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Abstract
In the paper, we introduce several types of definitions for minimax and maxmini
values of set-valued maps and show minimax theorems for set-valued maps by using
properties of nonconvex scalarizing functions for sets.

1 Introduction

Recently, some researchers have been investigated minimax theorems including saddle
point problems for set-valued maps based on vector optimization (see [1, 2, 4, 5]). They
show minimax theorems by using scalarization methods for vectors. In [8], we propose new
concepts for minimax and maxmini values of set-valued maps, and show some minimax
theorems by using several properties of scalarizing functions for sets introduced in 6].

The aim of the paper is to introduce several vector-valued set-valued minimax theorems.

The organization of the paper is as follows. In Section 2, we introduce some preliminary
results. In Section 3, we recall some properties of scalarizing functions for sets introduced
in [6, 7]. Moreover, by using these results, we define concepts of efficient solutions for set-
valued optimization problems. In Section 4, we introduce several types of vector-valued
set-valued minimax theorems.

2 Mathematical Preliminaries

Let A, B be nonempty subsets of a real topological vector space. We denote the topologi-
cal interior and complement of A by intA and A°, respectively; the algebraic sum, algebraic
difference of A and Bby A+ B:={a+blac A,be B}, A—B:={a—blac A, be B},
respectively; the composite function of two functions f and g by g o f. Moreover, we
denote the algebraic sum and algebraic difference of a set A and a family of nonempty
sets V C p(Z) by A+V:={A+B:BeV}and A~V :={A—B: B € V}, respectively.

Throughout the paper, (X, 7x), (Y, 7y) are real Hausdorff topological vector spaces (X,
Y for short, respectively), (Z,77) is a finite dimensional Euclidean space, ©(Z) is the
family of all nonempty subsets of Z, C is a nontrivial closed convex cone in Z (that is,
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C # {6z}, C # Z,C+C = C and XC C C for all A > 0) with nonempty topological
interior. We define a partial ordering <¢ as follows:

rx<cyify—zeCforz,ye 2.

When z <¢ y for z,y € Z, we define the order interval between z and y by [z,y] =
{z € Z|z <¢ zandz <¢ y}. We say that C is normal for the topology 7z (normal, for
short) if there is a base of neighborhoods of {6z} consisting of sets S with the property
S=(S+C)n(S-0C).

Now we define some C-property. A subset A of Z is said to be C-closed if A + C is
closed; C-proper if A+C # Z. Moreover, we say that a map F : X — p(Z) is C-property
valued on X if F(z) has the C-property for every = € X.

Let V C p(Z). Then, Ay is said to be

(i) minimal element of V if for any A € V

Ay C A+ C implies A C Ap+C,;
(i) maximal element of V if for any A € V

AgC A—C implies AC Ay —-C.

If C is replaced by intC then we call it weak minimal element (resp., weak maximal
element) of V. We denote the family of minimal element (resp., maximal element) by
MinV (resp., MaxV). Also, we denote the family of weak minimal element (resp., weak
maximal element) by MinyV (resp., Maxy V).

Next, we define some convexity and continuity notions for set-valued maps.

Definition 2.1 ([6]). Let F : X — p(Z). Then F is called

(i) natural quasi C-convex if for any z,y € X and A € (0, 1), there exists p € [0, 1] such
that

pF(z)+ (1 - p)Fy) C FOz +(1-A)y) + G

(ii) natural quasi C-concave if for any z,y € X and X € (0,1), there exists u € [0,1]
such that '

pF(z) + (1 - p)F(y) c FOz+ (1 - A)y) - C.

If C is replaced by intC we call it strictly natural quasi C-convex (resp., strict natural
quasi C-concave).

Definition 2.2 ([3]). Let F : X — p(Z) and x € X. Then,

(i) F is called lower continuous at z if for every open set V with F(z) NV # 0, there
exists an open neighborhood U of  such that F(y) NV # 0 for all y € U. We shall
say that F is lower continuous on X if it is lower continuous at every point z € X.
(ii) F is called upper continuous at z if for every open set V with F(z) C V, there
exists an open neighborhood U of z such that F'(y) C V for all y € U. We shall say
that F is upper continuous on X if it is upper continuous at every point z € X.
(iii) F is called continuous on X if F is both lower and upper continuous on X.
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3 Nonlinear scalarization for sets

To show main results, we consider the following two types of nonlinear scalarizing func-
tions for sets which are special cases of unified types of scalarizing functions introduced in
[6]: , ‘

Let A € p(Z), direction k € intC and v € Z. I} : p(Z) — RU {#o0} and S} : p(Z) —
R U {00} are defined by «

L(A):=inf{teR|tk+ve A+C},
Sp(A) =sup{tcR|tk+ve A-C},
respectively. ‘
In this section, we introduce some properties of these functions.

