Jacquet-Langlands-Shimizu correspondence for theta lifts to GSp(2) and its inner forms

Hiro-aki Narita*and Takeo Okazaki with an appendix by Ralf Schmidt

Abstract

As was first pointed out by Ibukiyama [I], the spinor L-functions of automorphic forms on the indefinite symplectic group $GSp^*(2)$ over \mathbb{Q} right invariant by a (global) maximal compact subgroup are conjectured to be those of paramodular forms of some specified level on the symplectic group GSp(2), which can be viewed as a generalization of the Jacquet-Langlands-Shimizu correspondence to the case of GSp(2) and its inner forms GSp(1,1) and $GSp^*(2)$.

This short note surveys our results presented at the RIMS-conference held during January 16-21 in 2012. They provide evidence of this conjecture by theta lifts from $GL(2) \times B^{\times}$ to the inner forms and theta lifts from $GL(2) \times GL(2)$ to GSp(2) (considered by [O]), where B denotes a definite quaternion algebra over \mathbb{Q} . Our explicit functorial correspondence given by these theta lifts are proved to be compatible with a non-archimedean local Jacquet-Langlands correspondence for GSp(2) (or GSp(4)) and its inner forms, which is considered in the appendix by Ralf Schmidt.

1 Basic facts

1.1 Algebraic groups.

Let B be a definite quaternion algebra over \mathbb{Q} with the discriminant d_B , and let $B \ni x \mapsto \bar{x} \in B$ be the main involution of B. By n and tr we denote the reduced norm and the reduced trace of B respectively.

Let $G_{\rm nc} = GSp(1,1)$ and $G_{\rm nc}^1 = Sp(1,1)$ be the Q-algebraic groups defined by

$$G_{\rm nc}(\mathbb{Q}) := \{ g \in M_2(B) \mid {}^t \bar{g} Q_{\rm nc} g = \nu(g) Q_{\rm nc}, \ \nu(g) \in \mathbb{Q}^{\times} \}, \ G_{\rm nc}^1(\mathbb{Q}) := \{ g \in G_{\rm nc}(\mathbb{Q}) \mid \nu(g) = 1 \},$$

where $Q_{nc} := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Furthermore let $G_c = GSp^*(2)$ and $G_c^1 = Sp^*(2)$ be the \mathbb{Q} -algebraic groups defined by

$$G_{c}(\mathbb{Q}) := \{ g \in M_{2}(B) \mid {}^{t}\bar{g}Q_{c}g = \mu(g)Q_{c}, \ \mu(g) \in \mathbb{Q}^{\times} \}, \ G_{c}^{1}(\mathbb{Q}) := \{ g \in G_{c}(\mathbb{Q}) \mid \mu(g) = 1 \},$$

^{*}Partially supported by Grand-in-Aid for Young Scientists (B) 21740025, JSPS.

where
$$Q_{\mathbf{c}} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

On the other hand, let G' = GSp(2) be the Q-algebraic group defined by

$$G'(\mathbb{Q}) := \left\{ g \in GL_4(\mathbb{Q}) \middle| tg \begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix} g = \lambda(g) \begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix}, \ \lambda(g) \in \mathbb{Q}^{\times} \right\}.$$

We should note that $G_{\rm nc}$ and $G_{\rm c}$ are inner \mathbb{Q} -forms of G'. By $Z_{\mathcal{G}}$ we denote the center of $\mathcal{G} = G_{\rm nc}, \ G_{\rm c}$ or $G_{\rm s}$.

In what follows, we often put $G = G_c$ or G_{nc} .

1.2 Maximal compact subgroups.

Let $Q=Q_{\rm nc}$ or $Q_{\rm c}$. We first introduce maximal compact subgroups at the archimedean place. We put $G_{\infty}^1:=\{g\in M_2(\mathbb{H})\mid {}^t\bar{g}Qg=Q\}$, where $\mathbb{H}:=B\underset{\mathbb{Q}}{\otimes}\mathbb{R}$ is the Hamilton quaternion algebra. Then G_{∞}^1 is the maximal compact subgroup itself when $Q=Q_{\rm c}$, and

$$K^0_\infty := \{ egin{pmatrix} a & b \ b & a \end{pmatrix} \in M_2(\mathbb{H}) \mid a \pm b \in \mathbb{H}^1 \}$$

forms a maximal compact subgroup of G^1_{∞} when $Q=Q_{\rm nc}$, where $\mathbb{H}^1:=\{u\in\mathbb{H}\mid n(u)=1\}$. The map $K^0_{\infty}\ni\begin{pmatrix} a&b\\b&a\end{pmatrix}\mapsto(a+b,a-b)\in\mathbb{H}^1\times\mathbb{H}^1$ gives rise to an isomorphism $K^0_{\infty}\simeq\mathbb{H}^1\times\mathbb{H}^1$.

We next put
$$G'^1_{\infty} := \left\{ g \in GL_4(\mathbb{R}) \middle| tg\begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix} g = \begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix} \right\}$$
. Then
$$K'^0_{\infty} := \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \middle| A + \sqrt{-1}B \in U(2) \right\}$$

is a maximal compact subgroup of G'^1_{∞} , where $U(2) := \{X \in M_2(\mathbb{C}) \mid {}^t \bar{X}X = 1_2\}$ denotes the unitary group of degree two. The map $K'^0_{\infty} \ni \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \mapsto A + \sqrt{-1}B \in U(2)$ induces an isomorphism $K'^0_{\infty} \simeq U(2)$.

Let us introduce maximal compact subgroups at non-archimedean places. We first deal with the case of G = GSp(1,1) or $GSp^*(2)$. We remark that GSp(1,1) and $GSp^*(2)$ are isomorphic to each other over \mathbb{Q}_p . We can thus identify $GSp(1,1)(\mathbb{Q}_p)$ with $GSp^*(2)(\mathbb{Q}_p)$.

We let D be a divisor of d_B and fix a maximal order \mathfrak{O} of B. For $p|d_B$ let \mathfrak{P}_p be the maximal ideal of the p-adic completion \mathfrak{O}_p of \mathfrak{O} and let

$$L_p := egin{cases} ^t (\mathfrak{O}_p \oplus \mathfrak{O}_p) & (p \nmid d_B ext{ or } p | D), \ ^t (\mathfrak{O}_p \oplus \mathfrak{P}_p^{-1}) & (p | rac{d_B}{D}). \end{cases}$$

Then $K_p := \{k \in G_p \mid kL_p = L_p\}$ is a maximal compact subgroup of G_p for each finite prime p when G = GSp(1,1) or $GSp^*(2)$. Every maximal compact subgroup of G_p is conjugate to some K_p by G_p .

Let us next deal with the case of GSp(2). When p does not divide d_B , we put $K'_p := GSp(2)(\mathbb{Z}_p)$. When $p|d_B$ we put

$$K'_{p} := \begin{cases} \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & p^{-1}\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & p\mathbb{Z}_{p} & \mathbb{Z}_{p} & p\mathbb{Z}_{p} \end{pmatrix} \cap GSp(2)(\mathbb{Q}_{p}) & (p|\frac{d_{B}}{D}), \\ p\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix} \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p^{2}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p^{2}\mathbb{Z}_{p} & p^{2}\mathbb{Z}_{p} & \mathbb{Z}_{p} & p^{2}\mathbb{Z}_{p} \\ p^{2}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix} \cap GSp(2)(\mathbb{Q}_{p}) & (p|D). \end{cases}$$

We call this open compact subgroup of $GSp(2)(\mathbb{Q}_p)$ a paramodular subgroup of $GSp(2)(\mathbb{Q}_p)$ of level p or p^2 , which is maximal when the level is p. We remark that $K_p \simeq K'_p$ for $p \nmid d_B$.

