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ON BORSUK-ULAM GROUPS
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ABSTRACT. A Borsuk-Ulam group is a group for which the isovariant Borsuk-
Ulam theorem holds. A fundamental question is: which groups are Borsuk-Ulam
groups? In this article, we shall recall some properties and previous results on a
Borsuk-Ulam group. After that, we provide a new family of Borsuk-Ulam groups.
We also pose some open questions.

1. NOTATION AND TERMINOLOGY

Let G be a compact Lie group and V' an (orthogonal or unitary) representation
space of G. We denote by SV the unit sphere of V, called a G-representation
sphere. A G-equivariant map (or G-map for short) f : X — Y is a continuous map
between G-spaces satisfying

flgz) =gf(x), Vz € X,g € G.
It is easy to see that if f is G-equivariant, then
(1) f(XH) Cc YH, so we have the restriction map
A X - yH
(2) G < Gy) (Vo € X).
Definition. A continuous map f : X — Y is called a G-isovariant map if f is a
G-equivariant map satisfying G, = Gy (Vz € X).

It is easy to see that f: X — Y is G-isovariant if and only if f is a G-equivariant
map such that fig) : G(z) — Y is injective for any = € X, where G(z) is the
orbit of z. Similarly we define an isovariant homotopy as follows.
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Definition. Let f, g be G-isovariant maps. We call f and g isovariantly G-
homotopic if there exists a G-isovariant map H : X x I — Y, called a G-isovariant
homotopy, such that H(—,0) = f and H(—,1) = g.

Let [X,Y]E" denote the set of G-isovariant homotopy classes of G-isovariant
maps.
By the definition of isovariance, we easily see the following.
(1) Let X and Y be free G-spaces. Then G-equivariance is equivalent to G-
isovariance.
(2) If f: X — Y is an injective G-map, then f is G-isovariant.
(3) If there exists a G-isovariant map f : X — Y, then Iso(X) C Iso(Y),
where Iso (X) is the set of isotropy subgroups of X.

Example 1.1. Let X = G/H and Y = G/K.
(1) There exists a G-map f : G/H — G/K if and only if (H) < (K), ie.,
H < aKa™! for some a € G.
(2) There exists a G-isovariant map f : G/H — G/K if and only if (H) = (K).
In this case, a G-isovariant map f is defined by f(gH) = gaK, H = aKa™!.

2. ISOVARIANT MAPS BETWEEN REPRESENTATIONS

The following result says that isovariant maps between representations are es-
sentially same as those between representation spheres.

Proposition 2.1. Let V, W be (orthogonal) G-representations. The following are
equivalent.

(1) There exists a G-isovariant map f:V — W.
(2) There ezists a G-isovariant map f : VG — WG,
(3) There exists a G-isovariant map f : S(VG™) — S(WE™).
Here VG s the orthogonal complement of V€ in V. In particular, if VG =
WGC =0, then there exists a G-isovariant map f:V — W iof and only if f: SV —
SW.

Proof. (1) = (2) = (3) Composing the inclusion i and the projection p with
f:V — W, we have an isovariant map

F.vet Ly Lw R we
Composing the inclusion j and the normalization map with f, we have an iso-
variant map

F:S(e) L vet\ {0} L wot\ {0} " S(WO).
(1) = (2) = (3)



38

Let g : S(VE") — S(WE") be an isovariant map. By the radial extension, we
have an isovariant map
g: Ve - we,
By adding the zero map to g, we have an isovariant map

hi=§@0:V=VSoViosWS aWC =W

By further arguments, we also obtain

Proposition 2.2. When V¢ = W& =0, there is a one-to-one correspondence
[V, WY = [SV, SW]E™.

We here provide some examples. Let G = C,, = (c) be a cyclic group of order n,
where c is a generator of C. Consider the irreducible representations of C. Let

U (=C) (0<k<n-1)

denote the irreducible representation with the linear action:

2my/—1

n

).

c-z=E2(2€eUy), & =exp(
Assume n = pq, where p, ¢ are distinct primes and G = C,,.

