Strongly starlikeness criteria for certain analytic functions

Yutaka Shimoda, and Shigeyoshi Owa

Abstract

Let $\mathcal{U}_3(\lambda)$ be the subcless of analytic functions f(z) in the open unit disk \mathbb{U} which was introduced by S. Ponnusamy (Appl. Math. Lett. 24(2011), 381 - 385). For $f(z) \in \mathcal{U}_3(\lambda)$, some condition for the domain of |z| such that f(z) is strongly starlike of order γ in \mathbb{U} .

1 Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, and let S be the subclass of A consisting of f(z) which are univalent in \mathbb{U} .

Obradović and Ponnusamy [2] define the class $\mathcal{U}(\lambda)$ of $f(z) \in \mathcal{A}$ satisfying the condition

(1.2)
$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < \lambda \qquad (z \in \mathbb{U})$$

for some real $\lambda > 0$.

The condition (1.2) is equivalent to

$$\left|z^2\left(\frac{1}{f(z)}-\frac{1}{z}\right)'\right|<\lambda\qquad (z\in\mathbb{U}).$$

Ponnusamy [3] introduces the class $\mathcal{U}_3(\lambda)$ of function $f(z) \in \mathcal{U}(\lambda)$ for which $a_3 - a_2^2 = 0$.

For some real $\gamma \in (0,1]$, a function $f(z) \in \mathcal{A}$ is called strongly starlike of order γ if

(1.3)
$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi\gamma}{2} \qquad (z \in \mathbb{U}).$$

We deote by $SS(\gamma)$ the set of all strongly starlike functions of order γ in U.

2010 Mathematics Subject Classification: Primary 30C45.

Key Words and Phrases: Analytic function, Strongly starlike of order γ , Schwarz lemma.

Ponnusamy [3] has shown the following theorem.

Theorem 1.1 Let $f(z) \in \mathcal{U}_3(\lambda)$, $\gamma \in (0,1]$, and

$$\lambda_{\bullet}(\gamma, |a_2|) = \frac{-2(1 + 2\cos\frac{\pi\gamma}{2})|a_2| + 2\sin\frac{\pi\gamma}{2}\sqrt{5 + 4\cos\frac{\pi\gamma}{2} - 4|a_2|^2}}{5 + 4\cos\frac{\pi\gamma}{2}}.$$

Then $f(z) \in SS(\gamma)$ for $0 < \lambda \le \lambda_*(\gamma, |a_2|)$.

The aim of this paper is to derive a condition for the domain of $f(z) \in \mathcal{U}_3(\lambda)$ to be in the class $SS(\gamma)$.

2 Main Result

Suppose that $f \in \mathcal{U}_3(\lambda)$. Then a simple calculation shows that

(2.1)
$$-z\left(\frac{z}{f(z)}\right)' + \left(\frac{z}{f(z)}\right) = \left(\frac{z}{f(z)}\right)^2 f'(z)$$
$$= 1 + A_3 z^3 + \dots = 1 + \lambda w(z), \ w(z) \in \mathcal{B}_3,$$

where \mathcal{B}_3 denotes the set of all analytic functions w(z) in U such that w(0) = w(0)' = w(0)' = 0, $w'''(0) \neq 0$ and |w(z)| < 1 for $z \in U$. From (2.1), we easily have the following representation for $\frac{z}{f(z)}$:

(2.2)
$$\frac{z}{f(z)} - 1 = -a_2 z - \lambda \int_0^1 \frac{w(tz)}{t^2} dt.$$

Since $w(z) \in \mathcal{B}_3$, from the Schwarz lemma

$$(2.3) |w(z)| \le |z|^3$$

holds true. Thus, we have that

$$\left|\frac{z}{f(z)}-1\right| \leq |z|\left(|a_2|+\frac{\lambda}{2}|z|^2\right), \ z \in \mathbb{U}.$$

We have the following result.

Theorem 2.1

If $f(z) \in \mathcal{U}_3(\lambda)$, then $f(z) \in SS(\gamma)$ for $|z| < \min\{1, r_o\}$, where $r_0 = \sqrt{R_0}$ for the positive root R_0 of the equation

(2.5)
$$\lambda^{2} \left(\frac{5}{4} + \cos \frac{\pi \gamma}{2} \right) X^{3} + \lambda |a_{2}| \left(1 + 2\cos \frac{\pi \gamma}{2} \right) X^{2} + |a_{2}|^{2} X + \cos^{2} \frac{\pi \gamma}{2} - 1 = 0.$$

Proof

Suppose that $f(z) \in \mathcal{U}_3(\lambda)$. Then we can see from (2.1) and (2.3) that

(2.6)
$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| = \lambda |w(z)| \le \lambda |z|^3.$$

Therefore, it follows from (2.4) and (2.6) that

$$\left|\arg \frac{zf'(z)}{f(z)}\right| \le \left|\arg \left(\left(\frac{z}{f(z)}\right)^2 f'(z)\right)\right| + \left|\arg \frac{z}{f(z)}\right|$$

$$\le \arcsin(\lambda|z|^3) + \arcsin\left(|z|\left(|a_2| + \frac{\lambda}{2}|z|^2\right)\right)$$

$$= \arcsin\left(\lambda|z|^3 \sqrt{1 - |z|^2 \left(|a_2| + \frac{\lambda}{2}|z|^2\right)^2} + \sqrt{1 - \lambda^2|z|^6}|z|\left(|a_2| + \frac{\lambda}{2}|z|^2\right)\right).$$

