THE REAL REPRESENTATION ASSOCIATED WITH COPRIME NORMAL SUBGROUPS

Masaharu Morimoto

Graduate School of Natural Science and Technology, Okayama University

Dedicated to Professor K. Shimakawa on his 60th birthday

Abstract. Let G be a finite group. In this article, we introduce a mutually coprime family of normal subgroups of G and the real G-module associated with the family, and we report interesting results on the real G-module.

1. Preliminary

Throughout this paper, G is a finite group. We mean by a real G-module a real G-representation space of finite dimension. Let $\mathcal{S}(G)$ denote the set of all subgroups of G.

In the study of smooth G-actions on disks and spheres, there are important families of normal subgroups of G: for examples, $\{G\}$, $\{G^{\{2\}}\}$, $\{G^{\text{nil}}\}$,

$$\mathcal{K}(G) = \{G^{\{p\}} \mid p \text{ is a prime}\}, \text{ and}$$

$$\mathcal{N}_p(G) = \{H \le G \mid |G/H| = 1 \text{ or } p\},$$

where $G^{\{p\}}$ is the smallest normal subgroup H such that G/H has order of p-power (possibly |G/H| = 1), and G^{nil} is the smallest normal subgroup N such that G/N is nilpotent.

Let \mathcal{L} be a set of subgroups of G such that each minimal element of \mathcal{L} is a normal subgroup of G. Let $\mathbb{R}[G]$ denote the regular representation of G and let $\mathbb{R}[G]^{\mathcal{L}}$ denote the smallest G-submodule of $\mathbb{R}[G]$ containing all $\mathbb{R}[G]^L$ with $L \in \mathcal{L}$. Let $\mathbb{R}[G]_{\mathcal{L}}$ be

²⁰¹⁰ Mathematics Subject Classification. Primary 20C15; Secondary 57S17.

Key words and phrases. real representation, gap condition, real projective space.

Partially supported by a Grant-in-Aid for Scientific Research (KAKENHI) no. 22540085.

the orthogonal complement of $\mathbb{R}[G]^{\mathcal{L}}$ in $\mathbb{R}[G]$ with respect to some G-invariant inner product on $\mathbb{R}[G]$, i.e.

$$\mathbb{R}[G]_{\mathcal{L}} = \mathbb{R}[G] - \mathbb{R}[G]^{\mathcal{L}}.$$

In this paper we call $\mathbb{R}[G]_{\mathcal{L}}$ the real G-module associated with \mathcal{L} .

Definition 1.1. A nonempty family K of normal subgroups of G is called *mutually coprime* if either

- (1) $K = \{G\}$, or
- (2) $G \notin \mathcal{K}$ and |G/K|'s are mutually prime integers, i.e.

$$(|G/K|, |G/K'|) = 1$$
 for all $K, K' \in \mathcal{K}$ such that $K \neq K'$.

If K is a mutually coprime family of normal subgroups of G, then the equality

(1.1)
$$\mathbb{R}[G]_{\mathcal{K}} = (\mathbb{R}[G] - \mathbb{R}) - \bigoplus_{K \in \mathcal{K}} (\mathbb{R}[G/K] - \mathbb{R})$$

holds, where \mathbb{R} is the 1-dimensional trivial real G-module.

Definition 1.2. Let \mathcal{L} be a set of subgroups of G. Then we define the *upper closure* $\overline{\mathcal{L}}$ of \mathcal{L} by

(1.2)
$$\overline{\mathcal{L}} = \{ H \in \mathcal{S}(G) \mid H \supset L \text{ for some } L \in \mathcal{L} \},$$

and the exterior \mathcal{L} of \mathcal{L} by

$$(1.3) \underline{\mathcal{L}} = \mathcal{S}(G) \setminus \overline{\mathcal{L}}.$$

With this notation, we have $\mathcal{L}(G) = \overline{\mathcal{K}(G)}$ and $\mathcal{M}(G) = \underline{\mathcal{K}(G)}$, cf. E. Laitinen-M. Morimoto [1].