We note that we can identify $G_{nc}(\mathbb{A}_f)$ with $G_c(\mathbb{A}_f)$ since G_{nc} is isomorphic to G_c over \mathbb{Q}_p . Every maximal compact subgroup of $G(\mathbb{A}_f) = G_{nc}(\mathbb{A}_f) = G_c(\mathbb{A}_f)$ is $G(\mathbb{A}_f)$ -conjugate to $K_f(D) := \prod_{p < \infty} K_p$ with $D|d_B$. In addition, we put $K'_f(D) := \prod_{p < \infty} K'_p$, which is an open compact subgroup of $G'(\mathbb{A}_f)$.

2 Theta lifts to GSp(1,1), $GSp^*(2)$ and GSp(2).

Let H and H' be \mathbb{Q} -algebraic groups defined by

$$H(\mathbb{Q}) = GL_2(\mathbb{Q}), \ H'(\mathbb{Q}) := B^{\times}$$

respectively. For a positive integer κ we let $S_{\kappa}(D)$ be the space of elliptic cusp forms of weight κ with level D (cf. [M-N-2, Section 3.1]). For a non-negative integer κ' we let $\mathcal{A}_{\kappa'}$ be the space of automorphic forms of weight $\sigma_{\kappa'}$ with respect to $\prod_{p<\infty} \mathfrak{O}_p^{\times}$ (cf. [M-N-2, Section 3.2]), where \mathfrak{O}_p^{\times} denotes the unit group of \mathfrak{O}_p .

For Hecke eigenforms $(f, f') \in S_{\kappa_1}(D) \times \mathcal{A}_{\kappa_2}$ let $\pi(f)$ be the automorphic representation of $GL_2(\mathbb{A})$ generated by f and $JL(\pi(f'))$ be the Jacquet-Langlands lift of the automorphic representation $\pi(f')$ generated by f'. The Hecke equivariant isomorphism between \mathcal{A}_{κ_2} and the space of new forms in $S_{\kappa_2+2}(d_B)$ (Eichler [E-1], [E-2], Shimizu [Sh]) sends a Hecke eigenform f' to a primitive form JL(f'). The automorphic representation $JL(\pi(f'))$ is nothing but that generated by JL(f').

2.1 Theta lift to G

For every finite prime $p < \infty$ let \mathbb{V}_p be the space of locally constant compactly supported functions on $B_p^2 \times \mathbb{Q}_p^{\times}$. Let $\mathcal{S}(\mathbb{H}^2)$ stand for the space of Schwartz functions on \mathbb{H}^2 . When $G = G_{\rm nc}$ (respectively $G = G_{\rm c}$) we then introduce the space \mathbb{V}_{∞} of smooth

functions φ on $\mathbb{H}^2 \times \mathbb{R}^{\times}$ such that, for each fixed $t \in \mathbb{R}^{\times}$, $\mathbb{H}^2 \ni X \mapsto \varphi(X,t)$ belongs to $\mathcal{S}(\mathbb{H}^2) \otimes \operatorname{End}(V_{\frac{\kappa_1+\kappa_2}{2}} \boxtimes V_{\frac{\kappa_2-\kappa_1}{2}})$ for $(\kappa_1,\kappa_2) \in (2\mathbb{Z}_{\geq 0})^{\oplus 2}$ with $\kappa_1 \leq \kappa_2$ (respectively $\mathcal{S}(\mathbb{H}^2) \otimes \operatorname{End}(\mathcal{H}_{\kappa_1-4})$ for $\kappa_1 \in 2\mathbb{Z}_{\geq 0}$ with $\kappa_1 \geq 4$), where \mathcal{H}_{κ_1-4} denotes the space of homogeneous harmonic polynomials of degree $\kappa_1 - 4$ on \mathbb{H}^2 . We let $\varphi_{0,p} \in \mathbb{V}_p$ be the characteristic function of $L_p \times \mathbb{Z}_p^{\times}$.

Let $G = G_{\rm nc}$. For $(\kappa_1, \kappa_2) \in (2\mathbb{Z}_{\geq 0})^2$ with $\kappa_1 \leq \kappa_2$ we define $\varphi_{0,\infty}^{\rm nc} = \varphi_{0,\infty}^{\rm nc}, (\kappa_1, \kappa_2) \in \mathbb{V}_{\infty}$ by

$$\varphi_{0,\infty}^{\text{nc}}(X,t) := \begin{cases} t^{\frac{\kappa_2 + 3}{2}} \sigma_{\frac{\kappa_1 + \kappa_2}{2}}(X_1 + X_2) \boxtimes \sigma_{\frac{\kappa_2 - \kappa_1}{2}}(X_1 - X_2) \exp(-2\pi t^t \bar{X}X) & (t > 0), \\ 0 & (t < 0). \end{cases}$$

Let $G = G_c$. For $\kappa_1 \in 2\mathbb{Z}_{\geq 0}$ with $\kappa_1 \geq 4$, following [Lo, Definition 6.1], we define $\varphi_{0,\infty}^c = \varphi_{0,\infty}^{c, (\kappa_1, \kappa_2)} \in \mathbb{V}_{\infty}$ by

$$\varphi_{0,\infty}^{\rm c}(X,t) := \begin{cases} t^{\frac{\kappa_1 - 1}{2}} \exp(-2\pi t^t \bar{X}X) C(X) & (t > 0), \\ 0 & (t < 0), \end{cases}$$

where C is the $\operatorname{Hom}(\mathcal{H}_{\kappa_1-4},\mathcal{H}^*_{\kappa_1-4}) \simeq \operatorname{End}(\mathcal{H}_{\kappa_1-4})$ -valued function on \mathbb{H}^2 defined by

$$C(X)(h) := h(X) \quad (h \in \mathcal{H}_{\kappa_1 - 4}),$$

where $\mathcal{H}_{\kappa_1-4}^*$ denotes the dual space of \mathcal{H}_{κ_1-4} .

