On N-Fractional Calculus of the Function $((z-b)^2-c)^{-4}$

Tsuyako Miyakoda

Abstract

We discuss the N-fractional calculus of $f(z) = ((z-b)^2 - c)^{-4}$. By applying the fractional calculus, we have three kinds of the representation for γ -th differentegral of the function $((z-b)^2 - c)^{-4}$ from the different way. And some identities are reported.

1 Introduction

We adopt the following definition of the fractional calculus.

(I) Definition. (by K. Nishimoto, [1] Vol. 1)

Let $D = \{D_-, D_+\}$, $C = \{C_-, C_+\}$, C_- be a curve along the cut joining two points z and $-\infty + iIm(z)$, C_+ be a curve along the cut joining two points z and $\infty + iIm(z)$, D_- be a domain surrounded by C_- , D_+ be a domain surrounded by C_+ (Here D contains the points over the curve C).

Moreover, let f = f(z) be a regular function in $D(z \in D)$,

$$f_{\nu} = (f)_{\nu} = {}_{C}(f)_{\nu}$$

$$= \frac{\Gamma(\nu+1)}{2\pi i} \int_{C} \frac{f(\zeta)d\zeta}{(\zeta-z)^{\nu+1}} \quad (\nu \notin Z^{-}), \qquad (1)$$

$$(f)_{-m} = \lim_{N \to -m} (f)_{\nu} \quad (m \in Z^+), \tag{2}$$

where

$$-\pi \leq arg(\zeta - z) \leq \pi \text{ for } C_-, \quad 0 \leq arg(\zeta - z) \leq 2\pi \text{ for } C_+,$$
 $\zeta \neq z, \quad z \in C, \quad \nu \in R, \quad \Gamma; \text{ Gamma function},$

then $(f)_{\nu}$ is the fractional differintegration of arbitrary order ν (derivatives of order ν for $\nu > 0$, and integrals of order $-\nu$ for $\nu < 0$), with respect to z, of the function f, if $|(f)_{\nu}| < \infty$.

(II) On the fractional calculus operator N^{ν} [3]

Theorem A. Let fractional calculus operator (Nishimoto's Operator) N^{ν} be

$$N^{\nu} = \left(\frac{\Gamma(\nu+1)}{2\pi i} \int_{C} \frac{d\zeta}{(\zeta-z)^{\nu+1}}\right) \quad (\nu \notin Z^{-}), \quad (Refer\ to[1])$$
 (3)

with

$$N^{-m} = \lim_{\nu \to -m} N^{\nu} \quad (m \in Z^+), \tag{4}$$

and define the binary operation o as

$$N^{\beta} \circ N^{\alpha} f = N^{\beta} N^{\alpha} f = N^{\alpha} (N^{\beta} f) \quad (\alpha, \beta \in R), \tag{5}$$

then the set

$$\{N^{\nu}\} = \{N^{\nu} | \nu \in R\} \tag{6}$$

is an Abelian product group (having continuous index ν) which has the inverse transform operator $(N^{\nu})^{-1}=N^{-\nu}$ to the fractional calculus operator N^{ν} , for the function f such that $f\in F=\{f;0\neq |f_{\nu}|<\infty,\nu\in R\}$, where f=f(z) and $z\in C$. (vis. $-\infty<\nu<\infty$).

(For our convenience, we call $N^{\beta} \circ N^{\alpha}$ as product of N^{β} and N^{α} .)

Theorem B. "F.O.G. $\{N^{\nu}\}$)" is an "Action product group which has continuous index ν " for the set of F. (F.O.G.; Fractional calculus operator group)

Theorem C. Let

$$S := \{ \pm N^{\nu} \} \cup \{0\} = \{ N^{\nu} \} \cup \{ -N^{\nu} \} \cup \{0\} \ (\nu \in R). \tag{7}$$

Then the set S is a commutative ring for the function $f \in F$, when the identity

$$N^{\alpha} + N^{\beta} = N^{\gamma} \quad (N^{\alpha}, N^{\beta}, N^{\gamma} \in S)$$
 (8)

holds. [4]
(III)

In some previous papers, the following result are known as elementary properties.