Definition 1.3. Let V be a real G-module and \mathcal{H} a family of subgroups of G. We say that V is \mathcal{H} -complete if for each $H \in \mathcal{H}$, any irreducible real H-module is isomorphic to a submodule of $\operatorname{res}_H^G V$.

The main results which will be reported in this article are Theorems 2.1, 2.2 and 3.2. The proofs will appear somewhere else.

2. Completeness and gap property

Let K be a mutually coprime family of normal subgroups of G. We introduce two practically important properties of $\mathbb{R}[G]_K$ as the theorems below.

Theorem 2.1. Let G be a finite group and let K be a mutually coprime family of normal subgroups of G. Then for any $H \in \underline{K}$, $\operatorname{res}_H^G \mathbb{R}[G]_K$ contains a real H-submodule isomorphic to $\mathbb{R}[H]$. Hence the real G-module $\mathbb{R}[G]_K$ is \underline{K} -complete.

Theorem 2.2. Let G be a finite group and let K be a mutually coprime family of normal subgroups of G. Then the real G-module $\mathbb{R}[G]_K$ possesses the following properties.

- (1) $\mathbb{R}[G]_{\mathcal{K}}^H \neq 0$ if and only if $H \in \underline{\mathcal{K}}$.
- (2) Let p be a prime and $H < K \le G$ with |K:H| = p. Then

$$\dim \mathbb{R}[G]_{\mathcal{K}}^{H} \ge p \dim \mathbb{R}[G]_{\mathcal{K}}^{K}$$

holds; the equality holds if and only if there exists $K_k \in \mathcal{K}$ such that $p||G : K_k|$, $|KK_k : HK_k| = p$, and $HK_i = G$ for all $K_i \in \mathcal{K} \setminus \{K_k\}$.

(3) Let $H < K \leq G$. Then

$$\dim \mathbb{R}[G]_{\kappa}^{H} > 2\dim \mathbb{R}[G]_{\kappa}^{K}$$

holds; the equality holds if and only if

- (a) $H \in \overline{\mathcal{K}}$, or
- (b) $K \in \underline{\mathcal{K}}$, |K : H| = 2, there exists $K_k \in \mathcal{K}$ such that $2||G : K_k|$, $|KK_k : HK_k| = 2$ and $HK_i = G$ for all $K_i \in \mathcal{K} \setminus \{K_k\}$.

The next proposition has been used in the induction argument of the equivariant surgery theory, cf. [1, 4, 5].

Proposition 2.3. Let G be an Oliver group, and let P, H_1 , H_2 be subgroups of G such that $P \in \mathcal{P}(G)$, $P < H_1$, and $P < H_2$. If the equality

(2.1)
$$2\dim \mathbb{R}[G]_{\mathcal{L}(G)}^{H_i} = \dim \mathbb{R}[G]_{\mathcal{L}(G)}^{P}$$

holds for each i=1 and 2, then the smallest subgroup K containing H_1 and H_2 belongs to $\mathcal{M}(G) = \mathcal{S}(G) \setminus \mathcal{L}(G)$.

3. Canonical line bundle of real projective space

Let V be a real G-module (of finite dimension). The real projective space P(V) is the space of all 1-dimensional real vector subspaces of V, and P(V) has the canonically induced G-action. Let γ_M , where M = P(V), denote the canonical line bundle of M.

Lemma 3.1. Let V be a real G-module and M = P(V). Then the following equalities hold as real G-vector bundles via canonical isomorphisms.

- (1) $\operatorname{Hom}(\gamma_M, \gamma_M) = \varepsilon_M(\mathbb{R}).$
- (2) $\operatorname{Hom}(\gamma_M, \varepsilon_M(\mathbb{R})) = \gamma_M$.
- (3) $T(M) = \operatorname{Hom}(\gamma_M, \gamma_M^{\perp}).$
- (4) $T(M) \oplus \varepsilon_M(\mathbb{R}) = \text{Hom}(\gamma_M, \varepsilon_M(V)).$
- (5) $\operatorname{Hom}(\gamma_M, \varepsilon_M(V)) = \gamma_M \otimes V$.

