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On asymptotic behavior of solutions to the compressible Navier-Stokes
equation around a time-periodic parallel flow

Jan Bfezina
Graduate School of Mathematics, Kyushu University

1 Introduction

In this paper we study the stability of a time-periodic parallel flow to the compressible Navier-
Stokes equation with time-periodic external force and time-periodic boundary conditions.
We consider the system of equations

00 + div (pv) = 0, (1.1)
P(OF + 7T - VT) — pAT — (u + /)Vdive + VP(p) = g, (1.2)

in an n dimensional infinite layer Q, = R"~! x (0, £):

Q= {F="7,%,);% =TG1,...,8n1) ER*,0< F, < £}

Here, n > 2; p = p(Z,t) and ¥ = T(W4(T, 1), ... ,'17"(5,:)) denote the unknown density and

velocity at time ¢ > 0 and position Z € €, respectively; P is the pressure, smooth function of
p, where for given p, > 0 we assume

~

P'(p.) > 0;

u and 4/ are the viscosity coefficients that are assumed to be constants satisfying u > 0, % w+
i > 0; div, V and A denote the usual divergence, gradient and Laplacian with respect to Z.
In (1.2) we assume g to have the form

g = T(gl(inaaaov e aoagﬂ(’iﬂ))a

with g* being T-periodic function in time, where T > 0. Here and in what follows 7 denotes
transposition.
The system (1.1)—~(1.2) is considered under boundary condition

Ulg,=0 = I~/l(t)eu Vlz,=¢ = 0, (1.3)
and initial condition
(P, 0) |50 = (Po, Vo), (1.4)

where V1 is a T-periodic function of time. Here, e; = 7(1,0,...,0) € R™.
Under suitable conditions on g and V!, problem (1.1)—~(1.3) has a smooth time-periodic
solution @, = 7 (p,, T,) satisfying
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Pp = Pp(Tn) 2 P, z/opp(x”)dxnzp*’

Tp =T (Up(%n,1),0,...,0), T(Zn,t +T) = To(Fn, 2),
for a positive constant p.

We are interested in large time behavior of solutions to problem (1.1)—(1.4) when the initial
value (po, Vo) is sufficiently close to the value of time-periodic solution @, = 7(p,, 7,) at some
fixed time. We study the asymptotic behavior of these solutions with respect to the time-periodic
solution %y,

In the case §* and V! are independent of ¢, problem (1.1)-(1.3) has a stationary parallel
flow. The stability of stationary parallel flows were investigated in [5, 6, 7, 9].

Iooss and Padula ([5]) studied the linearized stability of a stationary parallel flow in a cylin-
drical domain under the perturbations periodic in the unbounded direction of the domain. It
was shown that the linearized operator generates a C-semigroup in L?-space on the periodic
box under vanishing average condition for the density-component. In particular, if the Reynolds
number is suitably small, then the semigroup decays exponentially. Furthermore, by using the
Fourier series expansion, it was shown that the semigroup is decomposed into a direct sum of an
analytic semigroup and an exponentially decaying Cy-semigroup, which correspond to low and
high frequency parts of the semigroup, respectively. It was also proved that the essential spec-
trum of the linearized operator lies in the left-half plane strictly away from the imaginary axis
and the part of the spectrum lying in the right-half to the line {Re A\ = —c} for some number
¢ > 0 consists of finite number of eigenvalues with finite multiplicities.

The stability of stationary parallel flows in the infinite layer 2 under the perturbations in
some L?-Sobolev space on § were studied in [6, 7, 9]. By using the Fourier transform in z’, it
was shown in [9] that the linearized problem generates Cy-semigroup with low frequency part
behaving like n — 1 dimensional heat kernel and the high frequency part decaying exponentially
as t — oo, provided that the Reynolds and Mach numbers are sufficiently small and the density
of the parallel flow is sufficiently close to a positive constant. The nonlinear problem was then
studied in [6, 7]; it was shown that the stationary parallel flow is asymptotically stable under
sufficiently small initial perturbations in (H™ N L')(Q) with m > [n/2] + 1. Furthermore,
the asymptotic behavior of perturbations from the stationary parallel flow is described by n —
1 dimensional linear heat equation in the case n > 3 ([6]) and by one-dimensional viscous
Burgers equation in the case n = 2 ([7]).