Proposition 3.1 ([6]). Let A,B € p(Z), k € intC and v € Z. Then, the following
statements hold:

(i) For any o € R,
IL(A+ ak) = (A) +a,
Sp(A+ ak) = S;(A) + o
(i) If BC A+ C then I?(A) < I’(B).
(iii) If A C B — C then S¥(A) < S¥(B).
Proposition 3.2 ([7]). Let A € p(Z),.k € intC andv € Z. Then, the following statements
hold: ‘

(i) IY(A) < 0o and S¥(A) > —oo.
(ii) A is C-proper if and only if IV (A) > —oo.
(iii) A is (—C)-proper if and only if S¥(A) < oco.

Proposition 3.3 ([7]). Let A € p(Z), k € intC andv € Z. Then the following statements
hold:

(i) If A is C-closed then (IV(A)k +v) € A+C,
(ii) If A is (—C)-closed then (SY(A)k+v) € A—C.

Proposition 3.4 ([8]). Let A,B € p(Z), k € intC and v € Z. Assume that I} and S}
are finite. Then, the following statements hold:

(i) If B is C-closed and B C A + intC, then
\ I (A) < I{(B).
(ii) If A is (—C)-closed and A C B — intC, then
Sp(A) < SE(B).

Let F: X — p(Z), k € intC and v € Z. We consider the following set-valued optimiza-
tion problems:
Optimize F(x)
(SP) { Subject to z € X.
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We say that g is a minimal efficient solution (resp., maximal, weak minimal, weak maxi-
mal efficient solution) of (SP) if F(zo) is a minimal element (resp., maximal, weak minimal,
weak maximal element) of F(X). Let us consider the following two composite functions:

(It o F)(z) == Iy (F(z)), z€X,
(S o F)(z) := SK(F(z)), ze€X.
Then we show sufficient conditions for the existence of these solutions by using properties

of I oF and Sy o F. .

Lemma 3.1 ([8]). Let F: X — p(Z). Assume that F is C-closed valued on X. Then the
following statements hold:

(i) For each k € intC and v € Z, there exists x(k;v) € X such that x(k;v) is a solution
of in}f((l,'; o F)(z), then x(k;v) is a weak minimal efficient solution of (SP).
€
(ii) For each k € intC and v € Z, there exists x(k;v) € X such that z(k;v) is a unique
solution of 15( (I¥ o F)(z), then z(k;v) is a minimal efficient solution of (SP).

Similarly, we obtain the following result:

Lemma 3.2 ([8]). Let F: X — p(Z). Assume that F is (—C)-closed valued on X. Then
the following statements hold: :

(i) For each k € intC andv € Z, there ezists x(k;v) € X such that x(k;v) is a solution
of sup(SY o F)(z), then z(k;v) is a weak mazimal efficient solution of (SP). :
zeX

(ii) For each k € intC and v € Z, there ezists z(k;v) € X such that z(k;v) is a unigue
solution of sup(SY o F)(x), then z(k;v) is a mazimal efficient solution of (SP).
zeX

In [8], we define another solution concepts for (SP) based on results in Lemmas 3.1 and
3.2. Let F : X — p(Z). Then, o € X is said to be proper minimal efficient solution (resp.,
proper maximal efficient solution) of (SP) if there exists k¥ € intC and v € Z such that
z(k; v) is a unique solution of lél)f( (I} o F)(z) (resp., sup(Sg o F)(z)); proper weak minimal

z zeX

efficient, solution (resp., proper weak maximal efficient solution) of (SP) if there exists k €
intC and v € Z such that z(k;v) is a solution of 12§((I}c’ o F)(x) (resp., sup(Sy o F)(x)).
. x zeX

We denote the family of sets as the image of proper minimal efficient solution (resp., proper
maximal efficient solution) and proper weak minimal efficient solution (resp., proper weak
maximal efficient solution) of (SP) by Min® F(X) (resp., Max? F(X)) and Min}, F(x) (resp.,
Max?® F(X)), respectively.