Following [M-N-1, Section 3] we introduce a metaplectic representation $r = \otimes'_{v \leq \infty} r_v$ of $G(\mathbb{A}) \times H(\mathbb{A}) \times H'(\mathbb{A})$ on the restricted tensor product $\mathbb{V} = \otimes'_{v \leq \infty} \mathbb{V}_v$ with respect to $\{\varphi_{0,p}\}_{p<\infty}$. It is associated with the standard additive character ψ of \mathbb{A} . For $G = G_{\rm nc}$ (respectively $G = G_{\rm c}$) we define the $\operatorname{End}(V_{\frac{\kappa_1+\kappa_2}{2}} \boxtimes V_{\frac{\kappa_2-\kappa_1}{2}})$ -valued theta function (respectively $\operatorname{End}(\mathcal{H}_{\kappa_1-4})$ -valued theta function) $\theta_{\kappa_1,\kappa_2}(g,h,h')$ by

$$\sum_{(X,t)\in B^2\times\mathbb{Q}^\times} r(g,h,h')\varphi_0(X,t),$$

where $\varphi_0 := \prod_{v \leq \infty} \varphi_{0,v}$ with

$$arphi_{0,\infty} := egin{cases} arphi_{0,\infty}^{
m nc} & (G=G_{
m nc}), \ arphi_{0,\infty}^{
m c} & (G=G_{
m c}). \end{cases}$$

When $G = G_{\rm nc}$ (respectively $G = G_{\rm c}$), for $(\kappa_1, \kappa_2) \in (2\mathbb{Z}_{>0})^2$ with $\kappa_1 \leq \kappa_2$ (respectively with $\kappa_1 \geq \kappa_2$ and $\kappa_1 \geq 4$), we consider the theta lift

$$S_{\kappa_1}(D) \times \mathcal{A}_{\kappa_2} \ni (f, f') \mapsto \mathcal{L}(f, f')(g)$$

with

$$\mathcal{L}(f,f')(g) := \int_{\mathbb{R}^2_+(H\times H')(\mathbb{Q})\setminus (H\times H')(\mathbb{A})} \overline{f(h)} \theta_{\kappa_1,\kappa_2}(g,h,h') f'(h') dh dh'.$$

By an argument similar to the proof of [M-N-1, Theorem 4.1], we verify that this is convergent on any compact subset of $G(\mathbb{A})$ when $G = G_{\rm nc}$. On the other hand, when $G = G_{\rm c}$, the theta function $\theta_{\kappa_1,\kappa_2}(g,h,h')f'(h')$ with a fixed (g,h') can be viewed as an elliptic modular form of weight κ_1 and level D (cf. [He, Section 6]). The convergence of the integral is thus reduced to that of the Petersson inner product of an elliptic modular form and an elliptic cusp form.

Theorem 2.1. Let $(\kappa_1, \kappa_2) \in (2\mathbb{Z}_{\geq 0})^{\oplus 2}$.

- (1) The theta lift $\mathcal{L}(f, f')$ defines an automorphic forms, more precisely, it is left- $G(\mathbb{Q})$ -invariant, right $K_f(D)$ -invariant and right K_∞^0 -equivariant (respectively G_∞^1 -equivariant) with respect to the irreducible representation with highest weight $(\frac{\kappa_2-\kappa_1}{2},\frac{\kappa_1+\kappa_2}{2})$ (respectively $(\frac{\kappa_1+\kappa_2}{2}-1,\frac{\kappa_2-\kappa_1}{2}-1)$) when $G=G_{\rm nc}$ (respectively $G=G_c$). Furthermore $\mathcal{L}(f,f')$ has the trivial central character.
- (2) Suppose that (f, f') are Hecke eigenforms. Then $\mathcal{L}(f, f')$ is also a Hecke eigenform. Furthermore, for each p|D, let ϵ_p (respectively ϵ_p') be the eigenvalue for the involutive action

of
$$\begin{pmatrix} 0 & 1 \\ -p & 0 \end{pmatrix}$$
 (resp. a prime element $\varpi_{B,p} \in B_p$) on f (resp. f'). Then $\mathcal{L}(f, f') \equiv 0$ unless $\epsilon_p = \epsilon'_p$.

(3) Assume furthermore that $1 < \kappa_1 < \kappa_2 + 2$ when $G = G_{nc}$ (respectively $1 < \kappa_2 + 2 < \kappa_1$ when $G = G_c$). Then $\mathcal{L}(f,f')$ is a cusp form on $G_{nc}(\mathbb{A})$ generating, at the archimedean place, the discrete series representation with Harish-Chandra parameter $\lambda = (\frac{\kappa_2 - \kappa_1}{2} + 1, \frac{\kappa_1 + \kappa_2}{2})$ (respectively automorphic forms on $G_c(\mathbb{A})$ generating, at the archimedean place, the discrete series representation with Harish-Chandra parameter $\lambda = (\frac{\kappa_2 + \kappa_1}{2}, \frac{\kappa_1 - \kappa_2}{2} - 1)$) as a $(\mathfrak{g}, K_{\infty}^0)$ -module, where \mathfrak{g} denotes the Lie algebra of G_{∞}^0 .

Outline of proof:

- (1) The assertion is essentially due to [M-N-1, Section 4].
- (2) This follows from [M-N-1, Theorem 5.1] and [M-N-1, Remark 5.2 (ii)].
- (3) The fact that $\mathcal{L}(f,f')$ is cuspidal when $G=G_{\rm nc}$ is shown in a manner similar to [M-N-2, Section 13.4]. To determine the representation type of $\mathcal{L}(f,f')$ at the Archimedean place, we use the result by Li-Paul-Tan-Zhu [L-P-T-Z, Theorem 5.1] on the archimedean theta correspondence, in which $\mathcal{L}(f,f')$ is involved. When $G=G_{\rm c}$ this assertion then follows immediately. In view of the archimedean theta correspondence and the discrete decomposability of the cuspidal spectrum (cf. [G-G-P]), we thus see that, when $G=G_{\rm nc}$, the archimedean component of the $G^1(\mathbb{A})$ -module generated by $\mathcal{L}(f,f')(g_f*)$ with any fixed $g_f \in G(\mathbb{A}_f)$ is isomorphic to the discrete series representation in the statement as a $(\mathfrak{g}, K_\infty^0)$ -module.

2.2 Theta lift to G'

We next consider the theta lift from $S_{\kappa_1}(D_1) \times S_{\kappa_2}(D_2)$ to automorphic forms on $G'(\mathbb{A})$. As in [O], we formulate the lift using the meteplectic representation r' of $G' \times H^1$ considered by Harris-Kudla [Ha-K] and Roberts [R], where H^1 denotes the \mathbb{Q} -algebraic group defined by

$$\{(h_1, h_2) \in GL_2 \times GL_2 \mid \det(h_1) = \det(h_2)\}.$$

Now let us introduce a quadratic space $(M_2(\mathbb{Q}), \det)$ and note that the action of $H^1(\mathbb{Q})$ on $M_2(\mathbb{Q})$ defined by

$$h \cdot X = h_1^{-1} X h_2 \quad (X \in M_2(\mathbb{Q}), \ h = (h_1, h_2) \in H^1(\mathbb{Q}))$$

induces a well-known isomorphism

$$H_1(\mathbb{Q})/\{(z,z)\mid z\in\mathbb{Q}^\times\}\simeq GSO(2,2)(\mathbb{Q}).$$

We assume that r' is associated with the additive character $\psi(\frac{1}{2}*)$ on \mathbb{A} . To construct the theta lift we now recall the choice of the Schwartz function on $M_2(\mathbb{A})^{\oplus 2}$ in [O]. At a finite place $v = p < \infty$, we let $\varphi'_{0,p}$ be the Schwartz function on $M_2(\mathbb{Q}_p)^{\oplus 2}$ given by the characteristic function of

$$\left\{ \left(\begin{pmatrix} a_{x_1} & b_{x_1} \\ c_{x_1} & d_{x_1} \end{pmatrix}, \begin{pmatrix} a_{x_2} & b_{x_2} \\ c_{x_2} & d_{x_2} \end{pmatrix} \right) \middle| \begin{array}{ccc} a_{x_1} \in D_2 \mathbb{Z}_p, & b_{x_1} \in \mathbb{Z}_p, & c_{x_1} \in D_1 D_2 \mathbb{Z}_p, & d_{x_1} \in D_1 \mathbb{Z}_p, \\ a_{x_2}, & b_{x_2}, & c_{x_2}, & d_{x_2} \in \mathbb{Z}_p, \end{array} \right\}$$