Example 2.3. If (k,pq) = (I,pg) = 1, then there exist a G-isovariant map f :
SUk - SU[
In fact, fix s such that ks = 1 mod pq. We define a map f by

f(z) = 2% z€SU.

Then one can check that

(1) f is G-equivariant,
(2) G acts freely on SUy and SU;,.

Hence f is G-isovariant.
Further arguments show that the degree of maps classifies isovariant homotopy
classes, and we have

[Uka Ul gop: = [SUka SUl]g(;: = 3
and the representatives are given by
fm(2) = 2™ 2 SU, meL

See [3], [4] for the detail.



Example 2.4. There do not exist isovariant maps f : U, — U, and g : Uy — U,
In fact, if f: X — Y is an isovariant map, then Iso (X) C Iso (Y). However

Iso (Uy) = {Cp G} ¢ Tso (U) = {C;, G}
and

Iso (U;) = {1,G} ¢ Iso (U,) = {C,, G}.

Example 2.5. There exists an isovariant map f : Uy — U, & UL,
In fact there are isovariant maps

fa,,@ N SUl — S(Up b Uq)

defined by
Jap(z) = (ZTe0r L0800y o 37, 2 e SU;.

These are isovariant maps since
Gy, () = Guata0r N GLavome = 1 (2 € SUY).
In this case, the multidegree classifies isovariant maps and one sees
U1, Up @ UgJ&y = [SUL S(Up @ U = Z & Z.
See [3], [4] for the detail.
Example 2.6. There does not exist a G-isovariant map f: Uy & Uy — U, @ U,.
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If there is an isovariant map, then the isovariant Borsuk-Ulam theorem stated

in the next section shows
dim U1 &) U1 — dlITl(Ul D U1>Cp < dim Up D Uq — dlm(Up @ U-q)op

I I

4-0=4 4—-2=2.
This is a contradiction.

Remark. There is a G-map f : S(U;8&U;) — S(U,®U,). In fact there are G-maps
fi : SUr — SU; defined by fi(z) = 2* for i = p and ¢. Taking join of f, and f,, one

obtains a G-map f = f, * fg : S(U1 & Uy) — S(U, & U,).
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Thus one can finally see

Proposition 2.7. Let G = Cpy, and V, W G-representations. There ezists a
G-isovariant map V — W if and only if

dimV —dim V¥ < dim W — dim W#

dim V¥ — dim V¢ < dim W# — dim W¢

for H=C,, C,.
See [2] for the detail.

Question (unsolved). How about C, for an arbitrary n?

3. BORSUK-ULAM TYPE THEOREM FOR ISOVARIANT MAPS

In this section we discuss a Borsuk-Ulam type theorem for isovariant maps, which
provides non-existence results on isovariant maps as mentioned in the previous
section.

The Borsuk-Ulam theorem due to Borsuk [1] is generalized in various ways (see
6]. [7]). The following is one of them. Let C, be a cyclic group of prime order p
and assume that C, acts freely on spheres S™ and S™.

Theorem 3.1 (mod p Borsuk-Ulam theorem).
If there exists a Cp-map (<= Cp-isovariant map) f : S™ — S™, then m < n, (or
equivalently, if m > n, there does not exist a Cp-map f: S™ — S™).

Wasserman first studied the isovariant version of the Borsuk-Ulam theorem and
introduced the notion of the Borsuk-Ulam group.

Definition (Wasserman). A compact Lie group G is called a Borsuk-Ulam group
(BUG) if the following statement holds:
For any pair of G-representations V' and W, if there is a G-isovariant map f :
V — W, then the Borsuk-Ulam inequality:
dimV — dim V¢ < dim W — dim W
holds.
Proposition 3.2 ([8]). C, and S* are BUGS.

The following are fundamental properties of Borsuk-Ulam groups.

Proposition 3.3 ([8]).
(1) If1 - H— G — K — 1 is ezact and H, K are BUGS, then G is also a
BUG.
(2) A quotient group of a BUG is also a BUG.
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Question (unsolved). Is a subgroup of a BUG also a BUG?
Using this result repeatedly, we have

Corollary 3.4. If
1=H0<H1<1H24"-<1HT=G

and H;/H;_; are BUGs (1 <i <), then G is a BUG.
We have the following.