4 Minimax theorems for set-valued maps

Let F: X xY — p(Z) \ {0}. Based on several solution concepts of (SP) introduced in
Section 3, we consider the following two types of minimax and maxmini values of F:

MinMaxP F(x,y) := Min{F(z, y)|F(z,y) € Max’F(z,Y), z € X},
MaxMinP F(z,y) := Max{F(z,y)|F(z,y) € Min°F(X,y), y € Y},
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MinMax3, F(z,y) := Min{F(z,y)|F(z,y) € Max® F(z,Y), z € X},
MaxMing, F(z,y) := Max{F(z,y)|F(z,y) € Min®, F(X,y), y € Y'}.
In this section, we introduce some minimax theorems for set-valued maps.

Theorem 4.1 ([8]). Let A and B be nonempty compact convex subsets of X and Y,
respectively. Assume that C is normal. If F: A x B — p(Z) satisfies that

(i) F is continuous and compact valued on A x B,
(ii) for any y € B, F(-,y) is natural quasi C-convez on A,
(iii) for any xz € A, F(x,-) is natural quasi C-concave on B,

then,
: (MaxMin¥, F(z,y) — C) N (MinMax®, F(z,y) + C) # 0.
As a special case of Theorem 4.1, we obtain the following vector-valued minimax theo-
rem. : ,

Corollary 4.1 ([8]). Let A and B be nonempty compact convex subsets of X and Y,
respectively. Assume that C is normal and D C intC U {6z} a closed convex cone with
intD #0. If F: Ax B — o(Z) satisfies that

(i) F is singleton on A x B,

(ii) F is continuous on A x B,
(ili) for any y € B, F(-,y) is natural quasi C-convez on A,
(iv) for any x € A, F(z,-) is natural quasi C-concave on B,

then, ;
- (MaxMiny, F(z,y) — C) N (MinMaxy, F(z,y) + C) # 0.

By using Corollary 4.1 and Theorem 3.2 in [10], we obtain another type of minimax
theorem for vector-valued functions.

Corollary 4.2. Let A and B be nonempty compact convex subsets of X and\ Y, respec-
tively. Assume that C is normal. If F : A x B — p(Z) satisfies that

(i) F(z,y) := fi(z) + fa(y) where fr: A— Z and f2: B — Z,
(ii) F 1is continuous on A x B, ,

then, _
(MaxMiny, F(z, y) — C) N (MinMax,, F(z,y) + C) # 0.

Remark 4.1. Let f : X xY — Z. In Corollaries 4.1 and 4.2, we present vector-valued
minimax theorems based on MinMax,, f(z,y) and MaxMiny, f(z,y). In general, minimax
and maxmini values of f are defined as follows (see [9, 10, 11]):

min U Maxy, f(z,y) and max U Miny, f(z, y)
zeX yey
where min 4 := {a € Al(a - C)N A = {a}} and max A = {a € A|(a + C) N A = {a}}.
The following simple example shows that MaxMin,, f(z, y) # max Uzex Miny, f(z,y). Let
X :=10,1],Y :=[-2,2], C := {(z,y)* € R%0 < z, 0 < y < z} where (-,-)? is the transpose
of (-,+). Then we define a vector-valued function f : X x Y — R2 by

flz,y) = (0,2) + (y, )"
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Then MaxMin,, f(z,y) = {Miny f(z,y)|y > 1} and

max | | Min, f(z,y) = {f(z,y)ly = —2} U{f(z,y)|1 <y, z = 0}.

zeX

Hence MaxMiny, f(z,y) # max|J,x Miny f(z,y). By a similar simple example, we can
check that MinMax,, f(z,y) # min Uer Maxy, f(z, y).

Next, we introduce a strong minimax theorem for set-valued maps.

Theorem 4.2 ([8]). Let A and B be nonempty compact convex subsets of X and Y,
respectively. Assume that C is normal. If F : A X B — p(Z) satisfies that

(i) F is continuous and compact valued on A x B,
(ii) for any y € B, F(-,y) is strictly natural quasi C-convez on A,
(iii) for any z € A, F(z,-) is strictly natural quasi C-concave on B,

then,
(MaxMinPF(z,y) — C) N (MinMaxP F(z,y) + C) # 0.

By Corollary 4.1 and Theorem 4.2, we obtain the following corollary.

Corollary 4.3 ([8]). Let A and B be nonempty compact convex subsets of X and Y,
respectively. Assume that C is normal. If F: A x B — p(Z) satisfies that

(i) F is singleton on A X B, .

(ii) F is continuous on A x B,
(iii) for any y € B, F(-,y) is strictly natural quasi C-convez on A,
(iv) for any x € A, F(z,-) is strictly natural quasi C-concave on B,

then,
(MaxMinF(z,y) — C) N (MinMaxF(z,y) + C) # 0.
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