On the univalence conditions for certain class of analytic functions

Kazuo Kuroki and Shigeyoshi Owa

Abstract

A univalence condition for certain class of analytic functions was discussed by D. Yang and S. Owa (Hokkaido Math. J. **32** (2003), 127 – 136). In the present paper, by discussing some subordination relation, a new univalence condition is deduced.

1 Introduction

Let \mathcal{H} denote the class of functions p(z) which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For a positive integer n and a complex number a, let $\mathcal{H}[a, n]$ be the class of functions $p(z) \in \mathcal{H}$ of the form

$$p(z) = a + \sum_{k=n}^{\infty} a_k z^k.$$

Also, let \mathcal{A} be the class of functions $f(z) \in \mathcal{H}$ which are normalized by f(0) = f'(0) - 1 = 0. The subclass of \mathcal{A} consisting of all univalent functions f(z) in \mathbb{U} is denoted by \mathcal{S} . In 1972, Ozaki and Nunokawa [2] proved a univalence criterion for $f(z) \in \mathcal{A}$ as follows.

Lemma 1.1 If $f(z) \in A$ satisfies

$$\left|\frac{z^2f'(z)}{(f(z))^2}-1\right|<1\qquad(z\in\mathbb{U}),$$

then f(z) is univalent in \mathbb{U} , which means that $f(z) \in \mathcal{S}$.

Let p(z) and q(z) be members of the class \mathcal{H} . Then the function p(z) is said to be subordinate to q(z) in \mathbb{U} , written by $p(z) \prec q(z)$ $(z \in \mathbb{U})$, if there exists a function $w(z) \in \mathcal{H}$ with w(0) = 0, |w(z)| < 1 $(z \in \mathbb{U})$, and such that p(z) = q(w(z)) $(z \in \mathbb{U})$. From the definition of the subordinations, it is easy to show that $p(z) \prec q(z)$ $(z \in \mathbb{U})$ implies that

$$(1.1) p(0) = q(0) and p(\mathbb{U}) \subset q(\mathbb{U}).$$

In particular, if q(z) is univalent in \mathbb{U} , then we see that $p(z) \prec q(z)$ $(z \in \mathbb{U})$ is equivalent to the condition (1.1) by considering the function

$$w(z) = q^{-1}(p(z))$$
 $(z \in \mathbb{U}).$

2000 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Analytic function, univalent function, subordination.

Let $\mathcal{T}(\lambda,\mu)$ denote the class of functions $f(z) \in \mathcal{A}$ which satisfy $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and the inequality

(1.2)
$$\left| \frac{z^2 f'(z)}{\left(f(z) \right)^2} - \lambda z^2 \left(\frac{z}{f(z)} \right)'' - 1 \right| < \mu \qquad (z \in \mathbb{U})$$

for some real number μ ($\mu > 0$) and for some complex number λ . Yang and Owa [4] discussed the univalency for $f(z) \in \mathcal{T}(\lambda, \mu)$ as follows.

Lemma 1.2 Let λ be a complex number with Re $\lambda \geq 0$. Then the class $\mathcal{T}(\lambda, \mu)$ is a subclass of \mathcal{S} for some real number μ with $0 < \mu \leq |1 + 2\lambda|$.

To obtain the assertion in Lemma 1.2, Yang and Owa [4] discussed the following subordination relation.

Lemma 1.3 Let λ be a complex number with $\lambda \neq 0$ and $\operatorname{Re} \lambda \geq 0$. If $p(z) \in \mathcal{H}[1, n]$ satisfies the following subordination

$$p(z) + \lambda z p'(z) \prec 1 + \mu z$$
 $(z \in \mathbb{U})$

for some real number μ ($\mu > 0$), then

$$p(z) \prec 1 + \frac{\mu}{1 + n\lambda}z$$
 $(z \in \mathbb{U}).$

In the present paper, we discuss the subordination relation in Lemma 1.3 for the case that $\text{Re }\lambda$ is negative, and deduce an extension of the assertion in Lemma 1.2.