Theorem 3.5 (Isovariant Borsuk-Ulam theorem). Any solvable compact Lie group
G is a BUG.

Proof. As is well-known, G is solvable if and only if there exists a composition
series

1:H0<1H14H2<1"'<1HTZG
such that H;/H;_, = C, or S*. By Proposition 3.4, G is a BUG. O

So the next question is: how about non-solvable case? Wasserman also found
non-solvable examples of BUGs using the prime condition.

Definition (Prime condition (PC)). (1) We say that a finite simple group G
satisfies the prime condition (PC) if

1
E ~<1
plot@) ¥

holds for any g € G, where o(g) is the order of g, and the sum is taken over
all prime divisors of o(g).
(2) We say that a finite group G satisfies (PC) if for a composition series

1=Hy<H <Hy;<---<H, =G,
each simple H;/H;_, satisfies (PC) in the sense of (1).
Theorem 3.6 ([8]). If a finite group G satisfies (PC), then G is a BUG.
Remark. In the proof of 8], the fact that a cyclic group C is a BUG is used.

Example 3.7. Alternating groups As, As, ..., Ay satisfy (PC), and hence BUGs.
But A,, n > 12, does not satisfy (PC). In fact A,, n > 12, has an element of order
30=2-3-5and 1/2+1/3+1/5=31/30 > 1.

Question (unsolved). Is A, a BUG for n > 127

Example 3.8. PSL(2,p) satisfies (PC) for p: prime < 53; hence a BUG. But
PSL(2,59), PSL(2,61) do not satisfy (PC). Indeed there are infinitely many primes
p such that PSL(2,p) does not satisfy (PC).
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4. A NEW FAMILY OF BORSUK-ULAM GROUPS

In this section G is a finite group. Let F, be a finite field of order ¢ = p", p:
prime. Recall

PSL(2,q) = SL(2,q)/{£I}
= {A € My(F,)| det A = 1}/{=I}.

Remark. PSL(2,2") = SL(2,2").

Also recall:
(1) If ¢ = p" > 4, then PSL(2,q) is simple. On the other hand PSL(2,2) = S3
and PSL(2,3) = A4, which are non-simple.
glg-1(g+1) p=2
1q¢(g—1)(¢+1) p:odd prime.
We introduce the Mobius condition in [5] and show the following.

(2) [PSL(2,q)| =

Theorem 4.1 ([5]). PSL(2,q) is a BUG for any q =1p".
As a corollary,
Corollary 4.2. SL(2,q), GL(2,q), PGL(2,q) are BUGs.

Proof. These are shown from the following exact sequences.

1 - {xI} - SL(2,q9) - PSL(2,q) — 1

det

1— SL(2,q) = GL(2,q) > F, — 1
(Fy = Cq—l)

q

PGL(2,q) = GL(2, q)/center
(center = {al |a € F;} = F;). O

As seen before, PSL(2,59), PSL(2,61) etc. do not satisfy (PC). Our result
provides the first example to be a BUG not satisfying (PC).

Finally we announce the following result which will be proved in the forthcoming
paper. Let Syl ,(G) denote a p-Sylow subgroup of G.

Theorem 4.3 (N-U). If G satisfies one of the following conditions, then G is a
BUG.
(1) Syly(G) is a cyclic group Cor of order 27.
(2) Syl,(G) is a dihedral group Dor of oder 2" (r > 2). As a convention,
D4 = Cg X 02.
(3) Syly(G) is a generalized quaternion group Qor of order 27 (r > 3).
(4) Syly(G) is abelian and Syl,(G) is cyclic for every odd prime p.
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Example 4.4.
(1) PSL(2,q), ¢: odd, is an example of (2).
(2) SL(2,q), ¢: odd, is an example of (3).
(3) SL(2,27) is an example of (4).
(4) A finite group with periodic cohomology is an example of (1), (3) or (4).

For the proof, we use the fact that PSL(2, q) is a BUG and several deep results
of finite group theory.
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