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A G-family of quandles and handlebody-knots

Masahide Iwakiri

Graduate School of Science and Engineering, Saga University

We introduce the notion of a G-family of quandles and use it to construct invariants
for handlebody-knots. Our invariant can detect the chiralities of some handlebody-knots

including unknown ones. This is a joint work with Atsushi Ishii, Yeonhee Jang and
Kanako Oshiro ([8]).

1 Handlebody-links

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere S3. Two
handlebody-links are equivalent if there is an orientation-preserving self-homeomorphism
of $% which sends one to the other. A spatial graph is a finite graph embedded in S3. Two
spatial graphs are equivalent if there is an orientation-preserving self-homeomorphism of
S which sends one to the other. When a handlebody-link H is a regular neighborhood
of a spatial graph K, we say that K represents H, or H is represented by K. In this
paper, a trivalent graph may contain circle components. Then any handlebody-link can
be represented by some spatial trivalent graph. A diagram of a handlebody-link is a
diagram of a spatial trivalent graph which represents the handlebody-link.

An IH-move is a local spatial move on spatial trivalent graphs as described in Figure 1,
where the replacement is applied in a 3-ball embedded in S%. Then we have the following
theorem.

\
Theorem 1.1 ([6]). For spatial trivalent graphs K, and K, the following are equiv-

alent.
e K and K, represent an equivalent handlebody-link.
o K, and K, are related by a finite sequence of IH-moves.

e Diagrams of K, and K, are related by a finite sequence of the moves depicted in
Figure 2. J
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2 A G-family of quandles

A quandle [12, 16] is a non-empty set X with a binary operation % : X x X — X
satisfying the following axioms.

e foranyz € X,z xz = 1.
e For any z € X, the map S, : X — X defined by S,(y) = y * z is a bijection.
e Forany z,y,2 € X, (zxy)x 2= (z*x2) % (y x 2).

When we specify the binary operation * of a quandle X, we denote the quandle by the
pair (X, ). An Alezander quandle (M,*) is a A-module M with the binary operation
defined by z * y = tx + (1 — t)y, where A := Z[t,t71]. A conjugation quandle (G, *) is a
group G with the binary operation defined by z xy = y~'zv.

Let G be a group with identity element e. A G-family of quandles is a non-empty set
X with a family of binary operations %9 : X x X — X (g € G) satisfying the following

axioms.
e Foranyz € X andany g € G,z %92 = x.
e For any z,y € X and any g,h € G,

zxMy = (zx9y)«"yand 25y = z.

e For any z,y,z € X and any g,h € G,

(z*9y) *h 2 = (z *h z) xh~gh (y xh z).

99



100

When we specify the family of binary operations 9 : X x X — X (g € G) of a G-family
of quandles, we denote the G-family of quandles by the pair (X, {*9}4ec).

-
Proposition 2.1. Let G be a group. Let (X, {*9}4ec) be a G-family of quandles.

(1) For each g € G, the pair (X, *9) is a quandle.
(2) We define a binary operationd: (X x G) x (X xG) = X x G by
(z,9)> (y,h) = (z +" y, A7 gh).

Then (X x G,>) is a quandle. J
.

We call the quandle (X x G, ) in Proposition 2.1 the associated quandle of X.

-
Example 2.2. (1) Let (X, x) be a quandle. Let S; : X — X be the bijection defined

by Sz(y) = y*z. Let m be a positive integer such that S* = idx for any z € X if such
an integer exists. We define the binary operation ' : X x X — X by z 'y = 5 (z).
Then X is a Z-family of quandles and a Z,-family of quandles, where Z,, = Z/mZ.
(2) Let R be a ring, and G a group with identity element e. Let X be a right R[G]-
module, where R|G] is the group ring of G over R. We define the binary operation

¥ : X xX - Xbyz+x9y=2x9+y(e—g). Then X is a G-family of quandles.
NG _J

3 Colorings

Let D be a diagram of a handlebody-link H. We set an orientation for each edge in
D. Then D is a diagram of an oriented spatial trivalent graph K. We may represent
an orientation of an edge by a normal orientation, which is obtained by rotating a usual
orientation counterclockwise by 7/2 on the diagram. We denote by A(D) the set of arcs
of D, where an arc is a piece of a curve each of whose endpoints is an undercrossing or a
vertex. For an arc « incident to a vertex w, we define e(a;w) € {1, -1} by

1 if the orientation of a points to w,
elayw) =

—1 otherwise.