Now, we have to find the range of |z| for $f(z) \in SS(\gamma)$ such that

$$(2.8) \quad \arcsin\left(\lambda|z|^3\sqrt{1-|z|^2\left(|a_2|+\frac{\lambda}{2}|z|^2\right)^2}+\sqrt{1-\lambda^2|z|^6}|z|\left(|a_2|+\frac{\lambda}{2}|z|^2\right)\right)<\frac{\pi\gamma}{2},$$

which is equivalent to

$$(2.9) \lambda |z|^3 \sqrt{1 - |z|^2 \left(|a_2| + \frac{\lambda}{2} |z|^2 \right)^2} + \sqrt{1 - \lambda^2 |z|^6} |z| \left(|a_2| + \frac{\lambda}{2} |z|^2 \right) < \sin \frac{\pi \gamma}{2}.$$

Putting

(2.10)
$$F(X) = \lambda^2 \left(\frac{5}{4} + \cos \frac{\pi \gamma}{2} \right) X^3 + \lambda |a_2| \left(1 + 2\cos \frac{\pi \gamma}{2} \right) X^2 + |a_2|^2 X - \sin^2 \frac{\pi \gamma}{2}$$

and

(2.11)
$$G(X) = \lambda^2 \left(\frac{5}{4} - \cos \frac{\pi \gamma}{2} \right) X^3 + \lambda |a_2| \left(1 - 2\cos \frac{\pi \gamma}{2} \right) X^2 + |a_2|^2 X - \sin^2 \frac{\pi \gamma}{2},$$

(2.9) can be written as F(X)G(X) > 0 with $X = |z|^2$. Since F(0) < 0 and G(0) < 0, F(X)G(X) > 0 is equivalent to F(X) < 0 and G(X) < 0. Comparing the coefficients of F(X) and G(X), we easily find the inequality G(X) < F(X).

In order to find the condition of |z| such that $f(z) \in \mathcal{U}_3(\lambda)$ to be in $\mathcal{SS}(\gamma)$, we consider the condition for F(X) < 0.

Since $F'(X) = 3\lambda^2 \left(\frac{5}{4} + \cos \frac{\pi \gamma}{2} \right) X^2 + 2\lambda |a_2| \left(1 + 2\cos \frac{\pi \gamma}{2} \right) X + |a_2|^2 > 0$

and $\lim_{X\to\infty} F'(X) = \infty$,

F(X) is an increasing function for X. Thus F(X) has a positive root $R_0 > 0$. Therefore, for $|z| < \min\{1, R_0\}$, inequality (2.9) holds.

Remark

Substituting X=1 and solving the equation (2.5) as the equation of λ , we have $\lambda_*(\gamma,|a_2|)$ of Theorem1.1.

3 Example

We give an example which shows the existence of r_0 satisfying Theorem 2.1 . Since F(X) has a unique solution for 0 < X < 1 if F(1) > 0, we consider a condition of $|a_2|$ for F(1) > 0.

$$F(1) = \lambda^2 \left(\frac{5}{4} + \cos \frac{\pi \gamma}{2} \right) + \lambda |a_2| \left(1 + 2\cos \frac{\pi \gamma}{2} \right) + |a_2|^2 - \sin^2 \frac{\pi \gamma}{2} > 0,$$

we have

$$\left(|a_2| + \frac{\lambda \left(1 + 2\cos\frac{\pi\gamma}{2}\right)}{2}\right)^2 > \sin^2\frac{\pi\gamma}{2}(1 - \lambda^2),$$

This gives us that

$$(3.1) |a_2| > \sin \frac{\pi \gamma}{2} \sqrt{1 - \lambda^2} - \frac{\lambda \left(1 + 2\cos \frac{\pi \gamma}{2}\right)}{2} (0 < \lambda < 1).$$

If $|a_2|$ satisfies the condition (3.1), F(X) has a positive root for 0 < X < 1.

Let us take $\lambda = \frac{1}{2}$ and $\gamma = \frac{2}{3}$. Then $|a_2| > \frac{1}{4}$ from (3.1). Thus, we may take $|a_2| = 1$ and (3.2) $F(X) = 7X^3 + 16X^2 + 16X - 12.$

Since F(0) = -12 < 0, and F(1) = 27 > 0, F(X) has a real positive root 0 < X < 1. Actually, the root r_0 of (3.2) satisfies $0.47605 < r_0 < 0.47615$.

References

- [1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heiderberg, Tokyo, 1983
- [2] M. Obradović and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis 25(2005), 183 – 188
- [3] S.Ponnusamy, Starlikeness criteria for a certain class of analytic functions, Appl. Math. Lett. **24**(2011) 381 385.

Yutaka Shimoda and Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan

E-mail: yutakashimoda119@gmail.com

shige21@ican.zaq.ne.jp