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On the univalence conditions
for certain class of analytic functions

Kazuo Kuroki and Shigeyoshi Owa

Abstract
A univalence condition for certain class of analytic functions was discussed by D.
Yang and S. Owa (Hokkaido Math. J. 32 (2003), 127 - 136). In the present paper, by
discussing some subordination relation, a new univalence condition is deduced.

1 Introduction

Let H denote the class of functions p(z) which are analytic in the open unit disk U =
{2 € C: |2| < 1}. For a positive integer n and a complex number a, let H|a, n] be the class
of functions p(z) € H of the form

o0
p(z) =a+ Zakzk.
k=n

Also, let A be the class of functions f(z) € H which are normalized by f(0) = f'(0)—1=0.
The subclass of A consisting of all univalent functions f(z) in U is denoted by S.
In 1972, Ozaki and Nunokawa [2] proved a univalence criterion for f(z) € A as follows.

Lemma 1.1 If f(z) € A satisfies
22f!(2)
(£(2))”

then f(z) is univalent in U, which means that f(2) € S.

1«1 (z €,

Let p(z) and ¢q(z) be members of the class H. Then the function p(z) is said to be
subordinate to g(z) in U, written by p(z) < ¢(2) (z € U), if there exists a function w(z) € H

with w(0) = 0, |w(2)] <1 (z € U), and such that p(z) = ¢(w(z)) (z € U). From the
definition of the subordinations, it is easy to show that p(2) < ¢(2) (z € U) implies that

(1.1) p(0) =¢(0) and p(U) C ¢(U).
In particular, if ¢(2) is univalent in U, then we see that p(z) < ¢(2) (z € U) is equivalent
to the condition (1.1) by considering the function

w(z) = g7 (p(2)) (z € U).
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f(z)

Let 7 (A, 1) denote the class of functions f(z) € A which satisfy — #0 (2€U) and
the inequality
22 f(z) 2 ( z )”
1.2 ——s = Az ] —1| < 2z€U
(1.2 o (7 b (zeU)

for some real number x (4 > 0) and for some complex number \. Yang and Owa [4] discussed
the univalency for f(2) € T(\, u) as follows.

Lemma 1.2 Let A be a complex number with ReX 2 0. Then the class T(\, pu) is a
subclass of S for some real number p with 0 < u < |1+ 2)|.

'To obtain the assertion in Lemma 1.2, Yang and Owa [4] discussed the following subordi-
nation relation.

Lemma 1.3 Let A be a complex number with A # 0 and ReX 2 0. If p(z) € H[1,n]
satisfies the following subordination

p(2) +Azp'(z) <1+ pz  (z€0)
Jor some real number p (1 > 0), then

U
p(z)-<1+1+n)‘z (z € ).

In the present paper, we discuss the subordination relation in Lemma 1.3 for the case that
Re A is negative, and deduce an extension of the assertion in Lemma 1.2.

2 Preliminaries

In order to discuss our main results, we will make use of several lemmas.

A function L(z,t) for z € U and ¢t 2 0 is said to be a subordination (or Loewner) chain
if L(-,t) is analytic and univalent in U for all ¢ 2 0, L(2,-) is continuously differentiable on
[0, 00) for all 2z € U, and

L(z,s) < L(z,t) (z € U)
when 0 £ s < ¢ (Pommerenke [3] or Miller and Mocanu [1]). Pommerenke [3] derived a
necessary and sufficient condition for L(z,t) to be a subordination chain bellow.

o0

Lemma 2.1  The function L(z,t) = ’c‘;lak(t)z’c with a,(t) # 0 and tl.lgxo lai(2)] = oo for
z€U and t 2 0 is a subordination chain if and only if
Re —ﬁ———;‘w >0

a
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forzeUandt 20.
For0 < rg £1, we let
U, ={z€C:|z|<r}, 90U, ={z€C:|z|=ro}
and U,, = U,, UOU,,. In particular, we write U, = U.

Miller and Mocanu [1] derived the following lemma which is related to the subordination
of two functions as follows.

Lemma 2.2 Let p(z) € H[a,n] with p(z) # a. Also, let q(z) be analytic and univalent
on the closed unit disk U except for at most one pole on U with q(0) = a. If p(z) is not
subordinate to q(z) in U, then there exist two points zg € AU, with 0 <r <1 and {p € IU,
and a real number k with k 2 n for which p(U,) C ¢(U),

(&) p(20) = 2(¢o)
(48) 20p'(20) = kod' (Co)-

and

This lemma plays a crucial role in developing the theory of differential subordinations.

3 Main results

By making use of Lemma 2.1 and Lemma 2.2, we first develop the assertion concerned
with the differential subordinations bellow.

Theorem 3.1 Let n be a positive integer, and let A be a complex number with

(3.1) ReA <0 and

1 1
A+ '2;! > -22
Also, let q(z) be analytic in U with ¢(0) = a, ¢'(0) # 0 and

(3.2) Re (1 + -‘21,’;—(2;)) > °_711_Re (-/1\—) (z € ).