Let X be a G-family of quandles, and Q the associated quandle of X. Let px (resp. pg)
be the projection from @ to X (resp. G). An X-coloring of D is a map C : A(D) = Q
satisfying the following conditions at each crossing x and each vertex w of D (see Figure 3).

e Let x1, X2 and X3 be respectively the under-arcs and the over-arc at a crossing x
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(z,gh)
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q1>q3

g3 (z,9) (z,h)

Figure 3:
such that the normal orientation of x3 points from x; to 2. Then
Clx2) = Cx1) > C(xa)-

e Let w),ws,ws be the arcs incident to a vertex w arranged clockwise around w. Then

(px 0 C)(w1) = (px © C)(ws) = (px © C){ws),
(pG ° C)(wl)e(wuw)(pc ° C)(wz)e(wz;w)(pG ° C)(w3)e(w3;w) — e

We denote by Colx (D) the set of X-colorings of D. For two diagrams D and E which
locally differ, we denote by A(D, E) the set of arcs that D and F share.

Lemma 3.1. Let X be a G-family of quandles. Let D be a diagram of an oriented
spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6
moves to the diagram D once, where we choose orientations for E which agree with
those for D on A(D,E). For C € Colx(D), there is a unigue X-coloring Cp g €

T

Colx (E) such that C|4p,ry = Cp,e|ap,5)- J

ﬂ
(Remark 3.2. Let X be a Z-family of quandles or a Z,,-family of quandles defined as

in Example 2.2 (2). Then an X-coloring be regarded as an X-coloring defined in [7].

Let X be a G-family of quandles, and @ the associated quandle of X. An X-set is a
non-empty set Y with a family of maps 9 : Y x X — Y satisfying the following axioms,

where we note that we use the same symbol %9 as the binary operation of the G-family

of quandles.

e Foranyye€ Y,z € X, and any g,h € G,

h

yxh e = (yx9z)s"rand yxfz = y.
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e Foranyy €Y, z;,z, € X, and any g,h € G,

(y #9 21) %" 25 = (y %" 25) xh~'gh (z1 *" ).

Put yo (z,9) = y+¥zfory € Y, (z,9) € Q. Then the second axiom implies that
(y> @) > g2 = (y>q2) > (q1 > q2) for g1, € Q. Any G-family of quandles (X, {x9},cc)
itself is an X-set with its binary operations. Any singleton set {y} is also an X-set with
the maps *9 defined by y *9 x = y for z € X and g € G, which is a trivial X-set.

Let D be a diagram of an oriented spatial trivalent graph. We denote by R(D) the set
of complementary regions of D. Let X be a G-family of quandles, and Y an X-set. Let Q
be the associated quandle of X. An Xy -coloring of D is a map C : A(D)UR(D) - QUY
satisfying the following conditions.

e C(A(D)) CcQ,C(R(D)) CY.
e The restriction C|4(py of C on A(D) is an X-coloring of D.
e For any arc a € A(D), we have

Cla1) > C(a) = Clay),

where a1, ay are the regions facing the arc a so that the normal orientation of «

points from a; to ay (see Figure 4).

We denote by Colx(D)y the set of Xy-colorings of D.
For two diagrams D and E which locally differ, we denote by R(D, E) the set of regions
that D and F share.

KLemma 3.3. Let X be a G-family of quandles, Y an X-set. Let D be a diagram ofw
an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of
the R1-R6 mowves to the diagram D once, where we choose orientations for E which
agree with those for D on A(D, E). For C € Colx(D)y, there is a unique Xy -coloring
Cpkg € Cle(E)y such that ClA(D,E) = CD,E'.A(D,E) and ClR(D,E) = CD,EIR(D,E)'
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4 A homology

Let X be a G-family of quandles, and Y an X-set. Let (Q,>) be the associated quandle
of X. Let B,(X)y be the free abelian group generated by the elements of Y x Q™ if n > 0,
and let B,(X)y = 0 otherwise. We put

((y7q11'--aqi)Dq’q1+l)--’aQH) = (yDQanDq’HWQiDQaQ'H»l,"'aQn)

fory € Y and ¢,q1...,q, € Q. We define a boundary homomorphism &, : B,(X)y —
Bn_l(X)y by

n

8n(y) qi, .- ’QR) ZZ(_l)Z(y7 g1y -y qi-1yqi+1, - - "Qn)

i=1

n
- Z(—l)l((ya q1y- .- aqi—l) >qiy qi+1y - - - 7Q'n)
i=1

for n > 0, and 3, = 0 otherwise. Then B,(X)y = (Bn(X)y,0,) is a chain complex
(see [1, 2, 4, 5]).
Let D,(X)y be the subgroup of B,(X)y generated by the elements of

n—1

yeY,ze X, g,heCG
U {(ya qi, ..., qi—1, (x>g)a (x)h')aQi-l-?v' B >Qn>
1=1

Q500 €Q
and
n (yaql?'"7qi—1a(magh)aqi+l»'“)qn) yEYal“EXa
‘(yaﬁh,-»-,Qi—l»(w7g)»Qi+1»-~,Qn) gahe Ga

=1 —((y,qla'-',qi—l)D(xag)a(xah)aQH-lv'--aqn) q1,---,qn € Q
We remark that
(y,(h,---,Qi—ly(fﬂ,e),qu,--->Qn)

and

(y:ql) oy Gi-1, (xag),Qi-i-la e aQn>
+ ((y7 qi,. .- ,Qi—l) > (J?,g), (:I‘" g_l)a it1y- - qn)

belong to Dy (X)y.

