
THE L\’EVY-PROKHOROV TOPOLOGY ON NONADDITIVE
MEASURES ON METRIC SPACES

信州大学工学部 河邊 淳 * (Jun Kawabe)
Faculty of Engineering, Shinshu University

ABSTRACT. We formalize the L\’evy-Prokhorov metric and the Fortet-Mourier
metric for nonadditive measures on a metric space and show that the L\’evy $top$ol-
ogy on every uniformly equi-autocontinuous set of Radon nonadditive measures
can be metrized by such metrics. This result is proved using the uniformity for
L\’evy convergence on a bounded subset of Lipschitz functions. We describe some
applications to stochastic convergence of a sequence of measurable mappings on a
nonadditive measure space.

1. INTRODUCTION

This is an announcement of the forthcoming paper [13]. Weak convergence of
measures on a topological space not only plays a very important role in probability
theory and statistics, but is also interesting from a topological measure theoretic
view, since it gives a convergence closely related to the topology of the space on
which the measures are defined. Thus, it is possible to study weak convergence of
measures on a topological space in association with some topological properties of the
space, such as the metrizability, separability and compactness; for comprehensive
information on this convergence, readers are referred to Alexandroff [1], Billings-
ley [2], Dudley [5], Parthasarathy [21], Vakhania et al. [23], Varadarajan [24], and
references therein.

Nonadditive measures, which are set functions that are monotonic and vanish at
the empty set, have been extensively studied [4, 22, 25]. They are closely related to
nonadditive probability theory and the theory of capacities and random capacities.
Nonadditive measures have been used in expected utility theory, game theory, and
some economic topics under Knightian uncertainty [3, 8, 14, 16, 19, 20].

2010 Mathematics Subject Classification. Primary $28A33$ ; Secondary $28A12,28C15,28E10.$
Key words and phrases. Nonadditive measure; Weak convergence; L\’evy-Prokhorov metric,

Fortet-Mourier metric; L\’evy topology; Portmanteau theorem; Metrizability.
$*$ Research supported by Grant-in-Aid for Scientific Research (C) No. 23540192, Japan Society

for the Promotion of Sciences (JSPS).

数理解析研究所講究録
第 1820巻 2012年 43-56 43



The notion of weak convergence of nonadditive measures was formulated by

Girotto and Holzer in a fairly abstract setting [10]. Some of their fundamental

results for weak convergence, such as the portmanteau theorem and the direct and

converse Prokhorov theorems, have been extended to the nonadditive case. In par-

ticular, the portmanteau theorem allows us to show that weak topology, which is

topology generated by weak convergence, coincides with the L\’evy topology, which

is the topology generated by convergence of measures on a special class of sets.

Although the metrizability of a topology is usually one of the main topics in topo-

logical theory, there seem to be no reports that focus on the metrizability of the

L\’evy topology of nonadditive measures. The aims of this paper are (i) to present

successful nonadditive analogs of the theory of weak convergence of measures with
a particular focus on metrizability, and (ii) to supply weak convergence methods to

related fields.
The remainder of the paper is organized as follows. In Section 2 we recall the

notion of regularity systems of sets that are crucial for formalizing the portmanteau

theorem [10]. We also describe some new properties for later use and some examples

of regularity systems. In Section 3 we discuss the possibility of metrizing subsets

of nonadditive measures on a metric space. In particular, we show that the L\’evy

topology on the set of all Radon and autocontinuous nonadditive measures on a
separable metric space can be metrized. In Section 4 we introduce a Levy-Prokhorov

metric and a Fortet-Mourier metric on the space of nonadditive measures on a

metric space. In Section 5 we show that the L\’evy topology on a uniformly equi-

autocontinuous set of Radon nonadditive measures can be metrized by the L\’evy-

Prokhorov and Fortet-Mourier metrics. This result is proved using the uniformity

of the L\’evy convergence on a bounded subset of Lipschitz functions. In Section 6

we describe some applications to stochastic convergence of a sequence of measurable
mappings defined on a nonadditive measure space.

2. REGULARITY SYSTEM AND THE PORTMANTEAU THEOREM

Throughout the paper, unless stated otherwise, $X$ is a Hausdorff space and $\mathcal{B}$

is a field containing all open subsets of $X$ . Let $2^{X}$ be the family of all subsets of

X. For a set $A\subset X,$ $A^{-},$ $A^{o}$ , and $\partial A$ denote the closure, interior, and boundary

of $A$ , respectively. $\mathbb{R}$ and $\mathbb{N}$ denote the set of all real numbers and the set of all

natural numbers, respectively. Let $\chi_{A}$ be the characteristic function of a set $A$ . For

each $x\in X,$ $\delta_{x}$ denotes the unit mass at $x\in X$ defined by $\delta_{x}(A)$ $:=\chi_{A}(x)$ for all
$A\subset X$ . We say that a set function $\mu$ : $\mathcal{B}arrow[0, \infty)$ is a nonadditive measure on
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$X$ if $\mu(\emptyset)=0$ and $\mu(A)\leq\mu(B)$ whenever $A,$ $B\in \mathcal{B}$ and $A\subset B$ . Let $\mathcal{M}(X)$ be
the set of all such measures. As usual, the conjugate $\overline{\mu}$ of $\mu$ is defined by $\overline{\mu}(B)$ $:=$

$\mu(X)-\mu(B^{c})$ for all $B\in \mathcal{B}$ , where $B^{c}$ denotes the complement of the set $B$ . For a
subset $\mathcal{P}\subset \mathcal{M}(X)$ , let $\overline{\mathcal{P}}$

$:=\{\overline{\mu}:\mu\in \mathcal{P}\}$ ; this is called the conjugate space of $\mathcal{P}.$

Girotto and Holzer formulated a nonadditive extension of the portmanteau theorem
for weak convergence of measures using the following regularity systems of sets [10].