Whereas [9] are concerned with the stability of the stationary parallel flows, in [4] the dif-
fusive stability of oscillations in reaction-diffusion systems is treated. A similar asymptotic
state arises in the large time dynamics around spatially homogeneous oscillations in reaction-
diffusion systems ([4]).

Result presented in this paper is an extension of previous results on the stationary case
[6, 7, 9] to the case of time-periodic external force and time-periodic boundary conditions.

Problem (1.1)~(1.4) with g = (§'(zn,t),0,...,0,g"(z,)) and V1(¢) covers particularly
interesting problem. Let us for a moment consider problem (1.1)-(1.4) together with g =
(0,...,0,g™(x,)) and V'(t). This problem is a natural extension of Stokes’ second problem
from half space to infinite strip for compressible fluid. The motion of a fluid is caused by the
periodic oscillation of the lower boundary plate. The study of the flow of a viscous fluid over an
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oscillating plate is not only of theoretical interest, but it also occurs in many applied problems
and since Stokes (1851) it has received much attention under various settings.

This paper is organized as follows. In the rest of Section 1 we present the existence of
the time-periodic parallel flow %, introduce the governing equations of the perturbations from
%, and nondimensional form of these equations. At the end we show some properties of the
underlying nondimensional parallel flow u,. In Section 2 we focus on the linear problem, i.e.,
we neglect nonlinearities. We introduce spectral properties of the solution operator for the linear
problem and later develop a Floquet theory for certain part of the solution. Finally, in Section 3
we introduce the results on the nonlinear problem.

1.1 Existence of parallel flows

Let us state the conditions, under which the time-peridic parallel flow @, = 7(,, T,) exists.
Substituting (5, 7) = (P,(Zn), Tp(Zn, t)e;) into (1.1)~(1.3), we have

O, — —82 =0 (1.5)
05, (P (ﬁp)) =79 (1.6)
1|z,.=o Vl( t), v,l,li,.=e =0. 1.7
Let p, be the given positive number, recall that
P'(p.) > 0.

We state the existence of a time-periodic solution to (1.5)—(1.7) with

1[4
b=7 / 7,(En) dFn. (1.8)
0

Lemma 1.1 Assume that 13'(”) > 0 for p; < p < pywithsome 0 < p; < p. < pa < 2p,. Let
d(p) = f” _(_1 dn for py < p < py and let U(r) = ®~1(r) for ry < v < 1. Here &~ denotes
the inverse functzon of®andr; =®(p;) (j =1,2). If

. De
9" ooy < C min {Inm, = } <C,
4P ()| ¥" | (fr1,ma))

then there exists a smooth time-periodic solution (p,, Up) = (Pp(ZTn), Tp(ZTn, t)e;) of (1.5)—(1.8)
satisfying

p1 < Pyp(Zn) < p2, [P — Puloqoa) < C5— ﬁ,( )Ig e

—~ t T =
O (Fn, ) = %(e _E)@ + / 1A= (G (5 2) — %(e 38,7 (2)} dz,
where A denotes the uniformly elliptic operator on L%(0,¢) with domain D(;l') = (H?n
H})(0,¢) and Av = — 82 v forv € D(A).
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1.2 Equations of perturbation

As the next step we linearize (1.1)—(1.4) around the parallel flow u, = T(ﬁp, Tp)-
Setting p = p, + $ and v = U, + w in (1.1)—(1.4) we obtain the following governing
equations for the perturbation (¢, @):

+T,05, ¢ + div (p,0) = f°, (1.9)