Lemma. We have [1]

(i)
$$((z-c)^{\beta})_{\alpha} = e^{-i\pi\alpha} \frac{\Gamma(\alpha-\beta)}{\Gamma(-\beta)} (z-c)^{\beta-\alpha} \quad (|\frac{\Gamma(\alpha-\beta)}{\Gamma(-\beta)}| < \infty)$$

(ii)
$$(\log(z-c))_{\alpha} = -e^{-i\pi\alpha}\Gamma(\alpha)(z-c)^{-\alpha} \quad (|\Gamma(\alpha)| < \infty)$$

(iii)
$$((z-c)^{-\alpha})_{-\alpha} = -e^{i\pi\alpha} \frac{1}{\Gamma(\alpha)} \log(z-c), \quad (|\Gamma(\alpha)| < \infty)$$

where $z-c\neq 0$ in (i), and $z-c\neq 0,1$ in (ii) and (iii) ,

(iv)
$$(u\cdot v)_\alpha:=\sum_{k=0}^\infty\frac{\Gamma(\alpha+1)}{k!\Gamma(\alpha+1-k)}u_{\alpha-k}v_k.\quad (u=u(z),v=v(z))$$

Moreover in the previous works we refer to the next theorem [6]. **Theorem D.** We have

(i)

$$(((z-b)^{\beta}-c)^{\alpha})_{\gamma} = e^{-i\pi\gamma}(z-b)^{\alpha\beta-\gamma} \sum_{k=0}^{\infty} \frac{[-\alpha]_{k}\Gamma(\beta k - \alpha\beta + \gamma)}{k!\Gamma(\beta k - \alpha\beta)} \left(\frac{c}{(z-b)^{\beta}}\right)^{k}$$

$$(|\frac{\Gamma(\beta k - \alpha\beta + \gamma)}{\Gamma(\beta k - \alpha\beta)}| < \infty),$$

$$(9)$$

and

(ii)

$$(((z-b)^{\beta}-c)^{\alpha})_{n} = (-1)^{n}(z-b)^{\alpha\beta-n} \sum_{k=0}^{\infty} \frac{[-\alpha]_{k}[\beta k - \alpha\beta]_{n}}{k!} \left(\frac{c}{(z-b)^{\beta}}\right)^{k}$$

$$(n \in Z_{0}^{+}, |\frac{c}{(z-b)^{\beta}}| < 1),$$
(10)

where

$$[\lambda]_k = \lambda(\lambda+1)\cdots(\lambda+k-1) = \Gamma(\lambda+k)/\Gamma(\lambda)$$
 with $[\lambda]_0 = 1$, (Pochhammer's Notation).

2 N-Fractional Calculus of the Functions $f(z) = ((z-b)^2-c)^{-4}$

In order to have a representation of N-fractional calculus with γ -order, we directly apply the theorem to the function at the beginning.

Theorem 1. Let

$$f = f(z) = ((z-b)^2 - c)^{-4} \qquad \left(((z-b)^2 - c)^4 \neq 0 \right) \tag{1}$$

we have

$$(f)_{\gamma} = e^{-i\pi\gamma} (z - b)^{-8-\gamma} \sum_{k=0}^{\infty} \frac{[4]_k \Gamma(2k + 8 + \gamma)}{k! \Gamma(2k + 8)} \left(\frac{c}{(z - b)^2}\right)^k \tag{2}$$

Proof. According to Theorem D, we have the equation (2) directly.

Secondly, we consider the function as a product of two functions like as

$$f(z) = ((z-b)^2 - c)^{-5} \cdot ((z-b)^2 - c),$$

and we have the new representation for $(f)_{\gamma}$ as follows.

Theorem 2. We set f = f(z), and S, H, G as follows,

$$S = S(z) = \frac{c}{(z-b)^2}, \quad (|S| < 1)$$
 (3)

$$H(k,\gamma,m) = \frac{[5]_k \Gamma(2k+10+\gamma-m)}{k! \Gamma(2k+10)} S^k,$$
 (4)

$$G(\gamma, m) = \sum_{k=0}^{\infty} H(k, \gamma, m).$$
 (5)

We have

$$(f)_{\gamma} = e^{-i\pi\gamma}(z-b)^{-8-\gamma}\{(1-S)G(\gamma,0) - 2\gamma G(\gamma,1) + \gamma(\gamma-1)G(\gamma,2)\}$$
(6)

Proof. According to Lemma (iv), we have

$$(f)_{\gamma} = \left(((z-b)^2 - c)^{-5} \cdot ((z-b)^2 - c) \right)_{\gamma}$$

$$= \sum_{k=0}^{\infty} \frac{\Gamma(\gamma+1)}{k!\Gamma(\gamma+1-k)} (((z-b)^2 - c)^{-5})_{\gamma-k} \cdot ((z-b)^2 - c)_k$$
(7)