Definition 1. Let $\mu\in \mathcal{M}(X)$ .
(1) The outer regularization $\mu^{*}$ of $\mu$ is the nonadditive measure defined by $\mu^{*}(A)$ $:=$

$\inf${$\mu(U)$ : $A\subset U$ and $U$ is open} for every subset $A$ of $X$ , and the inner regular-
ization $\mu_{*}$ of $\mu$ is the nonadditive measure defined by $\mu_{*}(A)$ $:= \sup\{\mu(C)$ : $C\subset$

$A$ and $C$ is closed} for every subset $A$ of $X$ . We denote by $\mathcal{R}_{\mu}$ the family of all
$B\in \mathcal{B}$ satisfying $\mu(B)=\mu^{*}(B)=\mu_{*}(B)$ and we call this the $\mu$ -regularity system.

(2) The strongly outer regularization $\mu^{\natural}$ of $\mu$ is the nonadditive measure defined
by $\mu^{\natural}(A)$ $:= \inf${ $\mu(C)$ : $A\subset C$ and $C\in \mathcal{R}_{\mu}$ is closed} for every subset $A$ of $X,$

and the strongly inner regularization $\mu_{\natural}$ of $\mu$ is the nonadditive measure defined by
$\mu_{\natural}(A)$ $:= \sup${$\mu(U)$ : $U\subset A$ and $U\in \mathcal{R}_{\mu}$ is open} for every subset $A$ of $X$ . We
denote by $\mathcal{R}_{\mathring{\mu}}$ the family of all $B\in \mathcal{B}$ satisfying $\mu(B)=\mu^{\natural}(B)=\mu_{\natural}(B)$ and we call
this the $\mu$-strong regularity system.

Remark 1. (1) This type of regularity was introduced and discussed by Narukawa
and Murofushi for nonadditive measures on locally compact spaces [18].

(2) The regularity notion defined above is different from that in [12, Definition 5]
and it is appropriate for our purpose. If $\mu$ is autocontinuous, then the former follows
from the latter.

For later use, we collect some properties of the $\mu$-regularity and $\mu$-strong regularity
systems; see [10, Remark 2.2 and Theorem 2.3] for proofs.

Proposition 1. Let $\mu\in \mathcal{M}(X)$ and $B\in \mathcal{B}.$

(1) $\mathcal{R}_{\mu}^{o}\subset \mathcal{R}_{\mu}.$

(2) $\emptyset,$

$X\in \mathcal{R}_{\mu}^{o}.$

(3) $B\in \mathcal{R}_{\mu}$ if and only if $B^{c}\in \mathcal{R}_{\overline{\mu}}.$

(4) $B\in \mathcal{R}_{\mu}^{o}$ if and only if $B^{c} \in \mathcal{R}\frac{\circ}{\mu}.$

Let $\mu\in \mathcal{M}(X)$ and let $f$ be a real-valued function on $X$ such that $\{f>t\}\in \mathcal{B}$

for all $t\in \mathbb{R}$ . The (asymmetric) Choquet integral of $f$ with respect to $\mu$ is defined
by

$\int_{X}fd\mu:=\int_{0}^{\infty}\mu(\{f>t\})dt-\int_{-\infty}^{0}\{\mu(X)-\mu(\{f>t\})\}dt$
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whenever the Lebesgue integrals of the right-hand side of the above equation are not

both $\infty$ . We say that $f$ is Choquet integrable if $\int_{X}fd\mu<\infty$ . Every bounded contin-

uous function and every characteristic function of a set in $\mathcal{B}$ is Choquet integrable.

In this paper, the symbol $\int_{X}fd\mu$ always denotes the Choquet integral.

We denote by $C_{b}(X)$ the real Banach space of all bounded, continuous real-valued

functions on $X$ with norm $\Vert f\Vert_{\infty}$ $:= \sup_{x\in X}|f(x)|$ . The weak topology on $\mathcal{M}(X)$ is

the topology such that, for any $\mu\in \mathcal{M}(X)$ , the basic neighborhoods of $\mu$ are sets of

the form:

$V_{\mu,\epsilon,f_{1},\ldots,f_{k}}:= \{\nu\in \mathcal{M}(X):|\int_{X}f_{i}dv-\int_{X}f_{i}d\mu|<\epsilon(i=1, \ldots, k)\},$

where $\epsilon>0,$ $k\in \mathbb{N}$ , and $f_{1},$
$\ldots,$

$f_{k}\in C_{b}(X)$ [ $10$ , Definition 3.1]. Given a net $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$

in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ , we say that $\mu_{\alpha}$ weakly converges to $\mu$ and write $\mu_{\alpha}arrow^{w}\mu$

if $\mu_{\alpha}$ converges to $\mu$ with respect to the weak topology. Obviously, $\mu_{\alpha}arrow^{w}\mu$ if and

only if $\int_{X}fd\mu_{\alpha}arrow\int_{X}fd\mu$ for every $f\in C_{b}(X)$ .
There are already some convergence notions of nonadditive measures [17, 26].

However, the following proposition shows that weak convergence has the advantage

of giving a convergence related to the topology of $X$ ; see [24, Theorem II.9] for the

proof.

Proposition 2. Assume that $\mathcal{D}(X);=\{\delta_{x}:x\in X\}$ is endowed with the relative

topology induced by the weak topology on $\mathcal{M}(X)$ . Then $X$ is homeomorphic to $\mathcal{D}(X)$

if and only if $X$ is completely regular.

Now we are ready to introduce a nonadditive extension of the portmanteau theo-

rem, which gives a comprehensive list of conditions equivalent to weak convergence.
The following is a special case of [10, Theorem 3.7] and is enough for our purpose

in this paper.