T

8 — L AT — pt Vdiv 5+0,0z, + (85,7,)0"e;

p P P
g ’ ~ B\ - (1.10)
+—£2(3%,,5117)¢61 +V (___p¢) =1,
Pp Pp
W|agn, =0, (1.11)
(a, ﬂj)!t:o = ((ZO) 130), (1'12)
where )?o and f = T(fl, e ,f"), denote the nonlinearities:
f° = —div (¢m),
F e G Vs (_AG+ (LAT (ti)d
f=-w-Vot (6+P,)P ( Aw + (‘ AU”) ¢) (6+7,)75 Vdivw
+2V (F25) - -9 (P'(5,)8) + P*(7,, 6, 550),
where
P = ZESVPG,) - iV (FPG,9)) + V(P 7))
42 ! (— 1 (—
~aemV (P8 + %P' (3,)8")
with

~ —~ 1 — —~
B3 ) = [ (1= 0P (03 +7,) b

1.3 Governing equations for dimensionless problem

Now, we introduce dimensionless variables and scale (1.9)—(1.12) to nondimensional form.
We use the following dimensionless variables:

I=/z, ‘t”:-f;t, T=Vw, ¢=pd, P=pV?P

with
uV

5=VU, ﬁ‘_‘P*P, Vlzvvl, ?j:mg,



where

\/ P'(ps) N . _ -
v = V= pM {I%Vllcm) + Igllconx[o,m} + |V em) > 0.

V b
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In this paper we assume V' > 0. Under this change of variables the domain (2, is transformed
into Q = R*"! x (0,1); and g*(y, t), V(¢) are periodic in ¢t with period T' > 0 defined as

V ~
T—7T.

The time-periodic solution %, is transformed into u, = T (p,, v,) satisfying

1
Po = pp(zn) >0, /0 pp(Zn) dzn =1,

vp = T (vy(2n, 1),0,...,0), vp(Tn,t +T) = v (zn, t).
It then follows that the perturbation

u(t) = T(o(t), w(t)) = T(v*(p(t) — pp), v(t) — vp(t)),

is governed by the following system of equations

0:$ + 0,05, 6 + ¥'div (ppw) = £°, (1.13)
Bw — L Aw — —;—Vdiv wHvp 0, w + (0z,v,)w"e;
Pp Pp
V a2 1 P'(py) .
+7p—12)(6z,.vp)¢61 +V (%—05) =7,
wlan = 0, (1.15)
(¢, w)le=0 = (¢o, wo), (1.16)
where f0and f = T(f1,--- , f*) denote nonlinearities, i.e.,
f° = —div (¢w),
v o2 o ) v ( &2 v )
= —w-Vu+ 2 (-A n? g6, ) — —A b
f=rw Vet s ( %) T s O o %
’7¢ . ¢ (P’(pp) ) 1 /" 2 D
EE—t—v £ | + v - _V P P, ) ;aa: ’
o0 20,V \ T, 0) T iy, (Pep)d") + Po(zp: 6,0:9)
= ¢* OV (P"(pp)9°)
Py(pp, 9,0:0) = 75—~ VP(pp) +
800 =i, 7 01 ) T 2y + 9
P>V (P'(pp)9) 1

(et ) 27 (v + 9)

V(¢*Ps(pp, 9)),
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with )
Py(py, 6) = /0 (1= 0)2P" (6726 + p,)do.

Here, div,V and A denote the usual divergence, gradient and Laplacian with respect to ;
v, V' and ¥ are the non-dimensional parameters:

’

= J—- l/’ = l‘l’
oV’ PV’

v=v+v.

v

In the rest of this paper we study the asymptotic behavior of u(t) = T(¢(t), w(t)) solution
of (1.13)—(1.16).

Remark 1.2 We note that the Reynolds number Re and Mach number Ma are given by

Re = vt and Ma =~71,

respectively.

1.4 Properties of the dimensionless parallel flow v,

As the last step in this section, we show some regularity properties of u,(z,, t).
It is straightforward to calculate that (p,, v,) solve the following equations:

Btv,l, — —Iiaznv}, = vg?, (1.17)
Pp
0z, (P(pp)) = vppg", (1.18)
Vplon=o = V1(t), Vplga=1 =0, (1.19)
1
1 =/ Pp(Zr) dzp, (1.20)
0

Therefore, we can rewrite Lemma 1.1 as follows.