For the choice of the Schwartz function at the archimedean place we need two functions P_1 and P_2 on $M_2(\mathbb{R})$ defined as follows:

$$P_1(X) := \operatorname{tr}(X \begin{pmatrix} -\sqrt{-1} & -1 \\ -1 & \sqrt{-1} \end{pmatrix}), \ P_2(X) := \operatorname{tr}(X \begin{pmatrix} -\sqrt{-1} & 1 \\ -1 & -\sqrt{-1} \end{pmatrix}) \quad (X \in M_2(\mathbb{R}))$$

Let $\mathbb{C}[s_1, s_2]$ denote the polynomial ring of two variables s_1 and s_2 over \mathbb{C} . As our choice of the test function at $v = \infty$ we take the $\mathbb{C}[s_1, s_2]$ -valued Schwartz function $\varphi_{\infty,0}$ on $M_2(\mathbb{R})^{\oplus 2}$ as follows:

$$\varphi'_{\infty,0}(X_1,X_2) :=$$

$$\exp(-\pi \operatorname{tr}({}^{t}X_{1}X_{1} + {}^{t}X_{2}X_{2}))P_{1}(s_{1}X_{1} + s_{2}X_{2})^{\frac{\kappa_{1} + \kappa_{2}}{2}} \times \begin{cases} P_{2}(s_{2}X_{1} - s_{1}X_{2})^{\frac{\kappa_{1} - \kappa_{2}}{2}} & (\kappa_{1} \geq \kappa_{2})\\ \bar{P}_{2}(s_{2}X_{1} - s_{1}X_{2})^{\frac{\kappa_{2} - \kappa_{1}}{2}} & (\kappa_{1} \leq \kappa_{2}) \end{cases}$$

Put $\varphi_0' := \underset{v < \infty}{\otimes} \varphi_{v,0}'$ and define the theta series $\theta_{\kappa_1,\kappa_2}'(g,h)$ on $G'(\mathbb{A}) \times H^1(\mathbb{A})$ as

$$\sum_{(X_1,X_2)\in M_2(\mathbb{Q})^{\oplus 2}} r'(g,h)\varphi'_0(X_1,X_2).$$

We view $f_1 \boxtimes f_2 := f_1 f_2$ as an automorphic form on $H^1(\mathbb{A})$ or $(H \times H)(\mathbb{A})$ for $(f_1, f_2) \in S_{\kappa_1}(D_1) \times S_{\kappa_2}(D_2)$. We embed \mathbb{A}^{\times} into $H^1(\mathbb{A})$ by

$$\mathbb{A}^{\times} \ni a \mapsto (a \cdot 1_2, a \cdot 1_2) \in H^1(\mathbb{A}).$$

For $(\kappa_1, \kappa_2) \in (2\mathbb{Z}_{\geq 0})^{\oplus 2}$ we then define the theta lifting from $S_{\kappa_1}(D_1) \times S_{\kappa_2}(D_2)$ to $G'(\mathbb{A})$ by

$$S_{\kappa_1}(D_1) \times S_{\kappa_2}(D_2) \ni (f_1, f_2) \to \mathcal{L}'(f_1, f_2)(g),$$

where $\Lambda' = (\frac{\kappa_1 + \kappa_2}{2}, -\frac{|\kappa_1 - \kappa_2|}{2})$ and

$$\mathcal{L}'(f_1, f_2)(g) := \int_{\mathbb{A}^{\times} H^1(\mathbb{Q}) \backslash H^1(\mathbb{A})} \theta'_{\kappa_1, \kappa_2}(g, hh') f_1 \boxtimes f_2(hh') dh$$

with an invariant measure dh on $\mathbb{A}^{\times}H^1(\mathbb{Q})\backslash H^1(\mathbb{A})$. Here for each $g\in G'(\mathbb{A})$, we take $h'=(h'_1,h'_2)\in (H\times H)(\mathbb{A})$ so that $\nu'(g)=\det(h'_1)\det(h'_2)^{-1}$. We note that this theta lift does not depend on the choice of h'.

We now quote the following theorem (cf. [O]):

Theorem 2.2. For two non-zero primitive cusp forms $(f_1, f_2) \in S_{\kappa_1}(D_1) \times S_{\kappa_2}(D_2)$, $\mathcal{L}'(f_1, f_2)$ is a non-zero generic cusp form on $G'(\mathbb{A}) = GSp(2)(\mathbb{A})$ with the trivial central character satisfying the following properties:

1. $\mathcal{L}'(f_1, f_2)$ is a paramodular form of level D_1D_2 , namely, at a prime $p|N := D_1D_2$, it is right invariant by a paramodular group

$$K'_{p^{\mathrm{ord}_p\,N}} := egin{pmatrix} \mathbb{Z}_p & \mathbb{Z}_p & N^{-1}\mathbb{Z}_p & \mathbb{Z}_p \ N\mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p \ N\mathbb{Z}_p & N\mathbb{Z}_p & \mathbb{Z}_p & N\mathbb{Z}_p \ N\mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p \end{pmatrix} \cap GSp(2)_{\mathbb{Q}_p},$$

2. When $\kappa_1 \neq \kappa_2$, $\mathcal{L}'(f_1, f_2)$ lies, at the archimedean place, in the minimal K'_{∞}^0 -type $\tau_{\Lambda'}$ of the large discrete series representations $\pi_{\lambda'}$ with

$$\lambda'=(\frac{\kappa_1+\kappa_2}{2}-1,-\frac{|\kappa_1-\kappa_2|}{2}),\quad \Lambda'=(\frac{\kappa_1+\kappa_2}{2},-\frac{|\kappa_1-\kappa_2|}{2}).$$

3 The Jacquet-Langlands-Shimizu correspondence for the theta lifts

3.1 Automorphic *L*-functions

We now define the spinor L-function for $\mathcal{L}(f, f')$, modifying the definition of [M-N-3, Section 2.6] at the archimedean place.