Theorem 1 (The portmanteau theorem). Let $X$ be a normal space and let $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$

be a net in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ . The following conditions are equivalent:

(i) $\mu_{\alpha}arrow^{w}\mu.$

(ii) $\overline{\mu}_{\alpha}arrow^{w}\overline{\mu}.$

(iii) $\lim\sup_{\alpha\in\Gamma}\mu_{\alpha}(C)\leq\mu(C)$ and $\mu(U)\leq\lim\inf_{\alpha\in\Gamma}\mu_{\alpha}(U)$ for every closed $C\in$

$\mathcal{R}_{\mu}$ and every open $U\in \mathcal{R}_{\mu}.$

(iv) $\mu_{\alpha}(B)arrow\mu(B)$ for every $B\in \mathcal{R}_{\mu}^{o}.$

(v) $\mu_{\alpha}(U)arrow\mu(U)$ for every open $U \in \mathcal{R}_{\mu}^{o}\cap \mathcal{R}\frac{\circ}{\mu}.$

(vi) $\mu_{\alpha}(C)arrow\mu(C)$ for every closed $C \in \mathcal{R}_{\mu}^{o}\cap \mathcal{R}\frac{\circ}{\mu}.$
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Recall that the L\’evy topology on $\mathcal{M}(X)$ is the topology such that, for any $\mu\in$

$\mathcal{M}(X)$ , the basic neighborhoods of $\mu$ are the sets of the form:

$W_{\mu,\epsilon,B_{1},\ldots,B_{k}}:= \{\nu\in \mathcal{M}(X):|^{\frac{v}{\nu}}(B_{i})-\frac{\mu}{\mu}(B_{i})||(B_{i})-(B_{i})|<\epsilon<\epsilon (i=1,2, \ldots, k)\},$

where $\epsilon>0,$ $k\in \mathbb{N}$ , and $B_{1},$
$\ldots,$

$B_{k} \in \mathcal{R}_{\mu}^{o}\cap \mathcal{R}\frac{\circ}{\mu}$ [ $10$ , Definition 4.1]. Given a net
$\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ , we say that $\mu_{\alpha}$ L\’evy converges to $\mu$ and write
$\mu_{\alpha}arrow^{L}\mu$ if $\mu_{\alpha}$ converges to $\mu$ with respect to the L\’evy topology. The portmanteau
theorem shows that $\mu_{\alpha}arrow^{L}\mu$ if and only if $\mu_{\alpha}(B)arrow\mu(B)$ for every $B\in \mathcal{R}_{\mu}^{o}$ , and
hence the weak topology and the L\’evy topology coincide on $\mathcal{M}(X)$ .

In the rest of this section, we study regularity systems in more detail. To this
end, we introduce the following continuity notion of nonadditive measures.

Definition 2. Let $\mu\in \mathcal{M}(X)$ .
(1) $\mu$ is said to be $c$-continuous if $\mu(C)=\inf_{n\in \mathbb{N}}\mu(C_{n})$ whenever $\{C_{n}\}_{n\in \mathbb{N}}$ is a

decreasing sequence of closed sets with $C= \bigcap_{n=1}^{\infty}C_{n}.$

(2) $\mu$ is said to be $0$-continuous if $\mu(U)=\sup_{n\in \mathbb{N}}\mu(U_{n})$ whenever $\{U_{n}\}_{n\in \mathbb{N}}$ is an
increasing sequence of open sets with $U= \bigcup_{n=1}^{\infty}U_{n}.$

(3) $\mu$ is said to be $co$-continuous if it is $c$-continuous and $0$-continuous.

Remark 2. (1) This type of continuity was introduced and discussed by Narukawa
and Murofushi for nonadditive measures on locally compact spaces [18].

(2) The generalized sequence versions of $c$-continuity and $0$-continuity are called
the total $c$-continuity and total $0$-continuity, respectively. They have previously been
discussed with applications to convergence theorems for Choquet integrals [12].

In general, $c$-continuity and $0$-continuity are independent of each other (Exam-
ples 2 and 3). We say that $X$ is perfectly normal if $X$ is normal and every closed
subset of $X$ is a $G_{\delta}$-set, which is a countable intersection of open sets. Every metric
space is perfectly normal [6, Corollary 4.1.13].

Proposition 3. Let $X$ be perfectly normal and let $\mu\in \mathcal{M}(X)$ .
(1) If $\mu$ is $c$ -continuous, then $\mathcal{R}_{\mu}$ contains all closed subsets of $X.$

(2) If $\mu$ is $0$ -continuous, then $\mathcal{R}_{\mu}$ contains all open subsets of $X.$

If $\mu$ is additive, that is, $\mu(A\cup B)=\mu(A)+\mu(B)$ whenever $A,$ $B\in \mathcal{B}$ and $A\cap B=\emptyset,$

then the $\mu$-regularity system $\mathcal{R}_{\mu}$ and the $\mu$-strong regularity system $\mathcal{R}_{\mathring{\mu}}$ are fields,
and $\mathcal{R}_{\mu}^{o}$ is the family of all $B\in \mathcal{B}$ with $\partial B\in \mathcal{R}_{\mu}$ and $\mu(\partial B)=0$ ; see [9, Theorems 2.2
and 2.5] and [10, Remark 2.2(ii)], but this is not the case for nonadditive measures
(Examples 1 and 2).
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Proposition 4. Let $\mu\in \mathcal{M}(X)$ and $B\in \mathcal{B}.$

(1) If $B\in \mathcal{R}_{\mu}^{o}$ , then $\mu(B^{-})=\mu(B^{o})$ .
(2) Let $X$ be perfectly normal. Assume that $\mu$ is $co$-continuous. Then $B\in \mathcal{R}_{\mu}^{o}$ if

and only if $\mu(B^{-})=\mu(B^{o})$ .

In probability theory, a Borel set $B$ with $\mu(B^{-})=\mu(B^{o})$ $($thus $\mu(\partial B)=0)$ is

called a $\mu$-continuity set [2, page 15]. Therefore, Proposition 4 gives a sufficient

condition for coincidence of the $\mu$-strong regularity system $\mathcal{R}_{\mu}^{o}$ with the set of all

$\mu$-continuity $B\in \mathcal{R}_{\mu}$ . Note that, in general, $\mu(\partial B)=0$ is not equivalent to $\mu(B^{-})=$

$\mu(B^{o})$ (Examples 1 and 2).

