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Abstract. Let G be a finite group. In this article, we introduce a
mutually coprime family of normal subgroups of G and the real G-module
associated with the family, and we report interesting results on the real

G-module.

1. PRELIMINARY

Throughout this paper, G is a finite group. We mean by a real G-module a real
G-representation space of finite dimension. Let S(G) denote the set of all subgroups
of G.

In the study of smooth G-actions on disks and spheres, there are important fam-
ilies of normal subgroups of G: for examples, {G}, {G?}}, {G™},

K(G) = {G? | p is a prime}, and
Np(G)={H G | |G/H|=1orp},

where G} is the smallest normal subgroup H such that G/H has order of p-power
(possibly |G/H| = 1), and G™! is the smallest normal subgroup N such that G/N
is nilpotent.

Let £ be a set of subgroups of G such that each minimal element of £ is a normal
subgroup of G. Let R[G] denote the regular representation of G and let R[G]* denote
the smallest G-submodule of R[G] containing all R[G]* with L € L. Let R[G]. be
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the orthogonal complement of RG] in R[G] with respect to some G-invariant inner

product on R[G], i.e.
R[G]: = R[G] — R[G]*.

In this paper we call R[G]. the real G-module associated with L.

Definition 1.1. A nonempty family K of normal subgroups of G is called mutually

coprime if either

(1) K={G}, or
(2) G ¢ K and |G/K]|’s are mutually prime integers, i.e.

(|G/K|,|G/K'|) = 1 for all K, K’ € K such that K # K.

If K is a mutually coprime family of normal subgroups of G, then the equality

(1.1) R[Glk = (R[G] - R) — (P (RIG/K] - R)
Kek

holds, where R is the 1-dimensional trivial real G-module.

Definition 1.2. Let £ be a set of subgroups of G. Then we define the upper closure
L of L by

(1.2) L={H eS(G)| H>L for some L € L},

and the exterior L of L by

(1.3) L=8(G)\ L.

With this notation, we have £(G) = K(G) and M(G) = K(G), cf. E. Laitinen-
M. Morimoto [1].

Definition 1.3. Let V' be a real G-module and H a family of subgroups of G.
We say that V' is H-complete if for each H € H, any irreducible real H-module is

isomorphic to a submodule of resG V.

The main results which will be reported in this article are Theorems 2.1, 2.2 and

3.2. The proofs will appear somewhere else.
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2. COMPLETENESS AND GAP PROPERTY

Let K be a mutually coprime family of normal subgroups of G. We introduce two

practically important properties of R[G]c as the theorems below.

Theorem 2.1. Let G be a finite group and let K be a mutually coprime family
of normal subgroups of G. Then for any H € K, res§R|[G| contains a real H-
submodule isomorphic to R[H]. Hence the real G-module R|G]x is K-complete.

Theorem 2.2. Let G be a finite group and let K be a mutually coprime family
of normal subgroups of G. Then the real G-module R[G|x possesses the following
properties.

(1) R[G]KH # 0 if and only if H € K.

(2) Let p be a prime and H < K < G with |K : H| =p. Then

dim R[G]” > pdimR[G],*

holds; the equality holds if and only if there ezists Ky € K such that p||G :
Ki|, |KKy : HKi| = p, and HK; = G for all K; € K~ {Kj}.
(3) Let H< K < G. Then

dimR[G]c? > 2dim R[G]*

holds; the equality holds if and only if

(a) HeK, or

(b) K € K, |K : H| = 2, there exists K € K such that 2||G : Ky,
|KKy : HKi| =2 and HK; = G for all K; € K ~ {Ki}.

The next proposition has been used in the induction argument of the equivariant

surgery theory, cf. [1, 4, 5].

Proposition 2.3. Let G be an Oliver group, and let P, Hy, H, be subgroups of G
such that P € P(G), P < Hy, and P < H,. If the equality

(2.1) 2dim RG]z )™ = dmR[Gle)”

holds for each i = 1 and 2, then the smallest subgroup K containing Hi and H,
belongs to M(G) = S(G) \ L(G).



3. CANONICAL LINE BUNDLE OF REAL PROJECTIVE SPACE

Let V' be a real G-module (of finite dimension). The real projective space P(V)
is the space of all 1-dimensional real vector subspaces of V, and P(V) has the
canonically induced G-action. Let 7y, where M = P(V'), denote the canonical line
bundle of M.

Lemma 3.1. Let V be a real G-module and M = P(V'). Then the following equali-
ties hold as real G-vector bundles via canonical isomorphisms.

(1) Hom(ya, yu) = em(R).

(2) Hom(vas, em(R)) = yur-

(3) T(M) = Hom(yum, Viz)-

(4) T(M) @ ey (R) = Hom(yar, em(V))-

(5) Hom(yar,em(V)) =y @ V.

The equalities (1)—(4) above follow from the proof of [3, Lemma 4.4]. The equality
(5) holds because

Hom(ya,em(V)) = Hom(var, em(R)) ®r V = yir ®r V.

Theorem 3.2. Let K be a mutually coprime family of normal subgroups of G and
let V' be a real G-module such that V =V*. Then for K; € K,

P(VEi) if 2||G : K4
(1) P(V)® = ¢ p(vEy 11 IT P(VEg) if2 NG : K|
LeA;
and
TP(VEK:) if 2||G : Ki
(2) 7P(V)|P(V)Ki = rYP(VKi) II H ’Yp(vLG/L) Zf2 /HG . Kz|,
LeA;

where A; is the set of all subgroups L such that |G : L| =2 and |K; : K;NL| = 2.
In addition
(vpv) ®r V)X
Tpi) Or VS if 2||G : K|

(3) = TP(VE:) Xr VEi 1 H YP(VEgL) Xr VLG/L if 2 ,”G : K2|
LeA;

= T(P(V)™) & ep)x: (R).
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