In [M-N-1, Section 5.1] we introduced three Hecke operator \mathcal{T}_p^i with $0 \le i \le 2$ for $p \nmid d_B$. Let Λ_p^i be the Hecke eigenvalue of \mathcal{T}_p^i for F with $0 \le i \le 2$. For $p \nmid d_B$ we put

$$Q_{F,p}(t) := 1 - p^{-\frac{3}{2}} \Lambda_p^1 t + p^{-2} (\Lambda_p^2 + p^2 + 1) t^2 - p^{-\frac{3}{2}} \Lambda_p^1 t^3 + t^4$$

For this we note that $Q_{F,p}(p^{-s})^{-1}$ coincides with the local spinor *L*-function for an unramified principal series of the group of $GSp(2)_{\mathbb{Q}_p}$. On the other hand, in [M-N-1, Section 5.2], we introduced two Hecke operators \mathcal{T}_p^i with $0 \le i \le 1$ for $p|d_B$. Let Λ_p^{i} be the Hecke eigenvalue of \mathcal{T}_p^i for F with $0 \le i \le 1$. For $p|d_B$ we put

$$Q_{F,p}(t) := \begin{cases} (1 - p^{-\frac{3}{2}} (\Lambda'^{\frac{1}{p}} - (p-1)\Lambda'^{0}_{p})t + t^{2})(1 - \Lambda'^{0}_{p}p^{-\frac{1}{2}}t) & (p|\frac{d_{B}}{D}), \\ (1 + \Lambda'^{0}_{p}p^{-\frac{1}{2}}t)(1 - \Lambda'^{0}_{p}p^{-\frac{1}{2}}t) & (p|D). \end{cases}$$

The first one is due to Sugano [Su, (3.4)]. The first factor of the second one comes from the numerator of the formal Hecke series.

We define the spinor L-function L(F, spin, s) of a Hecke eigenform F on $G(\mathbb{A})$ with the following properties:

- F is right $K_f(D)$ -invariant and right K^0_{∞} -equivariant with respect to the irreducible representation of highest weight $(\frac{\kappa_2-\kappa_1}{2},\frac{\kappa_1+\kappa_2}{2})$,
- F generates, as a $(\mathfrak{g}, K_{\infty}^0)$ -module, the discrete series representation with Harish Chandra parameter $(\frac{\kappa_2-\kappa_1}{2}+1,\frac{\kappa_1+\kappa_2}{2})$ with $(\kappa_1,\kappa_2)\in 2\mathbb{Z}^{\oplus 2}$ such that $1<\kappa_1<\kappa_2+2$, where recall that \mathfrak{g} denotes the Lie algebra of G_{∞}^1 (cf. Theorem 2.1 (3)).

The definition is as follows:

$$L(F, \mathrm{spin}, s) := \prod_{v \le \infty} L_v(F, \mathrm{spin}, s),$$

where

$$L_{v}(F, \text{spin}, s) := \begin{cases} Q_{F, p}(p^{-s})^{-1} & (v = p < \infty), \\ \Gamma_{\mathbb{C}}(s + \frac{\kappa_{1} - 1}{2}) \Gamma_{\mathbb{C}}(s + \frac{\kappa_{2} + 1}{2}) & (v = \infty). \end{cases}$$

By virtue of Theorem 2.1 (3) we can use this definition for $F = \mathcal{L}(f, f')$ when (f, f') are Hecke eigenforms.

We generalize [M-N-3, Proposition 2.9] to have the following:

Proposition 3.1. The spinor L-function for $\mathcal{L}(f, f')$ decomposes into

$$L(\mathcal{L}(f, f'), \text{spin}, s) = L(\pi(f), s)L(\text{JL}(\pi(f')), s),$$

where $L(\pi(f), s)$ (resp. $L(JL(\pi(f')), s)$) denotes the standard L-function of $\pi(f)$ (resp. $JL(\pi(f'))$).

Of course, we thus see that $L(\mathcal{L}(f, f'), \text{spin}, s)$ has the meromorphic continuation and satisfies the functional equation between s and 1-s since so do $L(\pi(f), s)$ and $L(\text{JL}(\pi(f')), s)$.

We now recall that there is Novodvorsky's zeta integral of the spinor L-function for a generic cusp form on $G'(\mathbb{A})$ (cf. [No]). By means of the zeta integral, the theorem as follows (cf. [O]) describes the spinor L-function for a generic form $\mathcal{L}'(f_1, f_2)$.

Theorem 3.2. Let the notations be as in Theorem 2.2. Then the global spinor L-function of $\mathcal{L}'(f_1, f_2)$ decomposes into

$$L(\pi(f_1), s)L(\pi(f_2), s).$$

As an immediate consequence of Proposition 3.1 and this theorem we obtain the following:

Corollary 3.3. Let $f \in S_{\kappa_1}(D)$ be a primitive form and $f' \in A_{\kappa_2}$ be a Hecke eigenform. Then we have

$$L(\mathcal{L}(f, f'), \text{spin}, s) = L(\mathcal{L}'(f, \text{JL}(f')), \text{spin}, s).$$

3.2 Automorphic representations generated by the theta lifts

We study locally and globally the representation $\pi(\mathcal{L}(f, f'))$ of $G(\mathbb{A}) = GSp(1, 1)(\mathbb{A})$ or $GSp^*(2)(\mathbb{A})$ generated by $\mathcal{L}(f, f')$ (respectively the representation $\pi(\mathcal{L}(f, JL(f')))$ of $G'(\mathbb{A}) = GSp(2)(\mathbb{A})$ generated by $\mathcal{L}'(f, JL(f'))$.

(1) The case of G:

We first discuss the case of G. We note that the Lie algebra of the group $G_{\infty}/Z_{G_{\infty}}$ is isomorphic to the Lie algebra \mathfrak{g} of G^1_{∞} . The group $G_{\infty}/Z_{G_{\infty}}$ is isomorphic to G^1_{∞} when $G = G_{\rm c}$ but it is neither connected or isomorphic to G^1_{∞} when $G = G_{\rm nc}$. For $G = G_{\rm nc}$ let K_{∞} be a maximal compact subgroup of $G_{\infty}/Z_{G_{\infty}}$. We can regard K^0_{∞} as the connected component of the identity for K_{∞} . Take $\sigma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in G(\mathbb{R})$. We can then identify K_{∞} with $K^0_{\infty} \cup K^0_{\infty} \sigma$. For $(\kappa_1, \kappa_2) \in (2\mathbb{Z}_{\geq 0})^{\oplus 2}$ with $1 < \kappa_1 + 2 < \kappa_2$ let $\pi^{(\kappa_1, \kappa_2)}_{\infty}$ be the discrete series representation of G^1_{∞} with Harish Chandra parameter $(\frac{\kappa_2 - \kappa_1}{2} + 1, \frac{\kappa_1 + \kappa_2}{2})$. Then we introduce another representation $\pi^{(\kappa_1, \kappa_2)}_{\infty, \sigma}$ of G^1_{∞} defined by

$$\pi_{\infty,\sigma}^{(\kappa_1,\kappa_2)}(g) = \pi_{\infty}^{(\kappa_1,\kappa_2)}(\sigma g \sigma^{-1}) \quad \forall g \in G_{\infty}^1.$$

This is equivalent to the discrete series representation with Harish Chandra parameter $(\frac{\kappa_1+\kappa_2}{2},\frac{\kappa_2-\kappa_1}{2}+1)$, which is not isomorphic to $\pi_{\infty}^{(\kappa_1,\kappa_2)}$. There is an irreducible $(\mathfrak{g},K_{\infty})$ -module $V_{\infty}^{(\kappa_1,\kappa_2)}$ which is equivalent to $\pi_{\infty}^{(\kappa_1,\kappa_2)}\oplus\pi_{\infty,\sigma}^{(\kappa_1,\kappa_2)}$ as $(\mathfrak{g},K_{\infty}^0)$ -modules.