Example 1. Let $X$ $:=[0,1]$ . We define the nonadditive measure $\mu$ : $2^{X}arrow[0,1]$ as

$\mu(A):=\{\begin{array}{l}0 if A\neq X1 if A=X\end{array}$

for each subset $A$ of $X.$

(1) $\mu$ is co-continuous.
(2) Let $U$ $:=(0,1)$ . Then $U^{c}\in \mathcal{R}_{\mu}^{o}$ , but $U\not\in \mathcal{R}_{\mu}^{o}$ . Thus, $\mathcal{R}_{\mu}^{o}$ is not a field.

(3) Let $U$ $:=(0,1)$ . Then $\partial U\in \mathcal{R}_{\mu}$ and $\mu(\partial U)=0$ , but $U\not\in \mathcal{R}_{\mu}^{o}$ . Furthermore,
$\mu(U^{-})\neq\mu(U^{o})$ .

Example 2. Let $X$ $:=[0,1]$ . We define the nonadditive measure $\mu$ : $2^{X}arrow[0,1]$ as

$\mu(A):=\{\begin{array}{l}0 if A\subset\{0,1\}1 if A\not\subset\{0,1\}\end{array}$

for each subset $A$ of $X.$

(1) $\mu$ is $0$-continuous but is not $c$-continuous.
(2) Let $U$ $:=(0,1)$ . Then $U\in \mathcal{R}_{\mu}$ , but $U^{c}\not\in \mathcal{R}_{\mu}$ . Thus, $\mathcal{R}_{\mu}$ is not a field.

(3) Let $V$ $:=(0,1/2)$ . Then $V\in \mathcal{R}_{\mu}^{o}$ , but $\mu(\partial V)\neq 0$ . Furthermore, $\mu(V^{-})=$

$\mu(V^{o})$ .

Example 3. Let $X$ $:=(0,1)$ . We define the nonadditive measure $\mu$ : $2^{X}arrow[0,1]$ as

$\mu(A):=\{\begin{array}{l}0 if A\neq X1 if A=X\end{array}$

for each subset $A$ of $X$ . Then $\mu$ is $c$-continuous but is not -continuous.

3. METRIZATION OF SUBSETS OF $\mathcal{M}(X)$

In this section, we discuss the possibility of metrizing subsets of $\mathcal{M}(X)$ in the case
in which $X$ is a separable metric space. In the remainder of the paper, let ($X$, d) be

a metric space with metric $d$ . Recall that a real-valued function $f$ on $X$ is called
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Lipschitz if there is a constant $K>0$ such that $|f(x)-f(y)|\leq Kd(x, y)$ for all
$x,$ $y\in X$ . The Lipschitz seminorm is defined as $\Vert f\Vert_{L}:=\sup\{|f(x)-f(y)|/d(x, y)$ :
$x,$ $y\in X,$ $x\neq y\}$ . Let $BL(X, d)$ denote the real Banach space of all bounded, real-
valued Lipschitz functions $f$ on $X$ with norm $\Vert f\Vert_{BL}$ $:=\Vert f\Vert_{L}+\Vert f\Vert_{\infty}$ . For any subset
$A$ of $X$ , let $d(x, A)$ be the distance from $x$ to $A$ , defined as $d(x, A)$ $:= \inf\{d(x, a)$ :
$a\in A\}.$

Proposition 5. Let $\mu,$ $v\in \mathcal{M}(X)$ . Assume that $\int_{X}fd\mu=\int_{X}fdv$ for every $f\in$

$BL(X, d)$ .

(1) If $\mu$ and $v$ are $c$-continuou $s$, then $\mu(C)=v(C)$ for every closed $C\subset X.$

(2) If $\mu$ and $v$ are $0$-continuous, then $\mu(U)=v(U)$ for every open $U\subset X.$

Proposition 6. Let $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ be a net in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ . Assume that $\mu$ is
$co$-continuous. The following conditions are equivalent:

(i) $\mu_{\alpha}arrow^{w}\mu.$

$( ii)\int_{X}fd\mu_{\alpha}arrow\int_{X}fd\mu$ for every $f\in BL(X, d)$ .

Let $\mathcal{M}_{rco}(X)$ denote the space of all $\mu\in \mathcal{M}(X)$ that are co-continuous and $SatiS\mathfrak{h}r$

$\mu(B)=\mu^{*}(B)=\mu_{*}(B)$ for all $B\in \mathcal{B}$ . Then it is readily evident that $\mathcal{M}_{r\omega}(X)$

coincides with its conjugate space $\overline{\mathcal{M}_{rco}(X)}$. The following theorem can be proved
by Theorem 1 and Propositions 2, 5 and 6 in the same way as [21, Theorem II.6.2].

Theorem 2. The L\’evy topology on $\mathcal{M}_{rco}(X)$ is metrizable as a sepamble metric
space if and only if $X$ is a sepamble metric space.

Let $\mu\in \mathcal{M}(X)$ . We say that $\mu$ is autocontinuous if $\lim_{narrow\infty}\mu(A\cup B_{n})=$

$\lim_{narrow\infty}\mu(A\backslash B_{n})=\mu(A)$ whenever $A,$ $B_{n}\in \mathcal{B}$ for all $n\in \mathbb{N}$ and $\lim_{narrow\infty}\mu(B_{n})=0.$

We also say that $\mu$ is Radon if, for every $B\in \mathcal{B}$ , there are an increasing sequence
$\{K_{n}\}_{n\in \mathbb{N}}$ of compact sets and a decreasing sequence $\{U_{n}\}_{n\in \mathbb{N}}$ of open sets such that
$K_{n}\subset B\subset U_{n}$ for all $n\in \mathbb{N}$ and $\lim_{narrow\infty}\mu(U_{n}\backslash K_{n})=0.$

Proposition 7. Let $\mu\in \mathcal{M}(X)$ . If $\mu$ is Radon and autocontinuous, then $\mu,\overline{\mu}\in$

$\mathcal{M}_{rco}(X)$ .

