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Torus Actions and the Halperin-Carlsson Conjecture

Mayumi Nakayama

Department of Mathematics and Information of Sciences
Tokyo Metropolitan University

We report some results concerning the Halperin-Carlsson conjecture. This is obtained
as a joint work with Y. Kamishima.

1. INTRODUCTION

Recently the real Bott tower and its generalization have been studied by several people
(3], [10], [14], [15], [8]). A real Bott manifold is originally defined to be the set of real
points in the Bott manifold [6]. Among several characterizations by group actions, the
Halperin-Carlsson conjecture is true for real Bott manifolds. The Halperin-Carlsson torus
conjecture says that if there is an almost free torus action T* on a closed n-manifold M,
the following inequality holds:

(1) 2k < by
7=0

Here b; = rank H;(M;Z) is the j-th Betti number of M. See [16] for details and the
references therein, see also [7].

Another characterization is that a real Bott manifold M is a euclidean space form
(Riemannian flat manifold). It is conceivable whether the Halperin-Carlsson conjecture
holds for compact euclidean space forms more generally.

By this motivation we revisit the Conner-Raymond’s injective torus actions [5]. In this
direction, we shall introduce injective-splitting action of a torus T on closed aspherical
manifolds more generally. Our purpose is to prove the Halperin-Carlsson conjecture for
such torus actions affirmatively.

2. INJECTIVE-SPLITTING ACTION

Let T* be a k-dimensional torus (k > 1). Given an effective T*-action on a closed
manifold M, the orbit map at £ € M is defined to be ev(t) = tz (Yt € T*). If we denote
m(T*) = Hy(T*;Z) = Z* and m (M) = m, then the map ev induces a homomorphism
evy : Z¥ — 7 and ev, : Z¥ — H;(M;Z) respectively.

According to the definition of Conner-Raymond [5], if evy is injective, the action
(T*, M) is said to be injective. (Note that the definition is independent of the choice
of the base point z € M [11, Theorem 2.4.2, also Subsection 11.1].) Classically it is
known that evy is injective for closed aspherical manifolds [4].

Let (T*, M) be an injective T*-action on a closed manifold M. We see that Im(evy) <
C(r) where C(r) is the center of 7 (cf.[9]). Put Im(evy) = Z*. Letting Q = m/ZF, there
is a central group extension:

(2) 1-ZF 51— Q1.
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Definition 2.1. A T*-action is said to be injective-splitting if there exists a finite index
normal subgroup @’ of @ such that the induced extension splits;

T =7FxQ.
3. STATEMENTS AND RESULTS

Theorem A. Suppose that a closed manifold M admits an injective-splitting T*-action.
Then the following holds.

(3) xC; < b;.

In particular the Halperin-Carlsson conjecture is true.

On the other hand, if ev, : Z* — H;(M;Z) is injective, then the T*-action is said to be
homologically injective (cf. [5]). Any homologically injective action is obviously injective.
Proposition 3.1. Any homologically injective T*-action on a closed manifold M is
injective-splitting.

Proof. The proof is essentially the same as [5, 2.2. Lemma]. Let 1 - ZF -7 — Q — 1
be the central group extension. As ev. : Hi(T*%Z) = ZF — H,(M;Z) = Z* ® F is
injective, ev,(ZF) < ZF such that ev.(Z*) @ Z** < Z¢. If ¢ : 7 — Hy(M;7Z) is a canonical
projection, then 7’ = ¢~ (ev,(Z*) ® Z** @ F) is a finite index normal splitting subgroup

of . O
Theorem B. If T* is a homologically injective action on a closed n-manifold M, then
(4) #Ci < b (7=0,...,k).

In particular the Halperin-Carlsson conjecture is true.

Corollary B. Every effective T*-action on a compact n-dimensional euclidean space form
M is ingective-splitting. Thus ,C; < b;, the Halperin-Carlsson conjecture (1) holds.

We obtain a characterization of holomorphic torus actions originally observed by Carrell
[2].
Corollary C. Every holomorphic action of the complex torus T§ on a compact Kdhler
manifold is homologically injective. In particular, C; < bj, the Halperin-Carlsson con-
jecture holds.

4. PRELIMINARIES FOR A PROOF OF THEOREM A

Suppose (T*, M) is an injective action on a closed manifold M. Let M be the universal
covering space of M. Since Z¥ < C(x), letting Q = n/ZF, there is a central group
extension:

(5) 1 -2 51— Q—1.

_Now the universal covering group R* of T* acts properly and freely on M such that
M = R* x W where W = M /R is a simply connected smooth manifold. The central
group extension (5) represents a 2-cocycle f in H?*(Q;ZF) in which 7 is viewed as the
product Z* x @ with group law:

(n,@)(m, B) = (n+m + f(a, §), o).
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Let Map(W,RF) (respectively Map(W,T*)) be the set of smooth maps of W into R
(respectively T*) endowed with a Q-module structure in which there is an exact sequence

of @-modules [4]:
1 — Z% — Map(W,R*) =5 Map(W,T*) — 1.