Lemma 4.1. For n € Z, we have 0,(Dn(X)y) C Dp_1(X)y. Thus Du(X)y =
(Dp(X)y, 8,) is a subcomplex of B,(X)y.

We put Co(X)y = Bn(X)y/Dn(X)y. Then Ci(X)y = (Cn(X)y, On) is a chain complex.
For an abelian group A, we define the cochain complex C*(X; A)y = Hom(Cu(X)y, 4).
We denote by H,(X)y the nth homology group of C\(X)y-
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X4 X3
X1 —4+— X2 X1 —4— | — X2
X3 X4
e(x) =1 e(x) =-1
Figure 5:

5 Cocycle invariants

Let X be a G-family of quandles, and Y an X-set. Let D be a diagram of an ori-
ented spatial trivalent graph. For an Xy-coloring C € Colx(D)y, we define the weight
w(x; C) € Co(X)y at a crossing x of D as follows. Let x1, x2 and X3 be respectively the
under-arcs and the over-arc at a crossing x such that the normal orientation of y3 points
from x; to xo. Let R, be the region facing x; and x3 such that the normal orientations
X1 and X3 point from R, to the opposite regions with respect to x; and xs, respectively.
Then we define

w(x; C) = e(x)(C(Ry), C(x1), C(xs)),

where €(x) € {1, —1} is the sign of a crossing x. We define a chain W(D;C) € Co(X)y
by
W(D;C) =Y w(x;C),
X
where x runs over all crossings of D.
p

Lemma 5.1. The chain W(D; C) is a 2-cycle of C.(X)y. Further, for cohomologous

2-cocycles 8,6 of C*(X; A)y, we have (W (D;C)) = ¢/(W(D;C)).
N J

(Lemma 5.2. Let D be a diagram of an oriented spatial trivalent graph. Let E be a
dragram obtained by applying one of the RI-R6 moves to the diagram D once, where
we choose orientations for E which agree with those for D on A(D,E). For C €
Colx(D)y and Cpg € Colx(E)y such that C|ap,e) = Cp,elam,e) and Clgpp,p) =

&D,EIR(D,E), we have [W(D;C)] = [W(E;Cp )] € Hao(X)y.

J

We denote by Gy (resp. Gk ) the fundamental group of the exterior of a handlebody-link
H (resp. a spatial graph K). When H is represented by K, the groups Gy and Gk are
identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition
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of an Xy-coloring C of D, the map pg o C|4(p) represents a homomorphism from Gk to
G, which we denote by pc € Hom(Gg,G). For p € Hom(Gg, G), we define

Cle(D;p)y = {C € CO])((D)Y IpC = p}

For a 2-cocycle 8 of C*(X; A)y, we define

H(D) = {[W(D;C)] € Ho(X)y | C € Colx(D)y},
®y(D) :={0(W(D;C)) € A|C € Colx(D)y},
H(D; p) := {[W(D; C)] € Hy(X)y |C € Colx(D;p)y},
®o(D; p) :={6(W(D;C)) € A|C € Colx(D; p)y}

as multisets.

Lemma 5.3. Let D be a diagram of an oriented spatial trivalent graph K. For
p, P € Hom(Gg,G) such that p and p' are conjugate, we have H(D;p) = H(D;p')
and $g(D; p) = Pp(D; p').

We denote by Conj(Gg, @) the set of conjugacy classes of homomorphisms from Gy to
G. By Lemma 5.3, H(D; p) and ®y(D; p) are well-defined for p € Conj(Gg, G).

Lemma 5.4. Let D be a diagram of an oriented spatial trivalent graph K. Let E
be a diagram obtained from D by reversing the orientation of an edge e. For p €
Hom(Gg, G), we have H(D) = H(E), ®¢(D) = Py(E), H(D;p) = H(E;p) and
®g(D; p) = ©o(E; p).