By Theorem 2 and Proposition 7, we have the following theorem.

Theorem 3. Each of the L\’evy topologies on the set of all Radon and autocontinuous
$\mu\in \mathcal{M}(X)$ and on its conjugate space is metrizable as a sepamble metric space if
and only if $X$ is a sepamble metric space.
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4. THE L\’E$VY$-PROKHOROV METRIC AND THE $FoRTET-$MOURIER METRIC

In this section, we introduce a L\’evy-Prokhorov metric and a Fortet-Mourier

metric on $\mathcal{M}(X)$ . For any subset $A$ of $X$ and $\epsilon>0$ , let $A^{\epsilon}$ $:=\{x\in X:d(x, A)<\epsilon\}.$

Definition 3. For any $\mu,$ $v\in \mathcal{M}(X)$ , let $\rho(\mu, v)$ $:=iryf\{\epsilon>0$ : $\mu(B)\leq v(B^{\epsilon})+$

$\epsilon$ for all $B\in \mathcal{B}$ }.

In the same way as for the additive case [5, Theorem 11.3.1], it can be proved

that $\rho$ satisfies $\rho(\mu, v)\geq 0,$ $\rho(\mu, \mu)=0$ , and $\rho(\mu, \nu)\leq\rho(\mu, \lambda)+\rho(\lambda, \nu)$ for any

$\mu,$ $v,$ $\lambda\in \mathcal{M}(X)$ .

Example 4. The symmetry relation $\rho(\mu, \nu)=\rho(v,\mu)$ does not hold in general. Let
$X$ $:=[0,1]$ and let $\mu$

$:=\delta_{0}$ . We define the nonadditive measure $v:2^{X}arrow[0,1]$ as

$\nu(A):=\{\begin{array}{ll}0 if A=\emptyset 1/2 if A\neq\emptyset and 0\not\in A1 if0\in A.\end{array}$

Then $\rho(\mu, \nu)=0$ , but $\rho(v,\mu)=1/2.$

Proposition 8. Let $\mu,$ $v\in \mathcal{M}(X)$ and assume that $\mu(X)=v(X)$ . Then $\rho(\mu, v)=$

$\rho(\overline{\nu},\overline{\mu})$ .

Example 5. Proposition 8 is no longer true if $\mu(X)\neq\nu(X)$ . Let $X$ $:=[0,1]$ and

let $\mu$
$:=\overline{\delta}_{0}/2$ and $v$ be the same as in Example 4. Then $\mu(X)=1/2\neq 1=v(X)$ .

The conjugate $\overline{\nu}$ of $v$ is

$\overline{v}(A):=\{\begin{array}{ll}0 if A=\emptyset or 0\not\in A1/2 if A\neq X and 0\in A1 if A=X.\end{array}$

Then $\rho(\mu, v)=0$ , but $\rho(\overline{v},\overline{\mu})=1/2.$

Definition 4. For any $\mu,$ $v\in \mathcal{M}(X)$ , let $\pi(\mu, \nu)$ $:=\rho(\mu, \nu)+\rho(v, \mu)+\rho(\overline{\mu},\overline{v})+$

$\rho(\overline{\nu},\overline{\mu})$ ; we call this the L\’evy-Prokhorov semimetric.

The following properties can be proved by the standard argument in the additive

case.

Proposition 9. Let $\mu,$ $\nu\in \mathcal{M}(X)$ .
(1) $\pi$ is a semimetric on $\mathcal{M}(X)$ . Furthermore, $\pi(\mu, \nu)=\pi(\overline{\mu},\overline{\nu})$ .

(2) Assume that $\mu$ and $\nu$ are $c$-continuous and $\mu(B)=\mu_{*}(B)$ and $\nu(B)=v_{*}(B)$

for all $B\in \mathcal{B}$ . Then $\mu=\nu$ whenever $\rho(\mu, \nu)=\rho(v, \mu)=0.$

(3) Assume that $\mu$ and $\nu$ are $0$-continuous and $\mu(B)=\mu^{*}(B)$ and $\nu(B)=v^{*}(B)$

for all $B\in \mathcal{B}$ . Then $\mu=\nu$ whenever $\rho(\overline{\mu},\overline{\nu})=\rho(\overline{v},\overline{\mu})=0.$
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Thus, by Propositions 7 and 9, we have the following.

Proposition 10. The L\’evy-Prokhorov semimetric $\pi$ is a metric on $\mathcal{M}_{r\omega}(X)$ , and
hence it is also a metric on the set of all Radon and autocontinuous $\mu\in \mathcal{M}(X)$ and
on its conjugate space.

Next we define the Fortet-Mourier metric on $\mathcal{M}(X)$ that is closely linked to weak
convergence [7].

Definition 5. For any $\mu,$ $v\in \mathcal{M}(X)$ , let

$\kappa(\mu, v)$ $:= \sup\{|\int_{X}fd\mu-\int_{X}fd\nu|$ : $f\in BL(X, d),$ $\Vert f\Vert_{BL}\leq 1\}.$

We call this the $Fortet-$Mourier semimetric.