2 Preliminaries

In order to discuss our main results, we will make use of several lemmas.

A function L(z,t) for $z\in\mathbb{U}$ and $t\geqq0$ is said to be a subordination (or Loewner) chain if $L(\cdot,t)$ is analytic and univalent in \mathbb{U} for all $t\geqq0$, $L(z,\cdot)$ is continuously differentiable on $[0,\infty)$ for all $z\in\mathbb{U}$, and

$$L(z,s) \prec L(z,t) \qquad (z \in \mathbb{U})$$

when $0 \le s \le t$ (Pommerenke [3] or Miller and Mocanu [1]). Pommerenke [3] derived a necessary and sufficient condition for L(z,t) to be a subordination chain bellow.

Lemma 2.1 The function $L(z,t) = \sum_{k=1}^{\infty} a_k(t) z^k$ with $a_1(t) \neq 0$ and $\lim_{t \to \infty} |a_1(t)| = \infty$ for $z \in \mathbb{U}$ and $t \geq 0$ is a subordination chain if and only if

$$\operatorname{Re}\left\{\frac{z\frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}}\right\} > 0$$

for $z \in \mathbb{U}$ and $t \geq 0$.

For $0 < r_0 \le 1$, we let

$$\mathbb{U}_{r_0} = \left\{ z \in \mathbb{C} : |z| < r_0 \right\}, \quad \partial \mathbb{U}_{r_0} = \left\{ z \in \mathbb{C} : |z| = r_0 \right\}$$

and $\overline{\mathbb{U}_{r_0}} = \mathbb{U}_{r_0} \cup \partial \mathbb{U}_{r_0}$. In particular, we write $\mathbb{U}_1 = \mathbb{U}$.

Miller and Mocanu [1] derived the following lemma which is related to the subordination of two functions as follows.

Lemma 2.2 Let $p(z) \in \mathcal{H}[a,n]$ with $p(z) \not\equiv a$. Also, let q(z) be analytic and univalent on the closed unit disk $\overline{\mathbb{U}}$ except for at most one pole on $\partial \mathbb{U}$ with q(0) = a. If p(z) is not subordinate to q(z) in \mathbb{U} , then there exist two points $z_0 \in \partial \mathbb{U}_r$ with 0 < r < 1 and $\zeta_0 \in \partial \mathbb{U}$, and a real number k with $k \geq n$ for which $p(\mathbb{U}_r) \subset q(\mathbb{U})$,

$$(i) \quad p(z_0) = q(\zeta_0)$$

and

(ii)
$$z_0 p'(z_0) = k \zeta_0 q'(\zeta_0)$$
.

This lemma plays a crucial role in developing the theory of differential subordinations.

3 Main results

By making use of Lemma 2.1 and Lemma 2.2, we first develop the assertion concerned with the differential subordinations bellow.

Theorem 3.1 Let n be a positive integer, and let λ be a complex number with

(3.1)
$$\operatorname{Re} \lambda \leq 0 \quad \text{and} \quad \left| \lambda + \frac{1}{2n} \right| > \frac{1}{2n}.$$

Also, let q(z) be analytic in \mathbb{U} with q(0) = a, $q'(0) \neq 0$ and

(3.2)
$$\operatorname{Re}\left(1+\frac{zq''(z)}{q'(z)}\right) > -\frac{1}{n}\operatorname{Re}\left(\frac{1}{\lambda}\right) \qquad (z \in \mathbb{U}).$$

If $p(z) \in \mathcal{H}[a,n]$ satisfies the following subordination

$$(3.3) p(z) + \lambda z p'(z) \prec q(z) + \lambda n z q'(z) (z \in \mathbb{U}),$$

then $p(z) \prec q(z) \quad (z \in \mathbb{U}).$

Proof. Noting that $q'(0) \neq 0$ and $\text{Re } \lambda \leq 0$, it follows from the inequality (3.2) that the function q(z) is convex univalent in \mathbb{U} . Moreover, if we set