(8)

and applying Theorem D.(i) to

$$(((z-b)^2-c)^{-5})_{\gamma-k}, (9)$$

we obtain

$$(f)_{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1)} \left(((z-b)^{2}-c)^{-5} \right)_{\gamma} ((z-b)^{2}-c)_{0}$$

$$+ \frac{\Gamma(\gamma+1)}{\Gamma(\gamma)} \left(((z-b)^{2}-c)^{-5} \right)_{\gamma-1} (2(z-b))$$

$$+ \frac{\Gamma(\gamma+1)}{2!\Gamma(\gamma-1)} \left(((z-b)^{2}-c)^{-5} \right)_{\gamma-2} \cdot 2$$

$$= \left(((z-b)^{2}-c)^{-5} \right)_{\gamma} ((z-b)^{2}-c) + 2\gamma \left(((z-b)^{2}-c)^{-5} \right)_{\gamma-1} \cdot (z-b)$$

$$+ \gamma(\gamma-1) \left(((z-b)^{2}-c)^{-5} \right)_{\gamma-2}$$

$$= e^{-i\pi\gamma} (z-b)^{-10-\gamma} ((z-b)^{2}-c) \sum_{k=0}^{\infty} \frac{[5]_{k} \Gamma(2k+10+\gamma)}{k!\Gamma(2k+10)} \left(\frac{c}{(z-b)^{2}} \right)^{k}$$

$$+ 2\gamma(z-b)e^{-i\pi(\gamma-1)} (z-b)^{-10-\gamma+1} \sum_{k=0}^{\infty} \frac{[5]_{k} \Gamma(2k+10+\gamma-1)}{k!\Gamma(2k+10)} \left(\frac{c}{(z-b)^{2}} \right)^{k}$$

$$+ \gamma(\gamma-1)e^{-i\pi(\gamma-2)} (z-b)^{-10-\gamma+2} \sum_{k=0}^{\infty} \frac{[5]_{k} \Gamma(2k+10+\gamma-2)}{k!\Gamma(2k+10)} \left(\frac{c}{(z-b)^{2}} \right)^{k}$$

$$(10)$$

Then we have the representation

$$(f(z))_{\gamma} = e^{-i\pi\gamma}(z-b)^{-8-\gamma}\{(1-S)G(\gamma,0) - 2\gamma G(\gamma,1) + \gamma(\gamma-1)G(\gamma,2)\}.$$
(11)

This is the same one as the equation (6).

Next, we choose another process of the fractional calculus which is devided into two stages as like as

$$(f(z))_{\gamma} = ((f(z))_1)_{\gamma-1}.$$
 (12)

We have an another result.

Theorem 3. We set f = f(z), and S, R, W as follows,

$$S = S(z) = \frac{c}{(z-b)^2}, \quad (|S| < 1)$$
 (13)

$$R(k,\gamma,m) = \frac{[5]_k \Gamma(2k+10+\gamma-m)}{k! \Gamma(2k+10)} S^k,$$
 (14)

$$W(\gamma, m) = \sum_{k=0}^{\infty} R(k, \gamma, m). \tag{15}$$

Then we have

$$(f)_{\gamma} = 8e^{-i\pi\gamma}(z-b)^{-8-\gamma}\{W(\gamma,1) - (\gamma-1)W(\gamma,2)\}. \tag{16}$$

Proof. We have

$$\left(((z-b)^2 - c)^{-4} \right)_1 = -4((z-b)^2 - c)^{-5} \cdot 2(z-b)
= -8((z-b)^2 - c)^{-5} \cdot (z-b)$$
(17)

Then

$$\begin{aligned}
&\Big((((z-b)^2-c)^{-4})_1\Big)_{\gamma-1} = -8\left(((z-b)^2-c)^{-5}(z-b)\right)_{\gamma-1} \\
&= -8\sum_{k=0}^{\infty} \frac{\Gamma(\gamma)}{k!\Gamma(\gamma-k)} \left(((z-b)^2-c)^{-5}\right)_{\gamma-1-k} (z-b)_k \\
&= -8\{\frac{\Gamma(\gamma)}{\Gamma(\gamma)} (((z-b)^2-c)^{-5})_{\gamma-1} (z-b) + \frac{\Gamma(\gamma)}{\Gamma(\gamma-1)} (((z-b)^2-c)^{-5})_{\gamma-1-1}\} \\
&= -8\{e^{-i\pi(\gamma-1)}(z-b)^{-10-\gamma+2} \sum_{k=0}^{\infty} \frac{[5]_k \Gamma(2k+10+\gamma-1)}{k!\Gamma(2k+10)} \left(\frac{c}{(z-b)^2}\right)^k \\
&+ (\gamma-1)e^{-i\pi(\gamma-2)}(z-b)^{-10-\gamma+2} \sum_{k=0}^{\infty} \frac{[5]_k \Gamma(2k+10+\gamma-2)}{k!\Gamma(2k+10)} \left(\frac{c}{(z-b)^2}\right)^k \Big\}
\end{aligned}$$

