An extension of Nunokawa lemma

Hitoshi Shiraishi

Abstract

Let $\mathcal{H}[a_0, n]$ be the class of functions $p(z) = a_0 + a_n z^n + \cdots$ which are analytic in the open unit disk U. For functions f(z) which are analytic in U with f(0) = 1, M. Nunokawa (Proc. Japan Acad., Ser. A 68 (1992), 152-153) have shown some theorems. The object of the present paper is to discuss Nunokawa lemma for the class $\mathcal{H}[a_0, n]$.

1 Introduction

Let $\mathcal{H}[a_0, n]$ denote the class of functions p(z) of the form

$$p(z) = a_0 + \sum_{k=n}^{\infty} a_k z^k$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ for some $a_0 \in \mathbb{C}$ and a positive integer n.

The basic tool in proving our results is the following lemma due to S. S. Miller and P. T. Mocanu [1] (also [2]).

Lemma 1. Let the function w(z) definded by

$$w(z) = a_n z^n + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \cdots \qquad (n = 1, 2, 3, \cdots)$$

be analytic in \mathbb{U} with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point $z_0 \in \mathbb{U}$, then there exists a real number $m \ge n$ such that

$$\frac{z_0w'(z_0)}{w(z_0)}=m.$$

2 Main result

Applying Lemma 1, we derive the following result.

Theorem 1. Let $p(z) \in \mathcal{H}[a_0, n]$ for some real $a_0 > 0$ and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\operatorname{Re}(p(z)) > 0$$
 for $|z| < |z_0|$

and $p(z_0) = \beta i$ is a pure imagenary number for some real $\beta \neq 0$.

Then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=il$$

where

$$l \geqq \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \geqq n$$

if $\beta > 0$ and

$$l \le \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \le -n$$

if $\beta < 0$.

Proof. Let us put

$$w(z) = \frac{a_0 - p(z)}{a_0 + p(z)} = c_n z^n + c_{n+1} z^{n+1} + c_{n+2} z^{n+2} + \cdots \qquad (z \in \mathbb{U}).$$

Then, we have that w(z) is analytic in $|z|<|z_0|,\ w(0)=0,\ |w(z)|<1$ for $|z|<|z_0|$ and

$$|w(z_0)| = \left| \frac{a_0^2 - \beta^2 - 2a_0\beta i}{a_0^2 + \beta^2} \right| = 1.$$

From Lemma 1, we obtain

$$\frac{z_0w'(z_0)}{w(z_0)} = \frac{-2a_0z_0p'(z_0)}{a_0^2 - \{p(z_0)\}^2} = \frac{-2a_0z_0p'(z_0)}{a_0^2 + \beta^2} = m \qquad (m \ge n).$$

This shows that

$$z_0p'(z_0)=-rac{m}{2}\left(a_0+rac{eta^2}{a_0}
ight) \qquad (m\geqq n).$$

From the fact that $z_0p'(z_0)$ is a real number and $p(z_0)$ is a pure imaginary number, we can put

$$\frac{z_0p'(z_0)}{p(z_0)}=il$$

where l is a real number.

For the case $\beta > 0$, we have

$$l = \operatorname{Im}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right)$$

$$= \operatorname{Im}\left(-z_0 p'(z_0)\frac{1}{\beta}i\right)$$

$$= \frac{m}{2}\left(a_0 + \frac{\beta^2}{a_0}\right)$$

$$\geq \frac{n}{2}\left(a_0 + \frac{\beta^2}{a_0}\right)\frac{1}{\beta}$$

$$= \frac{n}{2}\left(\frac{a_0}{\beta} + \frac{\beta}{a_0}\right) \geq n$$

and for the case $\beta < 0$, we get

$$l = \operatorname{Im}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right)$$

$$= \operatorname{Im}\left(-z_0 p'(z_0)\frac{1}{\beta}i\right)$$

$$= \frac{m}{2}\left(a_0 + \frac{\beta^2}{a_0}\right)$$

$$\leq \frac{n}{2}\left(a_0 + \frac{\beta^2}{a_0}\right)\frac{1}{\beta}$$

$$= \frac{n}{2}\left(\frac{a_0}{\beta} + \frac{\beta}{a_0}\right) \leq -n.$$

This completes our proof.

Putting $a_0 = 1$ in Theorem 1, we have Corollary 1.

Corollary 1. Let $p(z) \in \mathcal{H}[1,n]$ and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$Re(p(z)) > 0$$
 for $|z| < |z_0|$,

 $\operatorname{Re}(p(z_0)) = 0$ and $p(z_0) \neq 0$.

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = il$$

where l is a real and $|l| \geq n$.

References

- [1] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289-305.
- [2] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications. Monographs and Textbooks in Pure and Applied Mathematics, 225. Marcel Dekker, Inc., New York, 2000.
- [3] M. Nunokawa, On propeties of non-Carathéodory functions, Proc. Japan Acad., Ser. A 68 (1992), 152–153.
- [4] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69(1993), 234–237.

Hitoshi Shiraishi Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan

E-mail: step_625@hotmail.com