(3.4)
$$h(z) = q(z) + \lambda nzq'(z) \qquad (z \in \mathbb{U}),$$

then, from the inequality (3.2), we find that

(3.5)
$$\operatorname{Re}\left(\frac{h'(z)}{\lambda q'(z)}\right) = \operatorname{Re}\left\{\frac{1}{\lambda} + n\left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} > 0 \quad (z \in \mathbb{U}).$$

Since the function $\lambda q(z)$ is convex univalent in \mathbb{U} , the inequality (3.5) shows that the function h(z) is close-to-convex in \mathbb{U} , which implies that h(z) is univalent in \mathbb{U} (cf. [1]).

If we define the function L(z,t) by

$$(3.6) L(z,t) = q(z) - a + (n+t)\lambda z q'(z)$$

for $z \in \mathbb{U}$ and $t \geq 0$, then the function $L(z,t) = a_1(t)z + \cdots$ is analytic in \mathbb{U} for all $t \geq 0$, and continuously differentiable on $[0,\infty)$ for all $z \in \mathbb{U}$. Since $q'(0) \neq 0$, it is clear that

$$a_1(t) = \frac{\partial L(z,t)}{\partial z} \bigg|_{z=0} = \big\{ 1 + \lambda(n+t) \big\} q'(0) \neq 0 \qquad (t \ge 0)$$

and

$$\lim_{t\to\infty}|a_1(t)|=\lim_{t\to\infty}\Bigl|\bigl\{1+\lambda(n+t)\bigr\}q'(0)\Bigr|=\infty.$$

From the inequality (3.2), we obtain

$$\operatorname{Re}\left\{\frac{z\frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}}\right\} = \operatorname{Re}\left(\frac{1}{\lambda}\right) + (n+t)\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right)$$
$$\geq \operatorname{Re}\left(\frac{1}{\lambda}\right) + n\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right) > 0$$

for $z \in \mathbb{U}$ and $t \geq 0$. Then by Lemma 2.1, L(z,t) is subordination chain, and we have $L(z,s) \prec L(z,t)$ $(z \in \mathbb{U})$, when $0 \leq s \leq t$. We now set $\hat{L}(z,t) = L(z,t) + a$. From (3.4) and (3.6), we obtain $h(z) = \hat{L}(z,0) \prec \hat{L}(z,t)$ for $z \in \mathbb{U}$ and $t \geq 0$. Thus, we see that

$$\hat{L}(\zeta,t) \not\in h(\mathbb{U})$$

for $|\zeta| = 1$ and $t \ge 0$.

Without loss of generality, we can assume that q(z) is univalent on the closed unit disk $\overline{\mathbb{U}}$. If we assume that p(z) is not subordinate to q(z) in \mathbb{U} , then by Lemma 2.1, there exist two points $z_0 \in \mathbb{U}$ and $\zeta_0 \in \partial \mathbb{U}$, and a real number k with $k \geq n$ such that $p(z_0) = q(\zeta_0)$ and $z_0 p'(z_0) = k\zeta_0 q'(\zeta_0)$. Then from (3.6) and (3.7), we have

$$p(z_0) + \lambda z_0 p'(z_0) = q(\zeta_0) + \lambda k \zeta_0 q'(\zeta_0) = \hat{L}(\zeta_0, k - n) \not\in h(\mathbb{U}),$$

where $z_0 \in \mathbb{U}$, $|\zeta_0| = 1$ and $k \ge n$. This contradicts the assumption (3.3) of the theorem, and hence we must have $p(z) \prec q(z)$ $(z \in \mathbb{U})$. This completes the proof of Theorem 3.1.