Lemma 1.3 Assume that P'(p) > 0 for p1 < p < p, with some 0 < p; < 1 < py < 2. Let
®(p) = ff !Jnﬂl dn for py < p < poand let U(r) = ®71(r) forry < r < ry. Here & denotes
the inverse function of ® and r; = ®(p;) (j = 1,2). If

<C,
A2V | (1m0 }

then there exists a smooth time-periodic solution (py,v,) = (pp(n),v}(zn,t)e1) of (1.17)-
(1.20) satisfying

Vg% |cqo,1) € Cmin {lrll, T2,

v
P1 < pp(Tn) < P2, |pp — oo < ij§|g"lo([o,1]),

t

Up(2n,t) = (1 — 2,)V(2) +/ e VA yg (2, 8) — (1 — 2,)8,V(s)} ds,

—0o0



82

where A denotes the uniformly elliptic operator on L*(0,1) with domain D(A) = (H* N
H1)(0,1) and

pp(Tn) "

for v € D(A). Additionally, if v|g"|cr-1(j0,1)) < 7, then

Av = — (1.21)

185 polcon < Crvlg™lex-1qoap fork=1,2,...

Here, C}, are positive constants depending on k,1, |¥|ck (s, r,))» p2 and being independent of v
and v. In particular,

U n
|0z, pplc(o,) < C :Y;|g le(o,11)s

1P'(pp) = 7*leqon < CIP o i) = 1g% o)
Next, let us introduce some higher regularity assumptlons.

Assumptions 1.4 For a given integer m > 2 assume that § = T(3(Z, 1),0,...,0,3%(Z.))
and V! () belong to the following spaces:

3]
g e ﬂC’(R H™%(0,0)), g €C™([0,4),
71 e ol*F(R).

Furthermore, assume

P() € C™}(R).

It is straightforward to see that under Assumptions 1.4 dimensionless quantities g and V1 belong
to similar spaces as g and V1.

The following lemma shows higher regularity of the time-periodic parallel flow u, under
Assumptions 1.4.

Lemma 1.5 Let Assumptions 1.4 hold true for some m > 2. There exists o > 0 such that if

v|g" lem o)) < do,
then the following assertions hold true. The time-periodic solution u, = T(py(2n), Vp(Zn, t)) of
(1.17)—~(1.20) given by Lemma 1.3 satisfies
[=F]
we [ C®R Hm+2 %(0,1)), pp € C™([0,1)),
3=0
and



1
0 <p < pp(zn) <P, / Pp(Tn)dzn = 1, Up(Tn, ) = T (v} (24, t),0),
0

with
P(p)>0forp<p<p,

C
|11 = pplor+qo, < ?V(IP"|C'¢,-1([,_@]) + 19" crqoap), k=1,...,m,

C  a
|P'(pp) — 72|C([o,1]) < ?V|g o
Jor some constants 0 < p <1 <p.

Proofs of Lemmas 1.1, 1.3 and 1.5 can be found in [1].

2 Linear problem
Let us write (1.13)~(1.16) in the form

Gu+ L(t)u=F,
2.1
wlaq = 0, ul=o0 = uo.
Here, u = T(¢,w); F = T(f°, f) with f = T(f,---, f*) is the nonlinearity; and L(t) is
operator of the form

Lo v, (t)0s, Y2div (pp -)
‘ t - P[ o~
(pp) _v — 2\di
Vv (._‘7’2_25— ) ppAI" pPVdIV

0 0
+ .
( 72—’;12’8;1),1,(1&)61 Up (t) 0y In + (Oa, v} (t))e1T€n )

Here, e, =7(0,...,0,1) € R". Note that L(¢) satisfies L(t) = L(t + T).