And we put

$$R(k,\gamma,m) = rac{[5]_k\Gamma(2k+10+\gamma-m)}{k!\Gamma(2k+10)} \left(rac{c}{(z-b)^2}
ight)^k,$$
 $W(\gamma,m) = \sum_{k=0}^{\infty} R(k,\gamma,m).$

So we have

$$(f(z))_{\gamma} = 8e^{-i\pi\gamma}(z-b)^{-8-\gamma}\{W(\gamma,1) - (\gamma-1)W(\gamma,2)\}, \quad (\gamma \notin Z^{-}).$$
 (19)

We have the equation (16) from above equation directly.

3 Identities

We have three kinds of representation on N-fractional calculus of the function $f(z) = ((z-b)^2 - c)^{-4}$ like as Theorem 1, 2 and 3. Accordingly we have the following identities with using S and G and W given in §3.

Theorem 4. We have

(i)
$$\sum_{k=0}^{\infty} \frac{[4]_k \Gamma(2k+8+\gamma)}{k! \Gamma(2k+8)} S^k = (1-S)G(\gamma,0) - 2\gamma G(\gamma,1) + \gamma(\gamma-1)G(\gamma,2), \qquad (\gamma \notin Z^{-\gamma})$$

(ii)

and

$$\sum_{k=0}^{\infty} \frac{[4]_k \Gamma(2k+8+\gamma)}{k! \Gamma(2k+8)} S^k = 8\{W(\gamma,1) - (\gamma-1)W(\gamma,2)\}. \qquad (\gamma \notin Z^-)$$
(2)

Proof. From Theorems 2 and 3 we can obtain above equations directly.

4 A Special Case

In order to make sure of the formulations of Theorem 2 and 3, we consider the case of the integer $\gamma=1$. When $\gamma=1$, from Theorem 2, we have

$$\left(((z-b)^2 - c)^{-4} \right)_1 = -(z-b)^{-9} \{ (1-S)G(1,0) - 2G(1,1) \}
= -(z-b)^{-9} \{ (1-S) \sum_{k=0}^{\infty} \frac{[5]_k \Gamma(2k+10+1)}{k! \Gamma(2k+10)} S^k
+ 2 \sum_{k=0}^{\infty} \frac{[5]_k \Gamma(2k+10)}{k! \Gamma(2k+10)} S^k \}.$$
(1)

And we noteice following relations,

$$\sum_{k=0}^{\infty} \frac{[\lambda]_k}{k!} z^k = (1-z)^{-\lambda} \tag{2}$$

$$\sum_{k=0}^{\infty} \frac{[\lambda]_k k}{k!} T^k = \sum_{k=0}^{\infty} \frac{[\lambda]_k}{(k-1)!} T^k$$

$$= \sum_{k=0}^{\infty} \frac{[\lambda]_{k+1}}{k!} T^{k+1}$$

$$= \lambda T \sum_{k=0}^{\infty} \frac{[\lambda+1]_k}{k!} T^k = \lambda T (1-T)^{-1-\lambda}$$

$$[\lambda]_{k+1} = \frac{\Gamma(\lambda+1+k)}{\Gamma(\lambda)} = \lambda [\lambda+1]_k$$

$$(4)$$

Then, we have the following relations with applying to the above euations.

$$(f)_{1} = -(z-b)^{-9} \{ (1-S) \sum_{k=0}^{\infty} \frac{[5]_{k}(2k+10)}{k!} S^{k}$$

$$-2 \sum_{k=0}^{\infty} \frac{[5]_{k}\Gamma(2k+10)}{k!\Gamma(2k+10)} S^{k} \}$$

$$= -(z-b)^{-9} \{ 2(1-S) \sum_{k=0}^{\infty} \frac{[5]_{k}k}{k!} S^{k} + 10(1-S) \sum_{k=0}^{\infty} \frac{[5]_{k}}{k!} S^{k}$$

$$-2 \sum_{k=0}^{\infty} \frac{[5]_{k}}{k!} S^{m} \}$$

$$= -(-b)^{-9} \{ 10S(1-S)^{-5} + 10(1-S)^{-4} - 2(1-S)^{-5} \}$$

$$= -8(z-b)^{-9} (1-S)^{-5}$$

$$= \frac{-8(z-b)}{((z-b)^{2}-c)^{5}}$$
(5)

