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Abstract

In this paper, we review our recent works for optimality conditions of ro-
bust \optimization problems. We give optimalityl conditions for the robust
counterparts(the worst-case counterparts) of uncertain (multiobjective) op-
timization problems with uncertainty data. We present necéssary and suf-
ficient optimality theorems for the robust counterpart of a nondifferentiable
convex optimization problem in the face of data uncertainty, a necessary
optimality theorem for the robust counterpart of a differentiable nonconvex
bptimiz’ation problem in the face of data uncertainty, and a necessary opti-
mality theorem for the robust counterpart of a differentiable multiobjective

problem with uncertainty data.

1. Introduction
Recently, many authors ([1-4], [7-15]) have studied optimization problems in
the face of data uncertainty within the framework of robust optimization.
In this paper, we review our recent works for optimality conditions of ro-

bust optimization problems. We give optimality conditions for the robust
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counterparts (the worst-case counterparts) of uncertain (multiobjective) op-
timization problems with uncertainty data. We give a necessary and suflicient
optimality theorem for the robust counterpart of a nondifferentiable convex
optimization problem in the face of data uncertainty ([15]), a necessary op-
timality theorem for the robust counterpart of a differentiable nonconvex
optimization problem in the face of data uncertainty ([12]), and a necessary
optimality theorem for the robust counterparf of a differentiable multiobjec-

tive problem with uncertainty data ([13]).

- 2. A Necessary and Sufficient Optimality Theorem

for Robust Convex Optimization Problem

The inner product in R" is defined by (z,y) := zTy for all z,y € R™
The nonnegative orthant of R" is denoted by R? and is defined by R%} :=
{(z1,...,7,) € R™: z; > 0}. For a set A in R", the closure of A is denoted
by clA . We say A is convex whenever pa; + (1 — p)as € A for all p € [0, 1],
a1,as € A. The indicator function d4 : R® — RU {400} is defined by

1 0, if €A,
6a(z) := (1)

+o00, . otherwise.

For an extended real-valued function‘ f on R™, the effective domain and
the epigraph are respectively defined by domf := {z € R" : f(z) < +oo}
and epif = {(z,7) € R" xR : f(z) < r}. We say that f is proper if
f(z) > —oo for all x € R™ and domf # @. Moreover, if liminf,_,; f(z') >

f(z) for all z € R™, we say f is a lower semicontinuous function. A function
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f R = RU{+o0} is said to be convex if for all u € [0,1] f((1—p)r+uy) <
(1—=p)f(z)+ puf(y) for all z,y € R™. Moreover, we say f is concave if —f is

convex. The (convex) subdifferential of f at x € R™ is defined by

{z" eR": (z",y — ) < f(y) — f(2),Vy €R"},
Of(z) = ¢ if,z € domf, \ (2)

0,  otherwise.

More generally, for any € > 0, the e-subdifferential of f at z € R™ is defined
by

| {z* eR™: (z*,y — 1) < f(y) — f(z) + eVy e R},
O.f(z) =3 if,z € domf, (3)

9, otherwise.

As usual, for any proper convex function f on R™, its conjugate function
J* i R* = RU {400} is defined by |

f*(z*) = sup{(z*, z) — f(z)} for all z* € R™
z€R™

For details see [16].
‘Lemma 2.1. (cf. [6]) Let / be an arbitrary index set and let f;, i € I,
be proper lower semicontinuous convex functions on R”. Suppose that there
exists zyp € R” such that sup;c; fi(zo) < 0o. Then

epi(sup f;)" = cl( co| Jepif;),

= iel
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-where sup f; : R® = R U {+oo} is defined by (sup f;)(z) = sup fi(z) for all
icl , i€l iel

r € R™.

Consider the following uncertain optimization problem:

(UP) min f(z)

st. gi(z,v)£0,i=1,---,m,
where f : R®™ > Rand ¢g; : R* X R? = R, ¢ = 1,'--- ,m, are functions,
V;,, i = 1,--- ,m, are nonempty subsets in R? and v; € V;, 1@ =1,---,m.
Here we suppose that we do not know the exact values of v;, : = 1,--- ,m, but
know that v;, 2 = 1,--- , m belongs to some uncertainty sets V;, ¢ = 1,--- ,m.

The robust counterpart of (UP) is given as follows (see [1,2]);

(RUP) min f(z)

s.t. gi(il?,vi) <0, Vv €V;,, i=1,--- ,m.

A vector z € R™ is said to be a robust feasible solution of (UP) if gi(z,v;) <
0, Vu; € V;,i =1,--- ,m. Let F be the set of all the robust feasible solutions
of (UP), that is,

F:={zeR"| gz,v;) <0, Vy; €Vi, i =1,--- ,m}.
We say that z* is a robust global minimizer of (UP) if z* € F and Vz € F,
f(z) = f(z7).

In this section, using (RUP), we present Lagrange optimality conditions

for a robust global solution for (UP). The interesting feature of the Lagrange
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optimality conditions is that the number of the Lagrangean multipliers coin-

cides with the number of constraint functions.

