map $p_G \circ C|_{\mathcal{A}(D)}$ represents a homomorphism from G_K to G, which we denote by $\rho_C \in \text{Hom}(G_K, G)$. For $\rho \in \text{Hom}(G_K, G)$, we define

$$\operatorname{Col}_X(D; \rho)_Y = \{ C \in \operatorname{Col}_X(D)_Y \mid \rho_C = \rho \}.$$

For a 2-cocycle θ of $C^*(X;A)_Y$, we define

$$\mathcal{H}(D) := \{ [W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D)_Y \},$$

$$\Phi_{\theta}(D) := \{ \theta(W(D; C)) \in A \mid C \in \text{Col}_X(D)_Y \},$$

$$\mathcal{H}(D; \rho) := \{ [W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D; \rho)_Y \},$$

$$\Phi_{\theta}(D; \rho) := \{ \theta(W(D; C)) \in A \mid C \in \text{Col}_X(D; \rho)_Y \}$$

as multisets.

Lemma 5.3. Let D be a diagram of an oriented spatial trivalent graph K. For $\rho, \rho' \in \text{Hom}(G_K, G)$ such that ρ and ρ' are conjugate, we have $\mathcal{H}(D; \rho) = \mathcal{H}(D; \rho')$ and $\Phi_{\theta}(D; \rho) = \Phi_{\theta}(D; \rho')$.

We denote by $\operatorname{Conj}(G_K, G)$ the set of conjugacy classes of homomorphisms from G_K to G. By Lemma 5.3, $\mathcal{H}(D; \rho)$ and $\Phi_{\theta}(D; \rho)$ are well-defined for $\rho \in \operatorname{Conj}(G_K, G)$.

Lemma 5.4. Let D be a diagram of an oriented spatial trivalent graph K. Let E be a diagram obtained from D by reversing the orientation of an edge e. For $\rho \in \operatorname{Hom}(G_K,G)$, we have $\mathcal{H}(D)=\mathcal{H}(E)$, $\Phi_{\theta}(D)=\Phi_{\theta}(E)$, $\mathcal{H}(D;\rho)=\mathcal{H}(E;\rho)$ and $\Phi_{\theta}(D;\rho)=\Phi_{\theta}(E;\rho)$.

By Lemma 5.4, $\mathcal{H}(D)$, $\Phi_{\theta}(D)$, $\mathcal{H}(D; \rho)$ and $\Phi_{\theta}(D; \rho)$ are well-defined for a diagram D of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a diagram D of a handlebody-link H, we define

$$\mathcal{H}^{\text{hom}}(D) := \{ \mathcal{H}(D; \rho) \mid \rho \in \text{Hom}(G_H, G) \},$$

$$\Phi_{\theta}^{\text{hom}}(D) := \{ \Phi_{\theta}(D; \rho) \mid \rho \in \text{Hom}(G_H, G) \},$$

$$\mathcal{H}^{\text{conj}}(D) := \{ \mathcal{H}(D; \rho) \mid \rho \in \text{Conj}(G_H, G) \},$$

$$\Phi_{\theta}^{\text{conj}}(D) := \{ \Phi_{\theta}(D; \rho) \mid \rho \in \text{Conj}(G_H, G) \}$$

as "multisets of multisets". We remark that, for X_Y -colorings C and $C_{D,E}$ in Lemma 5.2, we have $\rho_C = \rho_{C_{D,E}}$. Then, by Lemmas 5.1–5.4, we have the following theorem.

Theorem 5.5. Let X be a G-family of quandles, Y an X-set. Let θ be a 2-cocycle of $C^*(X;A)_Y$. Let H be a handlebody-link represented by a diagram D. Then the following are invariants of a handlebody-link H.

$$\mathcal{H}(D), \qquad \Phi_{\theta}(D), \qquad \mathcal{H}^{\mathrm{hom}}(D), \qquad \Phi_{\theta}^{\mathrm{hom}}(D), \qquad \mathcal{H}^{\mathrm{conj}}(D), \qquad \Phi_{\theta}^{\mathrm{conj}}(D).$$

We denote the invariants of H given in Theorem 5.5 by

$$\mathcal{H}(H), \qquad \Phi_{\theta}(H), \qquad \mathcal{H}^{\text{hom}}(H), \qquad \Phi_{\theta}^{\text{hom}}(H), \qquad \mathcal{H}^{\text{conj}}(H), \qquad \Phi_{\theta}^{\text{conj}}(H),$$

respectively.

We denote by H^* the mirror image of a handlebody-link H. Then we have the following theorem.

