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p-adic Siegel Eisenstein series of degree n

Pr#& # (Takemori Sho)*
Department of Mathematics, Kyoto University.

1 Introduction

In this paper, we define an Siegel Eisenstein series G,(cni of degree n and introduce
a formula for its Fourier expansion. The definition of chn))(

,(Cn; But if x satisfies a certain condition, G,(cn))c

coincides with E,Sn)z We also introduce the theorem that states the existence of

p-adic family of Siegel modular forms that interpolates Gi"))(

is different from the

ordinary Siegel Eisenstein series

2 Statement of the main results

Let F be a totally real field with [F : Q] = m. If K is a number field and v is a
finite place of K, then we denote by Ok and by O, the integer ring of K and
that of K, respectively. For an ideal n of F', we denote the group of fractional
ideals of F relatively prime to n by I,. Let x be a narrow class character modulo
n, that is, a character y : I, & C* trivial on any principal ideal (a) generated
by a totally positive element a such that a = 1 mod n. Let A be the adele
ring of F and A} the idele group of F. Denote the character of finite order of
A% /F* corresponding to x by X.

For an infinite place v of F, let r, be an element of Z/2Z satisfying the
following condition.

x ((a)) = H sgn (1,(a))™ for & = 1 mod n.
v]oo .

Here v runs over the set of m real places of F and ty is the real embedding
corresponding to v. We define a character sgn, of F'* by

sgn (a) = [ sen™ (o(a)).
v]oo
We define a character xf: (Op/n)* = C* by
xs(a) = sgn, (a)x ((a)).
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Let n be a positive integer. For 0 < ¢ < n, we denote by wy,; the matrix
given as follows.

0; O -1; 0O
W i = 0 ln—i . 0 On—z
™t 1, O 0; 0
0 On—i 0 ln—z

We put w, = wn,n. We define the symplectic group of degree n by

Spn(R) = {g € GL2g(R) : tgwng = wn};

where R is a commutative ring. For g € Sp,,, we denote g = (Zg Zg> with

ag,bg,cq,dg € M. Define the Siegel parabolic subgroup P, by
Po(R) = {9 € Sp(R) | ¢y = 0}.
We define a congruence subgroup I’gn) (n) by
i (n) = {9 € Spn(OF) | cg =0mod n}.
We define the Siegel upper half space of degree n by
Hn = {z € Sym,(C) | z =z +1y, z, y € Sym,(R), y > 0}.

Let k be a positive integer and assume x;(—1) = (—1)*. Define a Siegel
Eisenstein series of degree n, character x, weight k& by

E,?;(z) = Z x?l(det dg) det(cyz + dg) .

g€P, (OF)NT§™ (m)\T§™ (n)

Here 2z = (2y)vjo0 € [[yo0 9In and det(cgz + dg)™* is defined by

det(cgz +dg)~*F = H det(Ly(cg) 2o + tu(dg)) 7.

v|oo

In the rest of this paper, we assume that n is relatively prime to 2 for
simplicity.
Put
P = {p: aprimeof F |p|nand X? is unramified } .

Let g € Sp,(OF) and assume cg € p°r (™ if p ¢ P and rank o, /,(cy mod p) =
ip with 0 < iy, <nif p € P. For p € P, the assumption for g implies g mod p €
Po(OF/p)w;, P.(OF/p). Therefore if p € P, there exist elements x,, y, €
GL(Or/p) satisfying

RN )
g mod p (0 t.'L'pl Wy, 0 QJpl

102



103

We put
XUiptpep:9) = [ (x5), (detdy) [T (xp), (det 2, dety,).
pé;‘; peP
p

Here (xy), is the p-component of x;.
We define an auxiliary Siegel Eisenstein series Fy | ({ip},.p ;2) as follows.

Ellc,x({ip }pe’p ; Z) = Z X({ip}p‘gpv; g)—l det(cgz + dg)>
g .
where ¢ runs over the set P,(F) N Sp,,(Or)\Sp,,(OF) satisfying the property
cg € p°"% (™ if p ¢ P and rank oz /p(cg mod p) =iy if p € P. By the definition,
we have By ({ip},cpi2) = E,E"; ifi, =0 for all p € P.
Let p be a prime of F' and assume p-€ P and (p,2) = 1. For 0 <i < n and
s € C, we put My, (s, xp) =0 if 7 is odd and put

/2
Min(s,%p) = Xp(—1)Np~*/2 H(l — Np~172%)(1 — X2 (p)Np ~2e+2atn=i=2)
a=0
if 7 is even. We set

n+1 _

\
By definition, the right hand side does not depend on n.