The following proposition, which describes the relétionship between the
epigraph of a conjugate function and the e—subdifferential and which plays
a key role in deriving the main results, was recently given in [5].

Proposition 2.1. Let h: R® — RU {400} be a proper, lower semicon-

tinuous and convex function and let @ € dom f- Then
epih* = Ueso{(v, v a + € — h(a)) : 8.h(a)}.

The following theorem, which is the robust version of an alternative the-
orem, can be obtained from Theorem 2.4 and Propoéition 2.3 in [8]. For the
sake of completeness, we give a short probf here.

Theorem 2.1. [8] (Robust Theorem of the Alternative) Let f :
R” — R be a convex function and let g; : R™ x R 2=1,--- ,mbe cbntinuous
functions such that g;(-,v;) is a convex function for each u; € R?. Let V; be
a nonempty convex subset of R?, i =1,---  m. ,

Let F:={z eR" | gi(z,v:;) <0, Vo, €V, i=1,--- ,m} #0.

Suppose that for each z € R", g; (CE\, ) is a concave function. Then exact

one of the following two statements holds :

(1) (FzeR") f(z) <0, giz,v:) <0, Vo €V;, i=1,-- ,m,

i) (0,0)eepif~+c( [J epid Nigi(-,w))*).

v €V, A =0 1=1

Proof. Suppose tha;c (i) does not hold. Then for any z € F, f(z) = 0
and hence infyeg-{f(z) + 6r(z)} = 0. By assumptions, dp(-) is proper,
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lower semicontinuous and convex. So, (0, O) € epi(f + 0p)* = epif* +

m
epid}. Since 0p(z) = sup Z Xigi(z,v;), it follows from Lemma 2.1 that
v;EV;, ,\,go i=1 .

epify = epi( sup > higi(nw)) =clco( |J  epiQ_Aigi,00)")-
vi€Vi, X205 vV A0 i=1
Moreover, we can check that the concavity assumption on the functions
gi(z, -) implies the convexity of the set
U epi(zm: Xigi (-, vi))* (see the proof of Proposition 2.3 in [8]). Thus

Vi€V, Ai20 i=1 ‘
(ii) holds.

Conversely, suppose that (ii) holds. Then (0,0) € epi(f + 6r)* and hence
inf,ere{f(z) + 0r(z)} = 0. Thus for any z € F, f(z) = 0. Hence (i) does
not hold.

;From Proposition 2.1 and Theorem 2.1(Robust Theorem of the Alterna-
tive), we can obtain the following necessary and sufficient optimality theorem-
for (UP) in [15], which is a robust version of that for convex .optimization
problem. In [15], we obtained the following theorem as a corollary of a se-
quential optimality theorem for convex optimization problem.

Theorem 2.2. Let f : R® — R be a convex function and let g; : R"xRY,
i=1,---,m be continuous functions such that g;(-,v;) is a convex function
for each u; € R?. Let V; be a nonempty convex subset of R?, 2 = 1,--- ,m.

Let F :=‘{:1: eR" | gi(x,v;) £0, Vv; €V, i =1,--- ,m} # 0. Suppose that
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for each z € R", g;(z,-) is a concave function. Let 7 € F. Suppose that the

set U epi(Z Aigi(-,v;))* is closed.

v €V, A 20 i=1

Then the following statements are equivalent:

(i) Z is a robust global solution of (UP),

(i) (FmeVi, W20, i=1--,m)

0€0f(Z)+ Z Xi0g:(Z, ), Z Aigi(Z,T;) = 0.
i=1 i=1

Remark 2.1. If g; : R*xR%, i = 1,--- ,m are continuous functions such
that ¢;(-,v;) is a convex function for each v; € RY, V; is a nonempty convex
and compact subset of R, 5 =1, - - ,m, and the Slater type condition holds,

that is, there exists zy € R™ such that gi(zo,v;) <O0foralli=1,--- ,m and

all v; € V;, then the set U epi(z Aigi(+,v:))* is closed [8].
i=1

v;€V;,1, 20

3. ‘A Necessary Optimality Theorem

for Robust Nonconvex Optimization Problem

Consider the following uncertain optimization problem:

(UP) min f(z)

st. gi(z,v)£0,i=1,--- ,m,
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where f:R* + Rand g; : R* xR? = R, i =1,.--,m, are continuously
differentiable functions, V;, ¢ = 1,---,m, are nonempty convex compact
subsets in R andv; € V;, 1 =1,--- ,m.

The robust counterpart of (UP) is given as follows (see [1,2,8]);

(RUP) min f(z)

st. gi(z,v;) £0, Yy €V, i=1,--- ,m.

A vector z € R™ is said to be a robust feasible solution of (UP) if gi(z,v;) <

0, Vv; € Vi =1,--- ,m. Let F be the set of all the robust feasible solutions
of (UP), that is, -

F:={z eR"| gi(z,v:) <0, Y €V;, i =1,--- ,m}.