Theorem 5.6. For a handlebody-link H, we have

$$\begin{split} \mathcal{H}(H^*) &= -\mathcal{H}(H), & \Phi_{\theta}(H^*) &= -\Phi_{\theta}(H), \\ \mathcal{H}^{\text{hom}}(H^*) &= -\mathcal{H}^{\text{hom}}(H), & \Phi_{\theta}^{\text{hom}}(H^*) &= -\Phi_{\theta}^{\text{hom}}(H), \\ \mathcal{H}^{\text{conj}}(H^*) &= -\mathcal{H}^{\text{conj}}(H), & \Phi_{\theta}^{\text{conj}}(H^*) &= -\Phi_{\theta}^{\text{conj}}(H), \end{split}$$

where $-S = \{-a \mid a \in S\}$ for a multiset S.

6 Applications

In this section, we calculate cocycle invariants defined in the previous section for the handlebody-knots $0_1, \ldots, 6_{16}$ in the table given in [9], by using a 2-cocycle given by Nosaka [18]. This calculation enables us to distinguish some of handlebody-knots from their mirror images, and a pair of handlebody-knots whose complements have isomorphic fundamental groups.

Let $G = SL(2; \mathbb{Z}_3)$ and $X = (\mathbb{Z}_3)^2$. Then X is a G-family of quandles with the proper binary operation as given in Proposition 2.2 (2). Let Y be the trivial X-set $\{y\}$. We define a map $\theta: Y \times (X \times G)^2 \to \mathbb{Z}_3$ by

$$\theta(y,(x_1,g_1),(x_2,g_2)) := \lambda(g_1) \det(x_1 - x_2, x_2(1 - g_2^{-1})),$$

where the abelianization $\lambda: G \to \mathbb{Z}_3$ is given by

$$\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+d)(b-c)(1-bc).$$

	$\Phi_{m{ heta}}(H)$
0_1	$\{\{0_9\}_{76}\}$
4_1	$\{\{0_9\}_{83},\{0_{27}\}_{22},\{0_{81}\}_3\}$
5_1	$\{\{0_9\}_{76}\}$
5_2	$\{\{0_9\}_{95},\{0_{27}\}_6,\{0_{81}\}_1,\{0_9,1_{18}\}_4,\{0_{27},1_{54}\}_2\}$
53	$\{\{0_9\}_{102},\{0_{27}\}_4,\{0_{27},2_{54}\}_2\}$
5_4	$\{\{0_9\}_{74},\{0_{81}\}_2\}$
61	$\{\{0_9\}_{91},\{0_{27}\}_{16},\{0_{81}\}_1\}$
62	$\{\{0_9\}_{106},\{0_{45},1_{18},2_{18}\}_2\}$
63	$\{\{0_9\}_{74},\{0_{27}\}_2\}$
64	$\{\{0_9\}_{76}\}$
65	$\{\{0_9\}_{74},\{0_9,1_{18}\}_2\}$
66	$\{\{0_9\}_{72},\{0_{27}\}_4\}$
67	$\{\{0_9\}_{85},\{0_{27}\}_{16},\{0_{81}\}_3,\{0_{45},1_{18},2_{18}\}_4\}$
68	$\{\{0_9\}_{76}\}$
69	$\{\{0_9\}_{91},\{0_{27}\}_6,\{0_{81}\}_1,\{0_9,1_{18}\}_6,\{0_{27},1_{54}\}_2,\{0_{27},2_{54}\}_2\}$
610	$\{\{0_9\}_{76}\}$
611	$\{\{0_9\}_{70},\{0_9,1_{18}\}_6\}$
6 ₁₂	$\{\{0_9\}_{97},\{0_{81}\}_1,\{0_9,1_{18}\}_8,\{0_9,1_{36},2_{36}\}_2\}$
6 ₁₃	$\{\{0_9\}_{95},\{0_{27}\}_6,\{0_{81}\}_1,\{0_9,2_{18}\}_4,\{0_{27},2_{54}\}_2\}$
614	$\{\{0_9\}_{119},\{0_{27}\}_6,\{0_{81}\}_{11},\{0_9,1_{18}\}_{12},\{0_{27},1_{54}\}_{24}\}$
615	$\{\{0_9\}_{119},\{0_{27}\}_6,\{0_{81}\}_{11},\{0_9,2_{18}\}_{12},\{0_{27},1_{54}\}_{24}\}$
6 ₁₆	$\{\{0_9\}_{44},\{0_{81}\}_{32}\}$

表 1:

By [18], the map θ is a 2-cocycle of $C^*(X;\mathbb{Z}_3)_Y$. Table 1 lists the invariant $\Phi_{\theta}^{\text{conj}}(H)$ for the handlebody-knots $0_1, \ldots, 6_{16}$. We represent the multiplicity of elements of a multiset by using subscripts. For example, $\{\{0_2, 1_3\}_1, \{0_3\}_2\}$ represents the multiset $\{\{0, 0, 1, 1, 1\}, \{0, 0, 0\}, \{0, 0, 0\}\}$.