Proposition 3.4. Suppose that f and f' are Hecke eigenforms and that $1 < \kappa_1 + 2 < \kappa_2$ for $G = G_{\rm nc}$ (respectively $1 < \kappa_2 + 2 < \kappa_1$ for $G = G_{\rm c}$). Then the representation $\pi(\mathcal{L}(f, f'))$ of $G(\mathbb{A}_{\mathbb{Q}})$ is irreducible.

The point of proof is to use [N-P-S, Theorem 3.1]. We then reduce the global irreducibility to the local irreducibility at the archimedean place. When $G = G_{\rm nc}$, we can verify that the archimedean component of $\pi(\mathcal{L}(f, f'))$ is isomorphic to $V_{\infty}^{(\kappa_1, \kappa_2)}$.

We can therefore decompose $\pi(\mathcal{L}(f, f'))$ into the restricted tensor product $\prod_{v \leq \infty}' \pi_v$ and are able to determine each local component π_v . To state our result on it we need several notation.

For a primitive cusp form $f \in S_{\kappa_1}(D)$ let $\pi(f)$ be an irreducible cuspidal representation of $GL_2(\mathbb{A})$, which admits a decomposition into the restricted tensor product $\pi(f) = \prod_{v \leq \infty}' \pi(f)_v$. Then, for $v = p \nmid D$, $\pi(f)_p$ is an unramified principal series representation of $GL_2(\mathbb{Q}_p)$. Let $\chi_{f,p}$ denote the unramified character of \mathbb{Q}_p^{\times} which induces $\pi(f)_p$.

For a Hecke eigenform $f' \in \mathcal{A}_{\kappa_2}$ let $\pi(f')$ be the irreducible automorphic representation of $H'(\mathbb{A})$ generated by f', and let $\pi(f') = \prod_{v \leq \infty}' \pi(f')_v$ be the decomposition into the restricted tensor product of local representations. When $p \nmid d_B$, $\pi(f')_p$ is an unramified principal series representation of $B_p^{\times} \simeq GL_2(\mathbb{Q}_p)$. We let $\chi_{f',p}$ be the unramified character of \mathbb{Q}_p^{\times} inducing $\pi(f')_p$. When $p|d_B$, $\pi(f')_p$ is a character of B_p^{\times} of order at most two. Thus we have

$$\pi(f')_p = \delta_p \circ n$$

with a character δ_p of \mathbb{Q}_p^{\times} of order at most two, where recall that the notation n stands for the reduced norm of B (cf. Section 1.1). In view of Theorem 2.1 (2), $\delta_p(p) = \epsilon_p' = \epsilon_p$ is necessary for p|D in order that $\mathcal{L}(f, f') \not\equiv 0$.

Following the notation of the appendix, let ν be the p-adic absolute value of \mathbb{Q}_p and let ξ be the non-trivial unramified character of \mathbb{Q}_p^{\times} of order two for $p|d_B$. We further note that, in the appendix, the notation $\chi 1_B \rtimes \sigma$ is used for the induced representation of $GSp(1,1)(\mathbb{Q}_p)$ defined by two quasi-character χ and σ of \mathbb{Q}_p^{\times} when $p|d_B$. On the other hand, with three unramified quasi-characters χ_1 , χ_2 and σ of \mathbb{Q}_p^{\times} , $\chi_1 \times \chi_2 \rtimes \sigma$ denotes the unramified principal series representation of $GSp(2)(\mathbb{Q}_p)$, which is referred to as "type I" on the table of the appendix.

Proposition 3.5. Let the notation be as above.

- (1) Let $v = p \nmid d_B$. Then π_p is an unramified principal series representation of $GSp(1,1)(\mathbb{Q}_p)$ $\simeq GSp^*(2)(\mathbb{Q}_p) \simeq GSp(2)(\mathbb{Q}_p)$ given by $(\chi_{f',p} \cdot \chi_{f,p}^{-1}) \times (\chi_{f',p}^{-1} \cdot \chi_{f,p}^{-1}) \rtimes \chi_{f,p}$.
- (2) Let $v = p|d_B$. When $v = p|\frac{d_B}{D}$, π_p is isomorphic to the irreducible representation of $GSp(1,1)(\mathbb{Q}_p) \simeq GSp^*(2)(\mathbb{Q}_p)$ of type II_a with $\sigma = \chi_{f,p}$ and $\chi = \chi_{f,p}^{-1} \cdot \delta_p$. When v = p|D and δ_p is trivial (respectively non-trivial), π_p is isomorphic to the irreducible representation of $GSp(1,1)(\mathbb{Q}_p) \simeq GSp^*(2)(\mathbb{Q}_p)$ of type V_a with $\sigma = \xi$ (respectively $\sigma = 1$), where, for the representations of $GSp(1,1)(\mathbb{Q}_p) \simeq GSp^*(2)(\mathbb{Q}_p)$ of type II_a and V_a , see the appendix.
- (3) When $v = \infty$ and $G = G_{nc}$, π_{∞} is isomorphic to $V_{\infty}^{(\kappa_1,\kappa_2)}$. When $v = \infty$ and $G = G_c$, π_{∞} is isomorphic to the irreducible representation with Harish-Chandra parameter $(\frac{\kappa_1 + \kappa_2}{2}, \frac{\kappa_1 \kappa_2}{2} 1)$ modulo center.

The archimedean component of $\pi(\mathcal{L}(f, f'))$ is already determined in the proof of Proposition 3.4. It thus suffices to consider the non-archimedean components. For every finite prime p, π_p is a spherical representation of $G_p = GSp(1,1)(\mathbb{Q}_p)$ or $GSp(2)(\mathbb{Q}_p)$ (cf. [C]). As we see in [C], π_p is uniquely determined by the Hecke eigenvalues. We calculate Hecke eigenvalues of $\mathcal{L}(f, f')$ explicitly in terms of eigenvalues for (f, f') to obtain the assertion.

(2) The case of G':

We next deal with the automorphic representation $\pi(\mathcal{L}'(f,\operatorname{JL}(f')))$ of $GSp(2)(\mathbb{A})$ generated by $\mathcal{L}'(f,\operatorname{JL}(f'))$. According to $[\mathbb{R},$ Theorem 8.3], $\pi'(f,\operatorname{JL}(f'))$ is an irreducible cuspidal representation. It thereby admits a decomposition into the restricted tensor product $\pi(\mathcal{L}'(f,\operatorname{JL}(f'))) = \prod_{v \leq \infty}' \pi_v'$. For each finite prime $v = p, \pi_p$ is involved in the local theta correspondence for $GSO(2,2)(\mathbb{Q}_p)$ and $GSp(2)(\mathbb{Q}_p)$, which is explicitly described in Gan-Takeda [G-T-2]. To describe each π_p we use the notation of the appendix. To describe the archimedean component π'_{∞} , we need to introduce, for two even integers (κ_1,κ_2) with $1 < \kappa_1 + 2 < \kappa_2$, the irreducible admissible representation $V'_{\infty}^{(\kappa_1,\kappa_2)}$ of $GSp(2)(\mathbb{R})$ whose restriction to $Sp(2)(\mathbb{R})$ is the direct sum of the two large discrete series representation of $Sp(2)(\mathbb{R})$ with Harish Chandra parameters $(\frac{\kappa_1+\kappa_2}{2}, -\frac{\kappa_2-\kappa_1}{2}-1)$ and $(\frac{\kappa_2-\kappa_1}{2}+1, -\frac{\kappa_1+\kappa_2}{2})$.