Proposition 11. Let $\mu,$ $v\in \mathcal{M}(X)$ .
(1) $\kappa$ is a semimetric on $\mathcal{M}(X)$ . Furthermore, $\kappa(\mu, \nu)=\kappa(\overline{\mu},\overline{v})$ .
(2) Assume that $\mu$ and $v$ are $c$-continuous and $\mu(B)=\mu_{*}(B)$ and $v(B)=v_{*}(B)$

for all $B\in \mathcal{B}$ . Then $\mu=\nu$ whenever $\kappa(\mu, v)=0.$

(3) Assume that $\mu$ and $\nu$ are $0$-continuous and $\mu(B)=\mu^{*}(B)$ and $\nu(B)=v^{*}(B)$

for all $B\in \mathcal{B}$ . Then $\mu=v$ whenever $\kappa(\mu, v)=0.$

(4) The semimetric $\kappa$ is a metric on $\mathcal{M}_{rco}(X)$ , and hence it is also a metric on
the set of all Radon and autocontinuous $\mu\in \mathcal{M}(X)$ and on its conjugate $\mathcal{S}pace.$

Proposition 12. For any $\mu,$ $v\in \mathcal{M}(X)$ , we have $\rho(\mu, v)\leq\kappa(\mu, v)+\kappa(\mu, v)^{1/2}.$

5. METRIZATION BY THE $LEVY$’-PROKHOROV AND $FoRTET-$MOURIER METRICS

In this section, we show that the L\’evy topology on certain sets of nonadditive
measures can be metrized by the L\’evy-Prokhorov metric and the Fortet-Mourier
metric. To this end, we introduce the notion of uniform equi-autocontinuity of
nonadditive measures.

Definition 6. Let $\mathcal{P}$ be a subset of $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ .
(1) $\mu$ is said to be uniformly autocontinuous if, for every $\epsilon>0$ , there is $\delta>0$

such that, for any $A,$ $B\in \mathcal{B},$ $\mu(B)<\delta$ implies $\mu(A\cup B)-\epsilon\leq\mu(A)\leq\mu(A\backslash B)+\epsilon.$

(2) $\mathcal{P}$ is said to be uniformly equi-autocontinuous if, for every $\epsilon>0$ , there is $\delta>0$

such that, for any $\mu\in \mathcal{P}$ and $A,$ $B\in \mathcal{B},$ $\mu(B)<\delta$ implies $\mu(A\cup B)-\epsilon\leq\mu(A)\leq$

$\mu(A\backslash B)+\epsilon.$

Let $\mu\in \mathcal{M}(X)$ . We say that $\mu$ is subadditive if $\mu(A\cup B)\leq\mu(A)+\mu(B)$ for every
$A,$ $B\in \mathcal{B}$ . Obviously, every subadditive measure is uniformly autocontinuous, and
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every subset of the subadditive measures is uniformly equi-autocontinuous. Recall

that $\mu$ is tight if, for every $\epsilon>0$ , there is a compact subset $K$ of $X$ such that
$\mu(X\backslash K)<\epsilon$ . It is obvious that every Radon $\mu\in \mathcal{M}(X)$ is tight.

Unlike the Lebesgue integral, the Choquet integral is generally nonlinear with

respect to its integrand owing to the nonadditivity of $\mu$ . That is, we may have $\int_{X}(f+$

$g)d \mu\neq\int_{X}fd\mu+\int_{X}gd\mu$ for some functions $f$ and $g$ . This is one of the reasons why

we should assume the uniform equi-autocontinuity of a set of nonadditive measures
in the following theorems. The following theorem shows the uniformity for the L\’evy

convergence on a bounded subset of Lipschitz functions and it plays an essential

part in the proof of Theorem 5.

Theorem 4. Let $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ be a net in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ . Assume that $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$

is unifomly equi-autocontinuous and $\mu$ is uniformly autocontinuous. Furthermore,

assume that $\mu$ is tight. The following conditions are equivalent:

(i) $\int_{X}fd\mu_{\alpha}arrow\int_{X}fd\mu$ for every $f\in BL(X, d)$ .
(ii) $\kappa(\mu_{\alpha}, \mu)arrow 0.$

Theorem 5. Let $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ be a net in $\mathcal{M}(X)$ and $\mu\in \mathcal{M}(X)$ . Assume that $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$

is uniformly equi-autocontinuous and $\mu$ is uniformly autocontinuous. Furthemore,

assume that $\mu$ is tight and $co$-continuous. The following conditions are equivalent:

(i) $\mu_{\alpha}arrow^{L}\mu.$

(ii) $\mu_{\alpha}arrow^{w}\mu.$

(iii) $\int_{X}fd\mu_{\alpha}arrow\int_{X}fd\mu$ for every $f\in BL(X, d)$ .

(iv) $\kappa(\mu_{\alpha}, \mu)arrow 0.$

(v) $\pi(\mu_{\alpha}, \mu)arrow 0.$

Remark 3. In Theorem 5, the co-continuity of $\mu$ is needed only in the proof of the
implication $(v)\Rightarrow(i)$ .

Since $\pi(\mu, \nu)=\pi(\overline{\mu},\overline{\nu})$ and $\kappa(\mu, \nu)=\kappa(\overline{\mu},\overline{v})$ for any $\mu,$ $\nu\in \mathcal{M}(X)$ , the following

proposition easily follows from Theorem 1.

Proposition 13. Let $\mathcal{P}\subset \mathcal{M}(X)$ . The L\’evy topology on $\mathcal{P}$ is metrizable with

respect to $\pi$ (or $\kappa$) if and only if the L\’evy topology on $\overline{\mathcal{P}}$ is metrizable with respect

to $\pi$ (or $\kappa$).