The equalities (1)–(4) above follow from the proof of [3, Lemma 4.4]. The equality (5) holds because

$$\operatorname{Hom}(\gamma_M, \varepsilon_M(V)) = \operatorname{Hom}(\gamma_M, \varepsilon_M(\mathbb{R})) \otimes_{\mathbb{R}} V = \gamma_M \otimes_{\mathbb{R}} V.$$

Theorem 3.2. Let K be a mutually coprime family of normal subgroups of G and let V be a real G-module such that $V = V^K$. Then for $K_i \in K$,

(1)
$$P(V)^{K_i} = \begin{cases} P(V^{K_i}) & \text{if } 2||G:K_i| \\ P(V^{K_i}) \coprod \coprod_{L \in A_i} P(V^{L}_{G/L}) & \text{if } 2 \mid |G:K_i| \end{cases}$$

and

(2)
$$\gamma_{P(V)}|_{P(V)^{K_{i}}} = \begin{cases} \gamma_{P(V^{K_{i}})} & \text{if } 2||G:K_{i}| \\ \gamma_{P(V^{K_{i}})} \coprod \coprod_{L \in \mathcal{A}_{i}} \gamma_{P(V^{L}_{G/L})} & \text{if } 2 \text{ } ||G:K_{i}|, \end{cases}$$

where A_i is the set of all subgroups L such that |G:L|=2 and $|K_i:K_i\cap L|=2$. In addition

$$(3) \qquad (\gamma_{P(V)} \otimes_{\mathbb{R}} V)^{K_{i}} = \begin{cases} \gamma_{P(V^{K_{i}})} \otimes_{\mathbb{R}} V^{K_{i}} & \text{if } 2||G:K_{i}| \\ \gamma_{P(V^{K_{i}})} \otimes_{\mathbb{R}} V^{K_{i}} \coprod \coprod_{L \in \mathcal{A}_{i}} \gamma_{P(V^{L}_{G/L})} \otimes_{\mathbb{R}} V^{L}_{G/L} & \text{if } 2 \not ||G:K_{i}| \\ = T(P(V)^{K_{i}}) \oplus \varepsilon_{P(V)^{K_{i}}}(\mathbb{R}). \end{cases}$$

REFERENCES

- [1] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
- [2] E. Laitinen, M. Morimoto and K. Pawalowski, Deleting-inserting theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), 10–38.
- [3] J. W. Milnor and J. D. Stasheff, *Characteristic Classes*, Ann. Math. Stud. 76, Princeton Univ. Press, Princeton, New Jersey, 1974.
- [4] M. Morimoto, *The Burnside ring revisited*, in Current Trends in Transformation Groups, A. Bak, M. Morimoto and F. Ushitaki (eds.), K-Monographs in Math. 7, Kluwer Academic Publ., Dordrecht-Boston, 2002, 129–145.
- [5] M. Morimoto, Deleting and inserting fixed point manifolds under the weak gap condition, to appear in Publ. RIMS 48 (2012) No. 3.
- [6] M. Morimoto and K. Pawałowski, The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279-303.
- [7] M. Morimoto and K. Pawałowski, Smooth actions of Oliver groups on spheres, Topology 42 (2003), 395–421.
- [8] B. Oliver, Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology **35** (1996), 583–615.
- [9] R. Oliver, Fixed point sets of groups on finite acyclic complexes, Comment. Math. Helv. **50** (1975), 155-177.
- [10] R. Oliver and T. Petrie, G-CW surgery and $K(\mathbb{Z}[G])$, Math. Z. 179 (1982), 11–42.
- [11] T. Petrie and J. Randall, *Transformation Groups on Manifolds*, Marcel Dekker, Inc., New York and Basel, 1984.

Graduate School of Natural Science and Technology Okayama University

Tsushimanaka 3-1-1

Okayama, 700-8530 Japan

E-mail address: morimoto@ems.okayama-u.ac.jp