From Table 1, we see that our invariant can distinguish the handlebody-knots 6_{14} , 6_{15} , whose complements have the isomorphic fundamental groups. Together with Theorem 5.6, we also see that handlebody-knots 5_2 , 5_3 , 6_5 , 6_9 , 6_{11} , 6_{12} , 6_{13} , 6_{14} , 6_{15} are not equivalent to their mirror images. In particular, the chiralities of 5_3 , 6_5 , 6_{11} and 6_{12} were not known. Table 2 shows us known facts on the chirality of handlebody-knots in [9] so far. In the column of "chirality", the symbols \bigcirc and \times mean that the handlebody-knot is amphichiral and chiral, respectively, and the symbol ? means that it is not known whether the handlebody-knot is amphichiral or chiral. The symbols \checkmark in the right five columns mean that the handlebody-knots can be proved chiral by using the method introduced

	chirality	M	II	LL	IKO	IIJO
01	0					
41	0					
51	×			✓		
5_2	×		✓	✓		✓
53	×					✓
54	×				✓	
61	×	✓				
62	?					
63	?					
64	×			✓		
65	×					✓
66	0					
67	0					
68	?					
69	×		✓			✓
610	?					
611	×					✓
612	×					✓
613	×		✓	✓		√
614	×				✓	√
615	×				✓	✓
616	0					

表 2:

in the papers corresponding to the columns. Here, M, II, LL, IKO and IIJO denote the papers [17], [7], [15], [10] and this paper, respectively.

References

- [1] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. **355** (2003) 3947–3989.
- [2] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001) 135–155.
- [3] J. S. Carter, S. Kamada, and M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001), 345–386.

- [4] R. Fenn, C. Rourke and B. Sanderson, *Trunks and classifying spaces*, Appl. Categ. Structures **3** (1995), 321–356.
- [5] R. Fenn, C. Rourke and B. Sanderson, *The rack space*, Trans. Amer. Math. Soc. **359** (2007), 701–740.
- [6] A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403–1418.
- [7] A. Ishii and M. Iwakiri, Quandle cocycle invariants for spatial graphs and knotted handlebodies, Canad. J. Math. 64 (2012), 102–122.
- [8] A. Ishii, M. Iwakiri, Y. Jang and K. Oshiro, A G-family of quandles and handlebody-knots, preprint.
- [9] A. Ishii, K. Kishimoto, H. Moriuchi and M. Suzuki, A table of genus two handlebodyknots up to six crossings, to appear in J. Knot Theory Ramifications
- [10] A. Ishii, K. Kishimoto and M. Ozawa, *Knotted handle decomposing spheres for handlebody-knots*, preprint.
- [11] Y. Jang and K. Oshiro, Symmetric quantile colorings for spatial graphs and handlebody-links, J. Knot Theory Ramifications.
- [12] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982) 37–65.
- [13] S. Kamada, Quandles with good involutions, their homologies and knot invariants, in: Intelligence of Low Dimensional Topology 2006, Eds. J. S. Carter et. al., pp. 101–108, World Scientific Publishing Co., 2007.
- [14] S. Kamada and K. Oshiro, Homology groups of symmetric quantiles and cocycle invariants of links and surface-links, Trans. Amer. Math. Soc. 362 (2010) 5501– 5527.
- [15] J. H. Lee and S. Lee, *Inequivalent handlebody-knots with homeomorphic complements*, preprint.
- [16] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982) 78–88.
- [17] M. Motto, Inequivalent genus 2 handlebodies in S³ with homeomorphic complement, Topology Appl. **36** (1970), 283–290.
- [18] T. Nosaka, Quandle cocycles from invariant theory, preprint.

There are two 2-twist-spun trefoils. [19] C. Rourke and B. Sanderson, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.3250

Graduate School of Science and Engineering Saga University Saga 840-8502 JAPAN

E-mail address: iwakiri@ms.saga-u.ac.jp

佐賀大学工学系研究科 岩切雅英