In this section we discuss the spectral properties of the linearized problem, i.e., (2.1) with
F = 0. These results were established in [1, 2] and we omit their proofs here. The nonlinear
problem (2.1) is treated in Section 3.

2.1 Spectral properties of the linear problem

Now, let us consider the linear problem

Ou+ L(t)u=0, t > s, wlon =0, u|=s = uo. (2.2)
We introduce space Z, defined by
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Z, = {u="(¢,w); ¢ € Cioc([s,00); H'()),
05w € Cioc([s, 00); L* () N L ([, 00); Hy () (o] < 1),

w € Cloc((s,00); H3(2))}-

In [1] it was shown that for any initial data uy = T (¢, wo) satisfying ug € (H' N L?)() with
Oy wo € L2(Q) there exists a unique solution u(t) of the linear problem (2.2) in Z,. We denote
% (t, s) the solution operator for (2.2) given by

u(t) = Z(t, s)uo.

We study the spectral properties of the solution operator % (t, s). To do so, we consider the
Fourier transform of (2.2). We thus obtain
d

i+ Lot @ =0, t > s, s = Up. (2.3)

Here, fi; = $(§’,a:n,t) and @ = W(¢, z,,t) are the Fourier transforms of ¢ = ¢(', zn,t) and
w = w(z',z,,t) in 2’ € R"! with ¢ € R"! being the dual variable; L (t) is an operator on
Xo = (H! x L?)(0,1) with domain D(Lg(t)) = H*(0,1) x (H?> N H})(0, 1), which takes the
form

i€ivp(¢) i p,"€ 0., (p5 )
Toy=| €52 L(¢P-)ha+ze"e  —iZgo.,
o (GE2)  —ETen.  E(er-dh) -z
0 0 0
+| #Z@ e &)l O (u(t)e]
0 0 i&103(t)

Here, €} = 7(1,0,...,0) € R*"1. Let us note that L (t) is sectorial uniformly with respect to
t € R foreach &’ € R™1. As for the evolution operator Uy (t, s) for (2.3) we have the following
results.

Lemma 2.1 For each {' € R"*! and for all t > s there exists unique evolution operator
Ug (2, s) for (2.3) that satisfies
|E€I(t)l7§l(t, s)lL(XO) S Ctltza tl S s<t S t2.

Furthermore, for uy € Xo, f € C*([s,0); Xo),@ € (0,1] there exists unique classical
solution u of inhomogeneous problem

d ~
EEU + L&'(t)’u’ = fa t>s, u|t=8 = Uy,
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satisfying u € Cioc([s, 00); Xo) N C(s,00; Xo) N C(s,00; (H! x (H2N HY))(0,1)); and the
solution u is given by

t
u(t) = (8(2), w(t)) = T (¢, s)uo + / Do (t, 2) f(2)dz.
The solution operator % (t, s) satisfies
U(t, syup = F " HUe(t, s)to},
for up € (H' N L?)(Q) with 8w, € L2(Q).

Definition 2.2 For u; = T(¢;,w;) € L*(0,1) withw; = T(w},...,wl) (j =1,2), we define a
weighted inner product (u,uz) by
1 _ P 1 _
(u1, ug) =/ D1y 5’0”) dxn+/ W Wapp ATy,
0 7P 0

P

Here, g denotes the complex conjugate of g.
Next, let us introduce adjoint problem to
Bu+Leu=0,t>s, s = uo.

Lemma 2.3 For each ¢’ € R"™! and for all s < t there exists unique evolution operator
U (s, t) for adjoint problem
—0su + IALE,(s)u =0, s <t, ul|s=t = uy,

on Xy. Here, E’E,(s) is an operator on X, with domain D(L%(s)) = (H! x (H? N H}))(0,1),
which takes the form

—ig1v}(s) —iv?p,T¢" —Y*0z,,(pp - )
La)=| €52 Z(E]P = 82 )Iuy + ZETE ~iZ2¢8,,
~0,, (i) ~iZ7¢0,, Z(¢1P-02) - Loz,
0 ﬁ%(ainvé(s))%i 0
+] 0 —i&1v3 () Iy 0
0 O, (vp(3))T €} —i€10}(s)

Moreover, EE, (s) satisfies (L¢(s)u,v) = (u, Z@(s)v) for s € Rand u,v € (H x (H?N
H5))(0,1) and
IZE’(S)ﬁg'(S?t)IL(XO) < Ctltz, t1 <s<t<Lt.