Proposition 3.6. Let the notation be as above.

(1) Let $v = p \nmid d_B$. Then π'_p is isomorphic to π_p , namely an unramified principal series representation of $GSp(1,1)(\mathbb{Q}_p) \simeq GSp^*(2)(\mathbb{Q}_p) \simeq GSp(2)(\mathbb{Q}_p)$ given by $(\chi_{f',p} \cdot \chi_{f,p}^{-1}) \times (\chi_{f',p}^{-1} \cdot \chi_{f,p}^{-1}) \rtimes \chi_{f,p}$.

(2) Let $v = p|d_B$. When $v = p|\frac{d_B}{D}$, π'_p is isomorphic to the irreducible representation of $GSp(2)(\mathbb{Q}_p)$ of type II_a with $\sigma = \chi_{f,p}$ and $\chi = \chi_{f,p}^{-1} \cdot \delta_p$. When v = p|D and δ_p is trivial (respectively non-trivial), π'_p is isomorphic to the irreducible representation of $GSp(2)(\mathbb{Q}_p)$ of type V_a with $\sigma = \xi$ (respectively $\sigma = 1$), where, for the representations of $GSp(2)(\mathbb{Q}_p)$ of type II_a and V_a , see the appendix.

(3) When $v = \infty$, π'_{∞} is isomorphic to $V'^{(\kappa_1, \kappa_2)}_{\infty}$.

Using Przebinda [Prz], the representation π'_{∞} at the infinite prime $v = \infty$ is determined by the same reasoning as in the case of $GSp(1,1)(\mathbb{R})$. The representation π_p is included in the table 2 of Section 14 or Theorem 8.2 (iv), (v), (vi) of Gan-Takeda [G-T]. Then, looking also at the table of the appendix, we have the assertion on π_p .

3.3 Conjecture and conclusion

Let \mathcal{A}_G and $\mathcal{A}_{G'}$ denote the equivalence classes of irreducible automorphic representations of $G(\mathbb{A})$ and $G'(\mathbb{A})$ respectively. We note that the L-group LG of G is the same as the L-group $^LG'$ of G', where $^LG = ^LG'$ is the direct product of $GSp(2)(\mathbb{C})$ and the Weil group of \mathbb{Q} (for the notion of L-group see [La] and [B] et al). As the choice of the L-morphism between LG and $^LG'$ we can take the identity map. The Langlands principle of functoriality predicts the following:

Conjecture 3.7 (Langlands). The L-morphism induced by the identity map would gives rise to a natural transfer from A_G to $A_{G'}$ which preserves L-functions, namely an L-function of an irreducible automorphic representation of $G(\mathbb{A})$ is one of some irreducible automorphic representation of $G'(\mathbb{A})$.

Let us now introduce

$$\begin{split} \mathcal{A}_G(K_f(D)) &:= \{\pi = \prod_{v \leq \infty} \pi_v \in \mathcal{A}_G \mid \pi_p \text{ has a } K_p\text{-fixed vector for } v = p < \infty \}, \\ \mathcal{A}_{G'}(K'_f(D)) &:= \{\pi' = \prod_{v \leq \infty} \pi'_v \in \mathcal{A}_{G'} \mid \pi'_p \text{ has a } K'_p\text{-fixed vector for } v = p < \infty \}, \end{split}$$

where see Section 1.2 for $K_f(D)$ and $K'_f(D)$.

Based on the observation by R. Schmidt including the table of irreducible admissible representations of $G(\mathbb{Q}_p) = G_{\rm nc}(\mathbb{Q}_p) = G_{\rm c}(\mathbb{Q}_p)$ and $G'(\mathbb{Q}_p) = G_{\rm s}(\mathbb{Q}_p)$ in the appendix (see also [RS, Section A.8]), we can formulate the conjecture as follows:

Conjecture 3.8. The above transfer would map $A_G(K_f(D))$ into $A_{G'}(K'_f(D))$ and an L-function of $\pi \in A_G(K_f(D))$ is one of some $\pi' \in A_{G'}(K'_f(D))$.

We remark that this was first pointed out by Ibukiyama [I] for the case of $G = G_c$ and D = 1. As a consequence of Corollary 3.3, Propositions 3.5 and 3.6 we have known that our theta lifts $\mathcal{L}(f, f')$ and $\mathcal{L}'(f, \mathrm{JL}(f'))$ provide evidence of Conjecture 3.8. We state it as follows:

Theorem 3.9. Suppose that two even integers (κ_1, κ_2) satisfy $1 < \kappa_1 + 2 < \kappa_2$ when $G = G_{nc}$ (respectively $1 < \kappa_2 + 2 < \kappa_1$ when $G = G_c$). For any given primitive form $f \in S_{\kappa_1}(D)$ and Hecke eigenform $f' \in A_{\kappa_2}$, the map

$$\mathcal{A}_G(K_f(D)) \ni \pi(\mathcal{L}(f, f')) \mapsto \pi(\mathcal{L}'(f, \mathrm{JL}(f'))) \in \mathcal{A}_{G'}(K_f'(D))$$

preserves the coincidence of the global spinor L-functions and is compatible with the non-archimedean local Jacquet-Langlands correspondence for G and G' = GSp(2) (cf. Appendix). Namely, this map satisfies the expected properties of the transfer in the conjecture.

A Appendix: The spherical representations of GSp(1,1) and local Langlands parameters for GSp(4) (by Ralf Schmidt)

Let F be a non-archimedean local field of characteristic zero. Let B be the non-split quaternion algebra over F, and let $x \mapsto \bar{x}$ be its standard involution. We consider GSp(1,1) and GSp(4) (or GSp(2)) over F. Let \mathfrak{o}_B be a maximal order in B(F), and let \mathfrak{p}_B be the unique maximal ideal of \mathfrak{o}_B . Let

$$K_{1} = \{g \in \operatorname{GSp}(1,1)(F) \cap \begin{bmatrix} \mathfrak{o}_{B} & \mathfrak{o}_{B} \\ \mathfrak{o}_{B} & \mathfrak{o}_{B} \end{bmatrix} : \nu(g) \in \mathfrak{o}^{\times} \},$$

$$K_{2} = \{g \in \operatorname{GSp}(1,1)(F) \cap \begin{bmatrix} \mathfrak{o}_{B} & \mathfrak{p}_{B} \\ \mathfrak{p}_{B}^{-1} & \mathfrak{o}_{B} \end{bmatrix} : \nu(g) \in \mathfrak{o}^{\times} \}.$$

We remark that these groups K_1 and K_2 are maximal compact subgroups of GSp(1,1)(F), and every maximal compact subgroup is conjugate to either K_1 or K_2 .

The following table lists all irreducible, admissible representations of GSp(1,1)(F) which are constituents of representations of the form $\chi 1_{B^\times} \rtimes \sigma$, where χ and σ are characters of F^\times . The table also lists all the irreducible, admissible representations of GSp(4,F) supported in the Borel subgroup, using the notations and classification scheme of [R-S]. Representations with the same L-parameter $W_F' \to GSp(4,\mathbb{C})$ appear in the same row; this is nothing but the Langlands functorial transfer from GSp(1,1) to GSp(4) coming from the natural inclusion of dual groups. The actual L-parameters can be found in Table A.7 of [R-S].