By Theorem 5 and Propositions 13, we have the following corollaries.
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Corollary 1. Let $\mathcal{P}\subset \mathcal{M}(X)$ be uniformly equi-autocontinuous. Assume that every
$\mu\in \mathcal{P}$ is Radon. Each L\’evy topology on $\mathcal{P}$ and on its conjugate space $\overline{\mathcal{P}}$ is metrizable
with respect to $\pi$ and $\kappa.$

Corollary 2. Each L\’evy topology on the set of all Radon and subadditive $\mu\in \mathcal{M}(X)$

and on its conjugate space is metrizable with respect to $\pi$ and $\kappa.$

Let $\mu\in \mathcal{M}(X)$ . We say that $\mu$ is submodular if $\mu(A\cup B)+\mu(A\cap B)\leq\mu(A)+\mu(B)$

for every $A,$ $B\in \mathcal{B}$ and it is supermodular if the reverse inequality holds. We also
say that $\mu$ is continuous if it is continuous from above, that is, $\mu(A_{n})\downarrow\mu(A)$

whenever $\{A_{n}\}_{n\in \mathbb{N}}\subset \mathcal{B}$ and $A\in \mathcal{B}$ satisfy $A_{n}\downarrow A$ , and it is continuous from below,
that is, $\mu(A_{n})\uparrow\mu(A)$ , whenever $\{A_{n}\}_{n\in \mathbb{N}}\subset \mathcal{B}$ and $A\in \mathcal{B}$ satisfy $A_{n}\uparrow A$ . We
denote by $CS\mathcal{U}\mathcal{B}\mathcal{M}(X)$ the set of all continuous and submodular $\mu\in \mathcal{M}(X)$ and
by $\mathcal{C}S\mathcal{U}\mathcal{P}\mathcal{M}(X)$ the set of all continuous and supermodular $\mu\in \mathcal{M}(X)$ . Let $\mathcal{B}(X)$

be the $\sigma$-field of all Borel subsets of $X$ , that is, the $\sigma$-field generated by the open
subsets of $X.$

Theorem 6. Let $X$ be a complete or locally compact, sepamble metric space. Let
$\mathcal{B}=\mathcal{B}(X)$ .

(1) $\overline{CS\mathcal{U}\mathcal{B}\mathcal{M}(X)}=CS\mathcal{U}\mathcal{P}\mathcal{M}(X)$ .
(2) The L\’evy topology on $\mathcal{C}\mathcal{S}\mathcal{U}\mathcal{B}\mathcal{M}(X)$ is metrizable with respect to $\pi$ and $\kappa.$

(3) The L\’evy topology on $CS\mathcal{U}\mathcal{P}\mathcal{M}(X)$ is metrizable with respect to $\pi$ and $\kappa.$

Let $\mu\in \mathcal{M}(X)$ and let $\lambda\in \mathbb{R}$ . We say that $\mu$ satisfies the $\lambda$ -rule if $\mu(A\cup B)=$

$\mu(A)+\mu(B)+\lambda\cdot\mu(A)\cdot\mu(B)$ whenever $A,$ $B\in \mathcal{B}$ and $A\cap B=\emptyset$ [$25$ , Definition 4.3].
Every nonadditive measure satisfying the $\lambda$-rule is subadditive when $\lambda<0$ ; it is
superadditive when $\lambda>0$ ; and it is additive when $\lambda=0$ . The following example
gives a uniformly equi-autocontinuous set of Radon nonadditive measures that are
both subadditive and superadditive.

Example 6. Let $\mathcal{Q}$ be a set of Radon finitely additive $v\in \mathcal{M}(X)$ with $\sup_{\nu\in Q}\nu(X)<$

$\infty$ . Let $\lambda_{1}$ and $\lambda_{2}$ be real constants with $\lambda_{1}<0<\lambda_{2}$ . For each $\lambda\in \mathbb{R}$ , we define
the function $\varphi_{\lambda}$ : $[0, \infty)arrow[0, \infty)$ as

$\varphi_{\lambda}(t):=\{\begin{array}{ll}\frac{e^{\lambda t}-1}{\lambda} (\lambda\neq 0)t (\lambda=0)\end{array}$

and we define the Radon nonadditive measure $\varphi_{\lambda}\circ v:\mathcal{B}arrow[0, \infty)$ as $(\varphi_{\lambda}\circ v)(B)$ $:=$

$\varphi_{\lambda}(\nu(B))$ for all $B\in \mathcal{B}$ . Then it is routine to show that each $\varphi_{\lambda}ov$ satisfies the $\lambda$-rule
and the set $\mathcal{P}$ $:=\{\varphi_{\lambda}ov : \lambda_{1}\leq\lambda\leq\lambda_{2}, v\in \mathcal{Q}\}$ is uniformly equi-autocontinuous.
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Consequently, by Corollary 1, the L\’evy topology on $\mathcal{P}$ is metrizable with respect to
$\pi$ and $\kappa.$

A set $M\subset \mathcal{M}(X)$ is said to be uniformly tight if, for every $\epsilon>0$ , there is a
compact subset $K$ of $X$ such that $\mu(X\backslash K)<\epsilon$ for all $\mu\in M$ . The uniform
equi-autocontinuity can also be utilized in the proof of a nonadditive version of the

well-known LeCam theorem concerning the uniform tightness of a weakly convergent

sequence of measures [5, Theorem 11.5.3].

Theorem 7. Let $\{\mu_{n}\}_{n\in N}\subset \mathcal{M}(X)$ be a sequence and let $\mu\in \mathcal{M}(X)$ . Assume that
$\{\mu_{n}\}$ is uniformly equi-autocontinuous and each $\mu_{n}$ is Radon. Furthermore, assume
that $\mu$ is tight and $c$-continuous. If $\mu_{n}arrow^{L}\mu$ , then $\{\mu_{n}\}$ is uniformly tight.

6. APPLICATIONS

In this section, we give some applications to stochastic convergence of sequences

of metric space-valued measurable mappings on a nonadditive measure space. Let
$(\Omega, \mathcal{A})$ be a measurable space, that is, $\Omega$ is a non-empty set and $\mathcal{A}$ is a $\sigma$-field of
subsets of $\Omega$ . Throughout this section, let ($X$ , d) be a metric space and let $\mathcal{B}=\mathcal{B}(X)$ .
We denote by $\mathcal{F}(\Omega, X)$ the set of all mappings $\xi$ : $\Omegaarrow X$ that are measurable with

respect to the $\sigma$-fields $\mathcal{A}$ and $\mathcal{B}(X)$ .