Furthermore, for ug € Xo, f € C*((—o0,t]; Xo),a € (0, 1] there exists unique classical
solution u of inhomogeneous problem
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—0su + ig,(s)u =f, 8 <t, Uls=t = Uo,
satisfying u € Coe((—00, t]; Xo) N C(—o00, t; Xo) N C (=00, t; (H! x (H?2N H}))(0,1)); and

the solution u is given by
t
u(s) = (¢(s), w(s)) = Uz (s, t)uo +/ Us (s, 2) f(2)dz.
Note that U’g (t,s) and ﬁ;(s, t) are defined for all t > s and
Oa(t+T,5+T) = Ug(t,s), Up(s + Tt +T) = Uz (s, ).

The operator f,\/'g (t, s) has different characters between cases |¢’| < 1and [§'| > 1. We thus
decompose the solution operator % (t, s) associated with (2.2) into three parts:

%t s)=F ([75' (t, S)Imsf) +F (ﬁe'(t, S)lrsmszt) +F7! (’75' (t, S)lmzn) ;
for0 < r < 1 < R, where % ! denotes the inverse Fourier transform. Let us first discuss

U(t,5) = &7 (et 9lier<r) -

Since Eg (t) is T-time periodic, we have for t — s > 2T that

Tel(t, s) = Oe(t,t — 1) UZ(T,00Te (s + 71, 9),

where 71,72 € [0,T) and t — s = 7y + mT + 7. Thus the spectrum of Ue (T 0) plays an
important role in the study of large time behavior. We investigate the operator U{/ (T, 0) for
|¢'| < r <« 1asin[4] and we regard Ug (T, 0) as a perturbation from Uo(T,0) = Ug (T, 0)|e=0-

Lemma 2.4 There exist positive numbers v, and o such that if v > vo and v* /(v + V) 2 o
then there exists Ty > 0 such that for each &' with |§'| < 1o there hold the following statements.

(i) The spectrum of operator (75 (T,0) on (H! x H})(0,1) satisfies

o(Te(T,0)) C {ug}U{p: lul < 00},

with constant go < Re g < 1. Here, pg = e*¢'T is simple eigenvalue of [76' (T,0) and Ae
has an expansion

e = —irols — ki€l — w"I€" + O(I€T), (2.4)
where ko € R and k1 > 0, " > 0. Here, Re \ denotes the real part of A € C.

Moreover, let I denote the eigenprojection associated with jig. There holds

T (¢, ) — Tl )ulmr o) < Ce™ (I — Mg )ulx,,
foru € XoandT <t — s. Here, d is a positive constant depending on 7.
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(ii) The spectrum of operator (75‘, (0,T) on (H* x H})(0,1) satisfies

o(Ug(0,T)) € {Ae} U {u: |ul < qo}-
Here, [ is simple eigenvalue of ﬁg, 0,7).

On the other hand, if || > R >> 1, one can derive the exponential decay property of
the corresponding part of the solution operator % (t, s) by the Fourier transformed version of
Matsumura-Nishida’s energy method (e.g., see [10]), provided that Re and Ma are sufficiently
small. As for the bounded frequency part r < [¢/| < R, one can employ a certain time-
dependent decomposition argument and apply a variant of Matsumura-Nishida’s energy method
as in [9] to show the exponential decay.

Let us denote

%1(t, S) = 9*1 (ﬁfl(t,sﬂrgg'lgR) ’ %Oo(ta 8) = gZ'_l (ﬁﬁ'(t? 8)']5"?_12) ’
Next two theorems show that % (¢, s)uo (j = 1, 00) decay exponentially in time.