Let us consider the function q(z) given by

$$q(z) = 1 + \frac{\mu}{1 + n\lambda}z$$
 $(z \in \mathbb{U})$

for some real number μ ($\mu > 0$) and for some complex number λ with the condition (3.1). Then, it is easy to see that

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right) = 1 > -\frac{1}{n}\operatorname{Re}\left(\frac{1}{\lambda}\right) \qquad (z \in \mathbb{U})$$

and

$$q(z) + \lambda nzq'(z) = 1 + \mu z.$$

Hence by Theorem 3.1, we obtain

Theorem 3.2 Let n be a positive integer, and let λ be a complex number with the condition (3.1). If $p(z) \in \mathcal{H}[1,n]$ satisfies the following subordination

$$p(z) + \lambda z p'(z) \prec 1 + \mu z$$
 $(z \in \mathbb{U})$

for some real number μ ($\mu > 0$), then

$$p(z) \prec 1 + \frac{\mu}{1 + n\lambda} z$$
 $(z \in \mathbb{U}).$

By combining Lemma 1.3 and Theorem 3.2, we find the following subordination assertion.

Theorem 3.3 Let n be a positive integer, and let λ be a complex number with the inequality

$$\left|\lambda + \frac{1}{2n}\right| > \frac{1}{2n}.$$

If $p(z) \in \mathcal{H}[1,n]$ satisfies the following subordination

$$p(z) + \lambda z p'(z) \prec 1 + \mu z$$
 $(z \in \mathbb{U})$

for some real number μ ($\mu > 0$), then

$$p(z) \prec 1 + \frac{\mu}{1 + n\lambda}z$$
 $(z \in \mathbb{U}).$

For the function $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{A}$, we now set

$$p(z) = \frac{z^2 f'(z)}{(f(z))^2} = 1 + (a_3 - a_2^2) z^2 + \cdots$$
 $(z \in \mathbb{U})$

in Theorem 3.3. Noting that n=2, we derive the following corollary.

Corollary 3.4 Let λ be a complex number with $\left|\lambda + \frac{1}{4}\right| > \frac{1}{4}$. If $f(z) \in \mathcal{A}$ satisfies

$$\frac{z^2 f'(z)}{\left(f(z)\right)^2} - \lambda z^2 \left(\frac{z}{f(z)}\right)'' \prec 1 + \mu z \qquad (z \in \mathbb{U})$$

for some real number μ ($\mu > 0$), then

$$\frac{z^2 f'(z)}{\left(f(z)\right)^2} \prec 1 + \frac{\mu}{1 + 2\lambda} z \qquad (z \in \mathbb{U}).$$

From Corollary 3.4, we find that if $f(z) \in \mathcal{A}$ satisfies the inequality (1.2), then

$$\left|\frac{z^2f'(z)}{\left(f(z)\right)^2} - 1\right| < \frac{\mu}{|1+2\lambda|} \qquad (z \in \mathbb{U})$$

for some real number μ ($\mu > 0$) and for some complex number λ with the inequality (3.8). According to Lemma 1.1, the inequality (3.9) shows that $f(z) \in \mathcal{S}$ if $0 < \mu \le |1 + 2\lambda|$. Thus, we obtain the following assertion.

Theorem 3.5 Let λ be a complex number with the inequality (3.8). Then the class $\mathcal{T}(\lambda, \mu)$ is a subclass of \mathcal{S} for some real number μ with $0 < \mu \leq |1 + 2\lambda|$.

References

- [1] S. S. Miller and P. T. Mocanu, *Differential Subordinations*, Pure and Applied Mathematics **225**, Marcel Dekker, 2000.
- [2] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392 394.
- [3] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975.
- [4] D. Yang and S. Owa, Subclasses of certain analytic functions, Hokkaido Math. J. 32 (2003), 127 136.

K. Kuroki and S. OwaDepartment of MathematicsKinki UniversityHigashi-Osaka, Osaka 577-8502Japan

E-mail: freedom@sakai.zaq.ne.jp shige21@ican.zaq.ne.jp