By Lemma 5.4, H(D), ®¢(D), H(D;p) and ®y(D; p) are well-defined for a diagram D
of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a
diagram D of a handlebody-link H, we define

Hom(D) .= {H(D; p) | p € Hom(Gy, G)},
dbom(D) := {®y(D; p) | p € Hom(Gy, G)},
HeN(D) := {H(D;p) | p € Conj(Gg, G)},
(I);onj(D) = {®y(D;p) | p € Conj(Gy,G)}

as “multisets of multisets”. We remark that, for Xy-colorings C and Cp g in Lemma 5.2,
we have pc = pcp, - Then, by Lemmas 5.1-5.4, we have the following theorem.
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Theorem 5.5. Let X be a G-family of quandles, Y an X-set. Let 8 be a 2-cocycle
of C*(X;A)y. Let H be a handlebody-link represented by a diagram D. Then the
following are invariants of a handlebody-link H.

3 H(D),  ®(D), H"™(D), @°™(D), H®N(D), (D). )

We denote the invariants of H given in Theorem 5.5 by

H(H),  Qp(H),  HY™(H), OF™(H),  HNH),  V(H),

respectively.
We denote by H* the mirror image of a handlebody-link H. Then we have the following
theorem.
4 )
Theorem 5.6. For a handlebody-link H, we have
H(H) = —H(H), Dy(H™) = —Pe(H),
:Hhom(H*) — _Hhom(H)’ (Dgom(H*) — _q)gom(H),
HEOMN(H*) = —HN(H), OPV(H*) =~ (H),
where —S = {—a|a € S} for a multiset S.
- /

6 Applications

In this section, we calculate cocycle invariants defined in the previous section for the
handlebody-knots 0y, . . ., 616 in the table given in [9], by using a 2-cocycle given by Nosaka
[18]. This calculation enables us to distinguish some of handlebody-knots from their mirror
images, and a pair of handlebody-knots whose complements have isomorphic fundamental
groups.

Let G = SL(2;Z3) and X = (Z3)?. Then X is a G-family of quandles with the proper
binary operation as given in Proposition 2.2 (2). Let Y be the trivial X-set {y}. We
define a map 6:Y x (X x G)? — Z3 by

0(y, (z1, 91), (T2, 92)) == A1) det(z1 — @2, z2(1 — g5 ")),

where the abelianization A : G — Zj3 is given by

by (Z Z) = (a+d)(b—c)(1 - be).



Do(H)

01 || {{09}76}

41 || {{Oo}s3, {027}22, {O0s1}s}

51 || {{0o}7s}

52 || {{00}es, {027}, {081}1, {00, 118 }4, {027, 154 }2}

53 |l {{09}102,{027}4, {027, 254}2}

54 || {{09}74,{081}2}

61 || {{09}o1,{027}16, {Os1}1}

62 || {{09}106, {045, 118,218}2}

63 || {{O0}74,{027}2}

64 || {{0o}76}

65 || {{00}74,{00,118}2}

66 || {{09}72,{027}4}

67 || {{09}ss5,{027}16, {081}, {045, 118, 218 }4}

6s || {{09}76}

69 || {{O9}o1,{027}6,{081}1, {09, 118 }6, {027, Lsa}2, {027, 254 }2}
610 || {{0o}76}

611 || {{Oo}70,{09,118}6}

612 || {{0g}o7,{081}1, {09, 118}s, {09, 136, 236 }2}

613 || {{09}95,{027}6, {081}1, {09,218 }4, {027, 254} 2}
614 || {{00}119,{027}6,{081}11, {09, 118 }12, {027, 154 }24}
615 || {{Oo}119,{027}6,{0s1}11, {00, 218} 12, {027, I5a}2a}
616 || {{00}44,{0s1}32}

£ 1:

By [18], the map 6 is a 2-cocycle of C*(X;Z3)y. Table 1 lists the invariant ®;°™(H)
for the handlebody-knots 0i,...,616. We represent the multiplicity of elements of a
multiset by using subscripts. For example, {{0s,13}1,{03}2} represents the multiset
{{0,0,1,1,1}, {0,0,0},{0,0,0}}.

From Table 1, we see that our invariant can distinguish the handlebody-knots 6,4, 615,
whose complements have the isomorphic fundamental groups. Together with Theorem 5.6,
we also see that handlebody-knots 59, 53, 65, 69, 611, 612, 613, 614, 615 are not equivalent
to their mirror images. In particular, the chiralities of 53, 65, 617 and 615 were not
known. Table 2 shows us known facts on the chirality of handlebody-knots in [9] so far.
In the column of “chirality”, the symbols O and x mean that the handlebody-knot is
amphichiral and chiral, respectively, and the symbol ? means that it is not known whether
the handlebody-knot is amphichiral or chiral. The symbols v in the right five columns
mean that the handlebody-knots can be proved chiral by using the method introduced

107
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chirality || M | IT | LL | IKO | I1JO
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in the papers corresponding to the columns. Here, M, II, LL, IKO and I1JO denote the
papers [17], [7], [15], [10] and this paper, respectively.
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