Let $\xi\in \mathcal{F}(\Omega, X)$ . Let $P:\mathcal{A}arrow[0, \infty)$ be a nonadditive measure. The nonadditive

measure $P\circ\xi^{-1}\in \mathcal{M}(X)$ defined by $P\circ\xi^{-1}(E)$ $:=P(\xi^{-1}(E))$ for every $E\in$

$\mathcal{B}(X)$ is called the distribution of $\xi$ . Let $\xi,$ $\eta\in \mathcal{F}(\Omega, X)$ , one of which is separably

valued, that is, the range space is a separable subset of $X$ . Then the function
$\omega\in\Omega\mapsto d(\xi(\omega), \eta(\omega))$ is measurable with respect to the $\sigma$-fields $\mathcal{A}$ and $\mathcal{B}(\mathbb{R})[23,$

Proposition I.1.9]. Thus, we say that a sequence $\{\xi_{n}\}_{n\in N}\subset \mathcal{F}(\Omega, X)$ converges in

measure to a separably valued $\xi\in \mathcal{F}(\Omega, X)$ and write $\xi_{n}arrow^{P}\xi$ if $\lim_{narrow\infty}P(\{\omega\in$

$\Omega$ : $d(\xi_{n}(\omega), \xi(\omega))\geq\epsilon\})=0$ for every $\epsilon>0$ . We also say that $\xi_{n}$ converges in

distribution to $\xi$ if $Po\xi_{n}^{-1}arrow^{L}Po\xi^{-1}.$

Theorem 8. Let $P:\mathcal{A}arrow[0, \infty)$ be an autocontinuous nonadditive measure. Let
$\{\xi_{n}\}_{n\in N}\subset \mathcal{F}(\Omega, X)$ and $\xi\in \mathcal{F}(\Omega, X)$ . Assume that $\xi$ is separably valued and $P\circ\xi^{-1}$

is $co$-continuous. If $\xi_{n}arrow^{P}\xi$, then $Po\xi_{n}^{-1}arrow^{L}Po\xi^{-1}.$

Remark 4. (1) By the same proof as for [15, Theorem 3.3], we can show that the

autocontinuity of $P$ is a necessary and sufficient condition for $Po\xi_{n}^{-1}arrow^{L}Po\xi^{-1}$ for

any sequence $\{\xi_{n}\}_{n\in N}\subset \mathcal{F}(\Omega, \mathbb{R})$ and $\xi\in \mathcal{F}(\Omega, \mathbb{R})$ satisfying $\xi_{n}arrow^{P}\xi$ and $Po\xi^{-1}$

is co-continuous.
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(2) Let $\{\xi_{n}\}_{n\in \mathbb{N}}\subset \mathcal{F}(\Omega, \mathbb{R})$ and $\xi\in \mathcal{F}(\Omega, \mathbb{R})$ . Denneberg [4, page 97] and
Murofushi and co-workers [15] defined the notion of convergence in distribution
as $P(\xi_{n}>t)arrow P(\xi>t)$ except at most countably many values $t$ . It is easy to
show that the L\’evy convergence $P\circ\xi_{n}^{-1}arrow^{L}Po\xi^{-1}$ and the co-continuity of $P\circ\xi^{-1}$

imply convergence in distribution in the sense of Denneberg. However, the converse
is not true.

Example 7. For each $n\in \mathbb{N}$ , we define the nonadditive measure $\mu_{n}$ : $\mathcal{B}(\mathbb{R})arrow[0,1]$

as

$\mu_{n}(E):=$ $\{\begin{array}{ll}\delta_{-1}(E) if (t, \infty)\subset E for some t\in \mathbb{R}\delta_{-1}(E)/n if (t, \infty)\not\subset Efor any t\in \mathbb{R}\end{array}$

for every $E\in \mathcal{B}(\mathbb{R})$ . Then $\mu_{n}((t, \infty))arrow\mu((t, \infty))$ for every $t\in \mathbb{R}$ , but $\mu_{n}$ does not
L\’evy converge to $\mu.$

Theorem 9. Let $P:\mathcal{A}arrow[0, \infty)$ be a uniformly autocontinuous nonadditive mea-
sure. Let $\{\xi_{n}\}_{n\in \mathbb{N}}\subset \mathcal{F}(\Omega, X)$ and $\xi\in \mathcal{F}(\Omega, X)$ . Assume that each $P\circ\xi_{n}^{-1}$ is Radon
and $P\circ\xi^{-1}$ is $co$-continuous. Furthermore, assume that $P\circ\xi_{n}^{-1}arrow^{L}P\circ\xi^{-1}$ . The
following conditions are equivalent:

(i) $Po\xi^{-1}$ is tight.
(ii) $\{P\circ\xi_{n}^{-1}\}_{n\in \mathbb{N}}$ is uniformly tight.

7. CONCLUSION

We formalized the L\’evy-Prokhorov metric and the Fortet-Mourier metric for non-
additive measures on a metric space and showed that the L\’evy topology on every
uniformly equi-autocontinuous set of Radon nonadditive measures can be metrized
by such metrics. This result was proved using the uniformity for the L\’evy conver-
gence on a bounded subset of Lipschitz functions. In applications to nonadditive
measure theory, we showed that convergence in measure implies convergence in dis-
tribution for a sequence of measurable mappings on an autocontinuous measure
space. We also showed the uniform tightness of a L\’evy convergent sequence of mea-
surable mappings on a uniformly autocontinuous measure space. Our results could
supply weak convergence methods for related fields, such as Choquet expected utility
theory, game theory, and some economic topics under Knightian uncertainty.

An open problem is the fact that the L\’evy topology can be metrized by the L\’evy-
Prokhorov metric and$/or$ the $Fortet-Mo$urier metric on the set of all Radon autocon-
tinuous nonadditive measures, which is not necessarily uniformly equi-autocoptinuous.
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