We define an Eisenstein G,(Cn))< as a linear combination of Ey | ({ip},cp;2)-

Definition 2.1. If P # (0, we define

SRIOEND DI | EINCSY EL,X({ip}pep;Z)-

{ip}ep \PEP

Here {3, }pEP runs over all the non-empty subsets of [[, . {0,...,n}. P =0,
we define ) )
n n
Gy =Ep
Remark 2.1. We can define ngg(
operator. But to shorten the statement, we define G
subsection 3.1)

more naturally by using the intertwining

(n)
k,x

in this way. (See
The first main theorem of this paper is the result for Fourier coefficients for
G,(c"))( We prepare some notation.
Let B € Sym),(OF) be a half integral matrix of size n. Put r = rank B.
There exists a matrix A € GL,,(F') such that

B 0
t —
ABA_<O O),



with B’ € Sym,.(F). Then det B’ € F*/F*? does not depend on the choice of |

A. If r is even we denote by yp the narrow class character of F' associated with

the extension F'(1/(—1)"/2det B’)/F by the global class field theory.
For a prime p of F such that p { n, there exists a matrix U € GL,(O,) that

satisfies - B 0
— p
UBU ( 0 0) ,

with By € Sym;(Op). The matrix By is unique up to unimodular equivalence.
Therefore @ér)(B",; T) does not depend on the choice of U, where ‘I)f,r)(B{,; T) is

the polynomial obtained by the Siegel series. (In the notation of [4] 13.6. The-
orem, we have &) (B}; T) = fg;(T).) Thus we put " (B,T) = ®" (B}, T).

Theorem 2.1. Let 0 < B € Sym), (OF) be a half integral positive semi-definite
matriz of size n and k > n + 1 an integer. Let x be a primitive narrow class
character of F of conductor n. Put r = rank B. Then the following assertions
hold.

If r is even, then a(B,G’g?() is given by

272 ] 7 (B; x(p)Np* ")

pin

r/2

x L(1 =k, x) 7 L™ (1 + /2 = k,oxnx) T L™ (1 +2i — 2k, )7
=1

If v is odd, then a(B, Gy")) is given by
o(r+1)m/2 H (IZ‘,(,T)(B; X(p)Npk—r—l)
pin
(r-1)/2

xL1-kx)™0 J[ LWQ+2i-kx)"

i=1

For a Hecke L-function L(s, x) and an ideal n, we denote-L{™ (s, x) = [pa(1 -

x(p)Np~=°)~1, where the index p runs over the set of primes of F relatively prime
to the conductor of x and the ideal n.

From this theorem and the definition of G(") we have a formula for the

k,x*
Fourier coefficients of E,(c")z ifP=0.

Remark 2.2. When F = Q, Katsurada [1] proved the explicit formula for
<I>§,T) (B, T), thus in this case we have the explicit formula for Fourier coefficients
of Gi";

For a prime p of F', we put

Py (p*) = {aOF | a:positive definite and a = modp®} .
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We define the narrow ray class group of F' of conductor p* by Clg(p®) =
I,/ Py (p®). We consider the projective limit

Clp (p°°) = lim Clp ().

We put G = Clp(p®).

Let Q be the completion of Fp and A the integer ring of Q. We fix the
embedding of Q to C and Q. We denote Meas(G, A) by the bounded p-adic
‘measure on G with values in A. Let p be the residual characteristic of Fy,. Since
I, can be considered as a dense subgroup of G and the norm map N : Ip — Z;
is continuous, we can extend N to G. We denote the extended character by the
same letter. Let w be the Teichmiiller character of Z; and put wp =wo N.

Theorem 2.2. Let p be a prime of F such that (p,2) = 1, p a residual char-
‘acteristic of Fy and x a narrow ray class character of conductor p”. Denote
Or[x] by the ring generated by Im(x) over Op. Then there ezists a formal
Fourier expansion G™ (x;T)

G (;T) = Y a(B;T)e(Bz),

0<BeSym{ ) (OF)

where a(B;T) is an element of the quotient ring of the formal power series ring
Frac Or[x][T], and satisfies the following condition. If k > n+1 and x - wp" is
not the trivial character modulo p

G(n)(x; uf —1) = Gk’xﬂw;k,

where u is a fized generator of 1 + Z,,. Moreover, there exists a nonzero formal
power series b(T) and a p-adic measure ug € Meas(G, A) for each B that satisfy
b(u® - 1a(B;u’ ~ 1) = / x(z)N(z) Y (N(z))*dup, forse Z,.
G

Here for a € Z, we put (a) = aw™1(a).

Remark 2.3. In the interpolation property, we assume the character is not
trivial character mod p. H. Kawamura [2] proved the existence p-adic family of
Siegel Eisenstein series that interpolates Eisenstein series with trivial character
modulo p.