And from Theorem 3, we have

$$(f)_{1} = 8e^{-i\pi}(z-b)^{-9} \{W(1,1)\}$$

$$= 8e^{-i\pi}(z-b)^{-9} \sum_{k=0}^{\infty} \frac{[5]_{k}\Gamma(2k+10)}{k!\Gamma(2k+10)} S^{k}$$

$$= 8e^{-i\pi}(z-b)^{-9} \sum_{k=0}^{\infty} \frac{[5]_{k}}{k!} S^{k}$$

$$= 8e^{-i\pi}(z-b)^{-9} (1-S)^{-5}$$

$$= -8 \frac{(z-b)}{((z-b)^{2}-c)^{5}}.$$
(6)

Therefore we have the same results from two different forms of N-fractional calculus for the function $((z-b)^2-c)^{-4}$.

Now these results are consistent with the one of the classical calculus of

$$\frac{d}{dz}((z-b)^2-c)^{-4}. (7)$$

Here we confirm again the result for Theorem 1.

When $\gamma = 1$, from Theorem 1.(2), we have

$$\left(((z-b)^2 - c)^{-4} \right)_1 = -(z-b)^{-9} \sum_{k=0}^{\infty} \frac{[4]_k [2k+8]_1}{k!} S^k
= -(z-b)^{-9} \sum_{k=0}^{\infty} \frac{[4]_k (2k+8)}{k!} S^k
= -(z-b)^{-9} \left\{ 2 \sum_{k=0}^{\infty} \frac{[4]_k k}{k!} S^k + 8 \sum_{k=0}^{\infty} \frac{[4]_k}{k!} S^k \right\}
= -(z-b)^{-9} \left\{ 8S \sum_{k=0}^{\infty} \frac{[5]_k}{k!} S^k + 8 \sum_{k=0}^{\infty} \frac{[4]_k}{k!} S^k \right\}
= -(z-b)^{-5} \left\{ 8S(1-S)^{-5} + 8(1-S)^{-4} \right\}
= -(z-b)^{-9} \frac{8}{(1-S)^5}
= -8(z-b)((z-b)^2 - c)^{-5}$$
(8)

This result also coincides with the one obtained by the classical calculus.

So we conclude that according to the definition of fractional differintegration, we have three forms for γ -th differintegrate of the function $\frac{1}{((z-b)^2-c)^4}$ by Theorem 1 . 2 and 3.

We made sure that they have the same results as the classical result when the differential order is in the case of $\gamma = 1$.

References

- K. Nishimoto; Fractional Calculus, Vol. 1 (1984), Vol. 2 (1987), Vol. 3 (1989), Vol. 4 (1991), Vol. 5, (1996), Descartes Press, Koriyama, Japan.
- [2] K. Nishimoto; An Essence of Nishimnoto's Fractional Calculus (Calculus of the 21st Century); Integrals and Differentiations of Arbitrary Order (1991), Descartes Press, Koriyama, Japan.
- [3] K. Nishimoto; On Nishimoto's fractional calculus operator N^{ν} (On an action group), J. Frac. Calc. Vol. 4, Nov. (1993), 1 11.

- [4] K. Nishimoto; Ring and Field Produced from The Set of N- Fractional Calculus Operator, J. Frac Calc. Vol. 24, Nov. (2003),29 36.
- [5] K. Nishimoto; N-Fractional Calculus of Products of Some Power Functions, J. Frac. Calc. Vol. 27, May (2005), 83 - 88.
- [6] K. Nishimoto; N-Fractional Calculus of Some Composite Functions, J. Frac. Calc. Vol. 29, May (2006), 35 44.
- [7] K. Nishimoto; N-Fractional Calculus of Some Composite Algebraic Functions, J. Frac. Calc. Vol. 31, May (2007), 11 23.
- [8] K. Nishimoto and T. Miyakoda; N-Fractional Calculus and n-th Derivatives of Some Algebraic Functions, J. Frac. Calc. Vol. 31, May (2007), 53 62.
- [9] T. Miyakoda; N-Fractional Calculus of Certain Algebraic Functions,
 J. Frac. Calc. Vol. 31, May (2007), 63 76.
- [10] K. Nishimoto and T. Miyakoda; N-Fractional Calculus of Some Multiple Power Functions and Some Identities, J. Frac. Calc. Vol. 34, Nov. (2008), 11 22.

Tsuyako Miyakoda Kansai Medical University, Lab. of Mathematics Hirakata 573 - 1136, Osaka,