Theorem 2.5 There exist constants Ry > 1, vy > 0 and vy > 0 such that if v > vy and
Y?/(v + V) > ¢ then there exists a constant d > 0 such that the estimate

1% oo (t, 8)uoll 1 () < Ce™ "D (Jlug || g1 12y(2) + [18erwollz2(ey),
holds uniformly int — s > 4T, s > 0.

Theorem 2.6 There exist constants vy > 0 and o > 0 such that ifv > vy and v /(v +7) > ¢
then for any 0 < r < Ry there exists a constant d(r) > 0 such that the estimate

121 (2, s)uoll @) < Ce™ =T (||| (mrr x 22y (@) + |0z wollz2(@))s

holds uniformly int — s > 4T, s > 0.

Therefore, we see from Theorem 2.5 and Theorem 2.6 that the interesting part of solution is
given by %(t, s)uo. To investigate %, (t, s)uo, we introduce the following Floquet theory in a
Fourier space.

Definition 2.7 Letk = 1,2,.... Let us define spaces Yy, as

Yz'aler = Lf)er([()’ T]’ XO)’

(5]
Yy, = () Hi.r ([0, T); HE%(0,1) x H*17%(0,1)), fork > 2.
=0

Here, for Banach space X and j = 0, ... spaces L2,.([0,T]; X) and H},,([0, T]; X) consist of
functions from L*([0,T]; X) and H’([0, T}; X), respectively, that are restrictions of T-periodic
Junctions.
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Definition 2.8 We define operator B on space Ypler with domain

D(Bg) = Hy,, ([0, T}; Xo) N L3...([0, T}; (H' x (H? N Hy))(0,1)),
in the following way
Bev = 8 + L (),
for v € D(Bg). Moreover, we define formal adjoint operator By, with respect to inner product
1 [T, )dtas
Bt = —0w + Ly (),
forv € D(B) = D(Bg).

Remark 2.9 Operators By and By, are closed, densely defined on Yple, for each fixed ¢’ €
R

Lemma 2.10 Let Assumptions 1.4 be satisfied for m > 2. There exist positive numbers v; > vy

and v, > o such that if v > vy and v /(v + V) > +? then there exists 0 < ry < 1 such that for
each |€'| < ry there hold the following statements.

(i) Let 1 < k < m. There exists q; > 0 such that spectrum of operator B on Yp’; satisfies

o(Be) < {2 + zzll} U{A:Red> i),

leZ

with0 < |Ag| < %Ch uniform for all k. Here, — )¢ + 12”' l € Z are simple eigenvalues of
By ‘

(ii) Let 1 < k < m. Spectrum of operator BE, on Yp’;, satisfies

2
o(By) < | J{—2e - z—’f} U{\:ReX>a}.
lez

Here, —)\g — z""" | € Z are simple eigenvalues of By,.

(iii) There exist ug and ug, eigenfunctions associated with — g and —\g, respectively, with
the following properties:

(ug (t), ug(t)) = 1,
ue(t) = vO(t) + ¢ - u®(t) + 1€ Pu® (¢, 1),

us(t) = w*© 4w W(t) + |§’|2u*(2) (€,1),
fort € R. Here, all functions
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UE’ 7 ug’? u(O)’ u(O)*, u(1)7 u(l)*’ u(2) (5’)7 u(2)*(§l)3

are T'-periodic in t,

(3]
we (OO0, T} (H™ % x (™% 1 H})(0, 1),

j=0
(5] ‘ [==] _
¢ € (VH™*(0,T; H™%(0,1)), we () HY(O,T;(H™% n HE)(0,1)),
Jj=0 j=0

and we have estimate

[m 1]
Sup Z! u Z)le —2j 01)+/ Z ,87+1u|(Hm -2jx gm—1- 2.1)(01)

2€[0,T j=0
732 2 2
+|az QoUle(o,l) + lul(meHm*'l)(O,l)dz S C,
Joru="T(¢,w) € {ug, ug, uD (&), uP*(¢")} and a constant C > 0 depending on .