When @ acts properly discontinuously on W with compact quotient, we have the vanishing
theorem from [4, Lemma 8.5], [11]:

(6) H(Q, Map(W,R*)) =0 (i > 1).
By (6), the connected homomorphism induces an isomorphism :
§ : HY(Q; Map(W,T*)) — H*(Q; Z").
From this, there exists a map x : @ — Map(W, R*) such that §*x = f. Then the action
of m on M can be described as

7) (n,a)(z,w) = (n+ z + x(a)(ow), cw)
("(n,@) € 7,%(z,w) € R x W).

The m-action may depend on the choice of X’ such that §'x’ = f. However, the vanishing
cohomology group (6) shows that

Proposition 4.1. Such m-actions are equivalent to each other.

5. PROOF OF THEOREM A

Proof. Algebraic part. (5) induces a commutative diagram:

1 y 7k ™ » Q 1
(8) I T L,
1 zF > 7 —— Q' y 1

Here Q/Q’ is a finite group by Definition 2.1. For the cocycle f representing the upper
group extension, it follows ¢*[f] = 0 € H%(Q'; ZF) by the hypothesis. We may assume

(9) flo =0.

On the other hand, if 7 : H?(Q';Z¥) — H*(Q;ZF) is the transfer homomorphism, then
To* =|Q: Q| : HYQ;ZF) — H*(Q;Z*) so that [f] is a torsion in H?(Q;ZF). There

Q-

Y%

exists an integer ¢ such that ¢- f = 81\ for some function A : Q — ZF. Put A =
R*. Then
(10) f=0M

The equation (9) shows [Mg/] € H(Q;R¥). Viewed RF < Map(W, RF) as constant maps,
Mo] € HY(Q; Map(W,RF)) = 0 by (6). So there is an element h € Map(W,R*) such
that A|gs = d°h. The equality (') = §°h(e/)(w) ("o’ € Q',Yw € W) implies

(11) h(w) = h(d'w) + A().
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Geometric part. Noting Proposition 4.1, the m-action (7) on M is equivalent with
(12) (n,a)(z,w) = (n+z + Ma),aw) (*(z,w) € RF x W).

Recall that = has the splitting subgroup 7' = Z* x Q'. Obviously we have the product
action of Z* x ¢ on R¥ x W such that R* x W/ZF x Q' = T* x W/@'. Define a
diffeomorphism G : R¥ x W — R* x W to be G(z,w) = (z + h(w),w). Using (11), it is
easy to check that G : (', R¥ x W) — (Z* x Q',RF x W) is an equivariant diffeomorphism

with respect to the action (12) and the product action. Putting R¥ x W/n' = T* x W
Q/

as a quotient space, @ induces a diffeomorphism G : T* XIW — TF x W/Q'. Let q :
TF x W — T* c>2<' W be the covering map (g(t,w) = [t, w]). C;2]_“hen

(13) G oq(t,w) = G([t,w]) = (t exp 2mih(w), [w]).

Noting (12), 7 induces an action of Q on M /Z* = T* x W such that

(14) a(t,w) = (texp2rmiX(a),aw) (Ya € Q).

F = Q/@ has an induced action on T’“C>2</ W by &[t,w] = [texp2rii(a),aw] (Y& € F)
which gives rise to a covering map:

15 FoTExW - TrhxW =M.
Q' Q

For any a € @), consider the commutative diagram:
Hy(Tk x W) -2 Hj(TFxW)

(16) lq* lq*
Hy(T* xg W) —2 Hy(T* xq W)

in which H;(T*) ® Ho(W) < H;(T* x W). By the formula (14), the Q-action on the T*-

summand is a translation by exp 27i\(«) € T* so the homology action o, on H;(T*) ®

Ho(W) is trivial. If H;(T* x W) denotes the subgroup left fixed under the homology
QI

action for every element & € F, it follows

(17) 0 (H;(T*) ® Ho(W)) < H,(T* X W)

Using the transfer homomorphism, v of (15) induces an isomorphism:
Vi Hj(Tkng; Q)f — H;(M;Q).
In particular, v, : ¢.(H;(T* Q) ® Hy(W;Q)) — H;(M;Q) is injective.

On the other hand, let ¢ : W — W/Q' be the projection ¢'(w) = [w]. Define a
homotopy ¥y : TF x W — T* x W/Q' (6 € [0,1]) to be

Uy(t, w) = (texp27i(0 - h(w)), [w]).

Then Wy =id x ¢’ >~ G o g from (13). As G.oq. =id x ¢, : H;(T*;Q) ® Ho(W;Q) —
H;(T* Q) ® Ho(W/Q';Q) is obviously isomorphic, it implies that ¢, : Hj(T’“;Q) ®
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Hy(W;Q) — H;(T* x W;Q) is injective. If p=wvogq: T* x W — M is the pro-
QI

jection, then p, : H;(T*; Q) ® Ho(W;Q) — H;(M;Q) becomes injective. This shows
Theorem A. O

6. APPLICATION TO EUCLIDEAN SPACE FORMS

Let M be a compact euclidean space form R"/7 with rank H1(M) = k, and set s =
rank C(). In [5, § 7], Conner and Raymond stated (without proof) that Calabi’s theorem
[1] shows the existence of a T*-action. From this, we see that k < s because Z* < C(r).
On the other hand, using the algebraic hull argument, it is easy to see that M admits an
effective T*-action, so by Corollary B, s < k. Therefore, we obtain:

Theorem E. A compact n-dimensional euclidean space form M admits an action of T*,
where k = rank H; (M), in which rank C(m) = rank H,(M).
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