If p(2) € Hla,n] satisfies the following subordination
(3.3) p(2) + Azp'(2) < q(2) + Anzq'(2)  (z € ),
then p(z) < q(z) (z € U).

Proof. Noting that ¢'(0) # 0 and Re A < 0, it follows from the inequality (3.2) that the
function g(z) is convex univalent in U. Moreover, if we set

(3.4) h(z) = q(2) + Anzq'(2) (z€ ),
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then, from the inequality (3.2), we find that
K(z)\ 1 zq/’(z)) }
(3.5) Re (Aq’(z)) —Re{—X+n(l+ 7 >0 (z€U).

Since the function Ag(2) is convex univalent in U, the inequality (3.5) shows that the function
h(z) is close-to-convex in U, which implies that h(z) is univalent in U (cf. [1]).

If we define the function L(z,t) by
(3.6) L(z,t) = q(z) —a+ (n+ t)Az¢'(2)

for € U and t 2 0, then the function L(z,t) = a,(t)z + --- is analytic in U for all ¢ 2 0,
and continuously differentiable on {0, 0o) for all z € U. Since ¢’(0) # 0, it is clear that

al(t)_—.?—%z’—t) — (14 Mn+0}(0)#£0 (2 0)

2=0

and
Jim [ay ()| = Jim l{l +A(n+ t)}¢(0)' = 0.

From the inequality (3.2), we obtain

0L(z,1) ®
z 3 B 1 2q"(2
Re -gz—(—‘f?)— = Re (T) + (n + t)Re (1 + ——"—q,(z) )
ot

1\Y

1 zq”(z))
Re| — ] + nRe (1 + >0
( A ) ¢'(z)
for z € Uand ¢t 2 0. Then by Lemma 2.1, L(2,t) is subordination chain, and we have

L(z,s) < L(2,t) (2 € U), when 0 £ s < ¢. We now set L(z,t) = L(z,t) + a. From (3.4)
and (3.6), we obtain h(z) = L(z,0) < L(z,t) for z € U and ¢ = 0. Thus, we see that

(3.7) L(¢.t) ¢ h(U)
for [{|=1andt20.

Without loss of generality, we can assume that g(z) is univalent on the closed unit disk
U. If we assume that p(z) is not subordinate to ¢(z) in U, then by Lemma 2.1, there exist
two points zgp € U and {p € 9U, and a real number k with £ 2 n such that p(2) = ¢({) and
29p’(20) = kCoq'({o). Then from (3.6) and (3.7), we have

p(z0) + Azop (20) = 4(Go) + Mo’ (Co) = L(Co, k — n) ¢ A(U),
where 25 € U, |(o| = 1 and k£ 2 n. This contradicts the assumption (3.3) of the theorem, and

hence we must have p(z) < ¢(z) (z € U). This completes the proof of Theorem 3.1. O
Let us consider the function ¢(z) given by

_ [l
Q(z)—1+l+n/\z (z € U)
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for some real number x4 (¢ > 0) and for some complex number A with the condition (3.1).
Then, it is easy to see that

Re (1 + Z;’g)) =1> —%Re (-}) (z € U)

and
q(z) + Mnzg'(2) = 1 + pz.

Hence by Theorem 3.1, we obtain

Theorem 3.2 Let n be a positive integer, and let A be a complex number with the condition
(3.1). If p(2) € H|[1,n] satisfies the following subordination

p(2) + Azp'(2) < 1+ pz (z € U)
for some real number p (u > 0), then

m
p(z)-<1+1+n)‘z (z € U).

By combining Lemma 1.3 and Theorem 3.2, we find the following subordination assertion.

Theorem 3.3 Let n be a positive integer, and let A be a complex number with the inequality

(3.8)

If p(2) € H[1,n] satisfies the following subordination
p(z) + Azp'(z) <1+ puz  (z€U)

for some real number u (u > 0), then

L
p(z)<1+1+n/\z (z € V).

<
For the function f(2) = 2+ Y ax2* € A, we now set
k=2

22f'(2)
(f(2))?

in Theorem 3.3. Noting that n = 2, we derive the following corollary.

=1+ (ag—a?)2% + .. (z € U)

p(z) =

Corollary 3.4 Let )\ be a complex number with ’)\ + -‘H > % If f(z) € A satisfies

2 51 "
%ﬁc—z()?)%—)\f(ﬂ%) <1+pz (z€U)
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for some real number u (u > 0), then

22f'(2) b
(f(z))z ~< mz (Z € U)

From Corollary 3.4, we find that if f(z) € A satisfies the inequality (1.2), then

2f'(z)
R
(f(2))
for some real number g (1 > 0) and for some complex number \ with the inequality (3.8).

According to Lemma 1.1, the inequality (3.9) shows that f(z) € Sif 0 < g £ |1+2)|. Thus,
we obtain the following assertion.

—H (z € U)

(3:9) T

Theorem 3.5 Let A be a complex number with the inequality (3.8). Then the class T (), 1)
is a subclass of S for some real number p with 0 < p < |1+ 2A[.
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