We say that z* is a robust local minimizer of (UP) if z* € " and 3¢ > 0
such taht Vz € F N B(z*), f() > f(z*), where Be(z*) = {z € R" | ||z —
z*|| < 6} "

Let z* € F. Let us decompose I := {1,--- ,m} into two index sets I =
- Ii(z*) U Ix(z"), where L(z*) ={i eI : Ju € Vst giz*,v;) = 0} and
L(z*) = I\ L(z*). Let V) = {v; €V | gi(z*,v;) = 0} for i € Li(z*).
Now, we define an Extended Mangasarian-Fromovitz constraint qualification

(EMFCQ) as follows:
(3d € R™)(Vu; € V) Vigi(z*,v)Td <0, i € I (z*).

In this section, we present a robust Karush-Kuhn-Tucker (KKT) neces-

sary optimality condition for (UP) in [12], where f and g;, @ = 1,---,m,
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are continuously differentiable, as follow: ’As in the classical approach to
necessary optimality conditions, the proof of the robust necessary condition
employs the robust Gordan’s theorem and linearization.

Theorem 3.1. [12] (Robust KKT necessary optimality condi-
tion) Let z* be a robust local minimizer of (UP). Suppose that g;(z,-) is
concave on V;, for each z € R™ and for each i = 1,...,m. Then, there exist

A >0with Y " A =1andv; €V;,i=1,...,msuch that

MV + ) AiVigi(@*,vi) = 0 and Aigi(z*,v;) =0, i=1,...,m. (4)

=1

Moreover, if we furthei" assume that the Extended Mangasarian-Fromovitz

constraint qualification (EMFCQ) holds, then

Vf(.fU*) + Z)\zvlgz(x*’ Ui) =0 and )‘igi(x*> Ui) = 07 P = ]-7 v bam" (5)

i=1
4. An Extension to Robust Multiob jective
Optimization Problem
Consider a uncertain multiobjective optimization problem:
(UMP) minimize (fi(z), -, filz))
subject to  g;(z,v;) £0, j=1,---,m,
Wherefi:R"%R,v i=1,---,land g; :R"xRI =R, j=1,---,m are

continuous functions and v; is a uncertain parameter, and v; € V; for some

convex compact set V; in RY.
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When [ =1, (UMP) becomes a uncertain optimization problem (UP),
which has been intensively studied in [1-3,8].

In this séction, we treat the robust approéch for (UMP), which is the
worst-case approach for (UMP). Now we associates with the uncertain mul-

tiobjective optimization problem (UMP) its robust counterpart :

(RMP)  minimize  (fi(2),+ , fi(c)
subject to glggj g;(z,v;) £0, | j=1-,m.

A vector z € R™ is a robust feasible solution of (UMP) if max,,ey, g;(z;v;) <
0, 7=1,---,m. - | |

Let F be the set of all the robust feasible solutions of (UMP).

A robust feasible solution 7 of (UMP) is a weakly robust efficient solution
of (UMP) if there does not exist a robust feasible solution z of (UMP) such
that

filz) < fi®), i=1,---,m.
Let Z € F and let us decomp’ose J = {1,--- ,m} into two index sets
J = J1(Z) U Jo(Z) where Ji(T) = {j € J | Jv; € V; s.t. g;(Z,v;) = 0} and
Jo(%) = J\ J1(2). Since T € F, J1(z) = {j € J | maxy,ey, g;(%,v;) = 0} and
Jo(Z) = {j € J | maxy,ev, 9;(Z,v;) < 0}. Let V) = {v; € V; | g;(Z,v;) = 0}
for j € J1(Z).
Assume that f; : R®* > R, i = 1,---,l,and g; : R® X R? - R, 5 =

1,--- ,m are continuously differentiable.
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Now we define an Extended Mangasarian-Fromovitz constraint qualifica-

tion (EMFCQ) for (UMP) as follows: there exists d € R" such that for any

j € J1(Z) and any v; € V),
Vlgj(f, ’Uj)Td < 0.

Now we present a necessary optimality theorems for weakly robust effi-
cient solution for (UMP), which can be obtained from Theorem 3.3 in [13]
and can be regarded as a generalization of Theo:em 3.1 in Section 3.

Theorem 4.1. Let Z € F be a weakly robust efficient solution of (UMP).
Suppose that g;(Z,-) are concave on V;, j = 1,--- , m. Then there exist \; =

0,i=1,---,1, 20, 3=1,---,m,not all zero, and 7, € V;, j=1,--- ,m

such that
[ m
D ONVE@) + D 1 Vig(3,7,) =0 (6)
i=1 j=1
and /'l’jgj(jaﬁj) :0) .7= 17 , . ‘ (7)

Moreover, if we further assume that the Extended Mangasarian-Fromovitz
constraint qualification (shortly, EMFCQ) holds, then there exist \; = 0, i =
1,-+-,1, not all zero, and o; € V;, j =1,--- ,m such that (6) and (7) hold.
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