3 Sketch of the proof of the main theorem

Since we can derive theorem 2.2 by theorem 2.1 and the existence of p-adic Heck
L-functions for totally real fields, we only prove theorem 2.1.
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3.1 Definition of an Eisenstein series é,(cn))c

In this subsection, we give a more natural definition of G’,(cni
For a place v of F, we denote the space for the normalized induction by

Spn (=~
Ind2" (X, - [p)-
We define the intertwining operator

ME) :d P (%) - 15) = IdE (Y- 15°)

M@= [ 7wy §)e)as
ymp, £y )

for g € Sp,(F,). Here we take a Haar measure of Sym, (F,) so that we have
Sym. (O) dx = 1. The integral is convergent if Re s is sufficiently large and has
meromorphic continuation to the whole complex plane.
We define a compact subgroup Cp, of Sp,,(F,) as follows.

by

(i) If v is real or x, is unramified then we define Cp , = C,,.
(ii) If v = p is a finite place and ¥, is ramified then WFI', define
Co,w = {9 € SPn(Oy) | ¢g =0 mod p¥} .
Here p¥ is the conductor of X,.

We define a character x,, of Cp ,, as follows.

- (1) If v is real then we define

Ko ((’; _u”)) = det(u + iv)*.

(ii) If v is finite and X, is unramified then we define k, = 1.

(iii) If v is finite and X, is ramified then we define
ku(Y) = Xo(det d,).

We denote by ¢,(s, ) the element of Ind?};" (X, %) satisfying the following
conditions.

Supp¢v(5: ) = Pn(Fv)CO,va
bu(5,97) = Ku(7)Pu(s,g) for all v € Cp,,
(s, 1) = 1.
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We also denote by ¢} (—s,-) the element of Indi{’l (x5l - |7%) satisfying the
following conditions.

Suppqﬁ;(—s, ) - Pn(Fv)wnCO,va
¢u(=5,97) = k(1) (—s,9) for all v € Cpo. (3.1)
¢'Iu(—5awn) = 1.

For a place v of F, we define ¢,(s,-) € Indii“(p?v{ - 12) as follows.

(i) If v is real or ¥, is unramified then we define

Po(5,9) = du(s, 9).
(ii) If v is finite and Y, is ramified then we define
Po(s,9) = M2 (@,(=5,)(9)- (3:2)
For g = (91;)0'6 Sp,(AF), we put

¢(s,g) = H ©v(8,90),

where v runs over the set of the places of F.
We define an Eisenstein series on Sp,,(Ap) by

M= > els,19)

YE P (F)\Sp,, (F)

We define éfb"))( by the function on [, . corresponding to é,iﬁ)(nﬂ)/z’x.
We can prove the proposition bellow by explicit calculation of the value of
the intertwining operator. We omit the proof.

Proposition 3.1. Assume that n is relatively prime to 2. Then we have

n) _ &n)
G,(w =G,

3.2 Functional equation of Whittaker functions

The key ingredient for the proof of the main theorem is the following theorem
by T. Ikeda (Kyoto University).

Theorem 3.1 (T. Ikeda). Let k be a local field. Let i be a nontrivial additive
character of k and x be a quasi character of k*. Suppose B € Sym, (k) and

det B#0. For f € Ind?}i"(ip[ -[3), we put

Wg(f)(9) = /S e f (wn ((1): f;)) (—TrBz)dz.



Then
Wg o M, = x(det B)"!|det B|™*c(s, B)Wg.

The notation is as follows.
Let n be even. Dp is defined by Dp = (—1)"/?det B. xp is the character
of k* corresponding to k(v/Dp)/k. (s, B) is given as follows.

— —ns (D5) —n_/ l
C(S, B) - 12' a(l) X(2) € (S + 27XXB,¢)
n-1 n/2
- -1 . 2 y~1
x €'(s— 5 X ) ge'(Qs—n+2r,x,1/;) )

Here = e(s,w,v) s the epsilon factor, &'(s,w,y)) = s(s,w,1,b)ﬂ114_7%’;-2 and
a(x) is the Weil indez.
a(1) 1

a(Dg) ~ 3 X2 ¥)

Let n be odd. Then

c(s, B) = |2|7("" ey (2)~(mV¢p
(n—-1)/2
n—1

’ -1 / 2 ~1
xel(s= =) ] d@s—n+2rd 9

r=1

Here ‘ ,
(g = ((-1)"""D/%, det B)(—1,-1)™ ~1)/8p(B),

and (x, *) is the Hilbert symbol.

3.3 Sketch of the proof

sketch of the proof of theorem 2.1. For simplicity, we assume the class number
of F' is one. Denote ® by the Siegel operator. Then by the definition of Ggi,
we have <I>G§c"l))< = G;:;l)(z). Thus it is enough to compute a(B, Gini) when

det B # 0. We can prove that a(B,ch'f))() has Euler product expression. By
(3] (4.34K), (4.35K), [4] 13.6. Theorem, we know the Euler factor at infinite
places and unramified places. Thus it is enough to compute the Euler factors
at ramified places. Let p | n. Then the Euler factor at p is given by

/Sym F) Pu (k - (n+1)/2,wn ((1): 12)) e(—TrBz)dz
=W °prn(¢>’(—k: +(n+1)/2, (L),

By theorem 3.1, it is enough to compute Wg(¢'(—k+ (n+1)/2,-))(1,) , but it
is easy to verify that this equals to 1. O
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