The columns labeled K_1 and K_2 indicate, in the case when the inducing characters are unramified, the dimension of the space of K_1 resp. K_2 invariant vectors in a representation of G(F).

		GSp(1,1)	GSp(4)	K_1	K_2
I		-	$\chi_1 \times \chi_2 \rtimes \sigma$ (irreducible)		
II	a	$\chi 1_{B^{\times}} \rtimes \sigma$	$\chi \mathrm{St}_{\mathrm{GL}(2)} \rtimes \sigma$	1	1
	b		$\chi 1_{\mathrm{GL}(2)} \rtimes \sigma$		
III	a		$\chi \rtimes \sigma \mathrm{St}_{\mathrm{GSp}(2)}$		
	b		$\chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$		
IV	a	$\sigma \mathrm{St}_{\mathrm{GSp}(1,1)}$	$\sigma \mathrm{St}_{\mathrm{GSp}(4)}$	0	0
	b	_	$L(\nu^2, \nu^{-1}\sigma \operatorname{St}_{\mathrm{GSp}(2)})$		
	c	$\sigma 1_{\mathrm{GSp}(1,1)}$	$L(\nu^{3/2}\mathrm{St}_{\mathrm{GL}(2)}, \nu^{-3/2}\sigma)$	1	1
	d		$\sigma 1_{\mathrm{GSp}(4)}$		
V	a	$\delta(\nu^{1/2}\xi 1_{B^{\times}}, \nu^{-1/2}\sigma)$	$\delta([\xi,\nu\xi],\nu^{-1/2}\sigma)$	1	0
	b	$L(\nu^{1/2}\xi 1_{B^{\times}}, \nu^{-1/2}\sigma)$	$L(\nu^{1/2}\xi \operatorname{St}_{\operatorname{GL}(2)}, \nu^{-1/2}\sigma)$	0	1
	c	$L(\nu^{1/2}\xi 1_{B^{\times}}, \xi \nu^{-1/2}\sigma)$	$L(\nu^{1/2}\xi\mathrm{St}_{\mathrm{GL}(2)},\xi\nu^{-1/2}\sigma)$	0	1
	d	—	$L(\nu\xi,\xi \rtimes \nu^{-1/2}\sigma)$		
VI	a		$\tau(S, \nu^{-1/2}\sigma)$		
	b	-	$ au(T, u^{-1/2}\sigma)$		
	с	$\nu^{1/2}1_{B^\times} \rtimes \nu^{-1/2}\sigma$	$L(\nu^{1/2}\mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1/2}\sigma)$	1	1
	d	_	$L(\nu, 1_{F^\times} \rtimes \nu^{-1/2}\sigma)$		

The notation ν stands for the valuation of F. For the IIa type representation, χ is such that $\chi^2 \neq \nu^{\pm 1}$ and $\chi \neq \nu^{\pm 3/2}$. For the representations in group V, the character ξ is assumed to be non-trivial and quadratic.

References

- [B] A. Borel, Automorphic L-functions, Proc. Sympos. Pure Math. 33 part 2 (1977) 27-61.
- [C] P. Cartier, Representations of p-adic groups: a survey, Proc. Symp. Pure Math. 33 (1979) part 1 111-155.
- [E-1] M. Eichler, Über die Darstellbarkeit von Modulformen durch Thetareihen, J. Reine Angew. Math. 195 (1955) 156-171.
- [E-2] M. Eichler, Quadratische Formen und Modulfunktionen, Acta Arith. 4 (1958) 217-239.
- [G-G-P] I. M. Gel'fand, M. I. Graev and I. I. Piatetski-Shapiro, Representation theory and automorphic functions, W.B. Saunders Company (1969).

- [G-T] W. T. Gan and S. Takeda, Theta correspondence for GSp(4), Representation theory 15 (2011) 670-718.
- [Ha-K] M. Harris and S. Kudla, Arithmetic automorphic forms for the non-holomorphic discrete series of GSp(2), Duke Math. J. 66 (1992) 59-121.
- [He] E. Hecke, Analytische arithmetik der positiven quadratischen formen, in Math. Werke, Vandenheck and ruprecht in Göttingen (1983) 789-918.
- [I] T. Ibukiyama, Paramodular forms and compact twist, Automorphic forms on GSp(4), Proceedings of the 9th Autumn workshop on number theory (2006) 37-48.
- [J-L] H. Jacquet and R.P.Langlands, Automorphic forms on GL(2), Lecture Notes in Math. 114, Springer-Verlag (1970).
- [La] R. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math. 170, Springer-Verlag (1970) 18-86.
- [L-P-T-Z] J. S. Li, A. Paul, E. C. Tan and C. B. Zhu, The explicit duality correspondence of $(Sp(p,q), O^*(2n))$, J. Funct. Anal. 200 (2003) 71-100.
- [Lo] R. Löschel, Thetakorrespondenz automorpher Formen, Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln (1997).
- [M-N-1] A. Murase and H. Narita, Commutation relations of Hecke operators for Arakawa lifting, Tohoku Math. J. 60 (2008) 227–251.
- [M-N-2] A. Murase and H. Narita, Fourier expansion of Arakawa lifting I: An explicit formula and examples of non-vanishing lifts, Israel J. Math. 187 (2012) 317–369.
- [M-N-3] A. Murase and H. Narita, Fourier expansion of Arakawa lifting II: Relation with central L-values, preprint.
- [Na] H. Narita, Theta lifting from elliptic cusp forms to automorphic forms on Sp(1,q), Math. Z. 259 (2008) 591-615.
- [N-O] H. Narita and T.Okazaki, Jacquet-Langlands-Shimizu correspondence for theta lifts to GSp(2) and its inner forms, with an appendix by Ralf Schmidt, preprint, (2012).
- [N-P-S] H. Narita, A. Pitale and R. Schmidt, Irreducibility criteria for local and global representations, to appear in Proceedings of the American Mathematical Society.
- [No] M. Novodvorsky, Automorphic L-functions for symplectic group GSp(4), Proc. Symp. Pure Math. 33 part 2 (1979) 87-95.
- [O] T. Okazaki, Paramodular forms on $GSp_2(\mathbb{A})$, preprint.
- [Prz] T. Przebinda, The oscillator duality correspondence for the pair O(2,2) and $Sp(2,\mathbb{R})$, Memoirs of A. M. S. vol.79, No.403 (1989).

- [R] B. Roberts, Global L-packets for GSp(2) and theta lifts, Documenta Math. 6 (2001) 247-314.
- [R-S] B. Roberts and R. Schmidt, Local new forms for GSp(4), Lecture Notes in Math. 1918, Springer-Verlag (2007).
- [Sh] H. Shimizu, Theta series and automorphic forms on GL_2 , J. Math. Soc. Japan 24 (1972) 638–683.
- [Su] T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo 31 (1985) 521–568.

Hiro-aki Narita Department of Mathematics, Faculty of Science Kumamoto University Kurokami, Kumamoto 860-8555, Japan E-mail address: narita@sci.kumamoto-u.ac.jp