As for u(9(t), we have the following result.

Lemma 2.11 Function u© (t) satisfies 0,u® + Ly(t)u® = 0 and u®(t) = u®(t + T) for all
t € R. Function u© (t) is given as

u® (@0, t) =T (¢ (), O (2, 1), 0).

Here,

2 1 .2 -1
Y pp(xn) 2 pp(l‘n)
¢(0) Tp) = Qg—r———, ap = ( ———dzn ,

() = 20 By (@) *=\Us Ploylan)
WO o, ) =~ [ ey 20 (o2 1)

" 7 o Plpp)pp ™ 7

where A is given by (1.21). Moreover, function w®"! satisfies
2
Qw1 (t) — ——82 wOl(t) = —= 200 (52 41(p)),
' ®) - pp( n) t) = V2 Ppp)pp " P

Jor allt € R and under Assumptions 1.4 there holds

1
[0 Dllom e = ().
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2.2 Floquet theory for & (t)u(t)

In this subsection we assume that v > v; and 72/(v + ¥) > 7 and Assumptions 1.4 hold for
an integer m, m > 2. We introduce time-peridic operators and projection based on spectrum of
B and Bg,, which are used to decompose the solution of the nonlinear problem (2. 1) in Section
3. We also give a summary of their properties.

Definition 2.12 We define %, by
. ) 1, 0 <€ <,
Xl(é) = 1[0,r1)(|§ |) =
0, [€| =,
for &' € R\, where r, is given by Lemma 2.10.
Now, we introduce time-periodic operators based on eigenfunctions ug and ug.
Definition 2.13 We define operators 2 (t) : L*(Q) — L*(R™') by
Ptu=F YHPu(t)T}, Pe(t)a=x1(Uuy(t));
operators 2 (t) : L*(R*™1) —» L*(Q) by
2(t)o = F 2 (t)3}, Ze(t)5 =ue(-,1)5;
multiplier A : L*(R*~!) — L%(R™"!) by
Ao = 9'1{521/\513};
and projections P(t) on L*(Q2) as
P(t)u = 2 ()P (H)u = F " {x1 (@ ug (t))ue (- 1)},
fort € [0,00) and u € L%(?), o € L*(R™1).

One can see that P(t)> = P(t). Moreover, A is bounded linear operator on L?(R"*!). It
then follows that A generates uniformly continuous group {et*};cr. Furthermore, if o € LP(Q),
1< p<2then

105 a]| p2ge-1) < C(L+8) T G973 |l pogn-1y, k=0,1,....
In terms of P(t) we have the following decomposition of % (2, s).
Theorem 2.14 P(t) satisfies the following:

(i)
P(t)(8 + L(t))u(t) = (8 + L(t)P(t)u(t) = 2(1)[(8: — A) P (B)ult)],

forw € L2([0, T]; (H* x (H? N HY))(Q)) N H([0, T}; L*(2)).
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(ii)
P(t)(t,s) = U(t,s)P(s) = 2 (t)et DA P (s).

Ifu € LY(Q), then

16050, ()% (t, s)ull 2@y < C(L+t = 8)™"F "% |ull ),
for0<2j+1<m, k=0,....
(iii) (I —P)%(t,s) = «(t,s)(I — P(s)) satisfies

I(I = P)% (¢, s)uol| ey < Ce™ =) ([luollzrrxr2y@y + 10wollL2@),

Jort — s > T. Here d is a positive constant.
Let us consider the following inhomogeneous problem:
Ou + L(t)u = f(t), t > 0, ult=0 = uo. (2.5)

One can show that if ug € (H' x H3)(2) and f € L2 ([0, 00); (H* x L?)(£2)), then there exists
unique u(t) = T(4(t), w(t)),

1
u € Cloe([0, 00); (H' x Hp)(Q)), ¢ € HL,([0,00); L*(R)), w € ﬂ H},,([0,00); H2~%(Q2)),
=0 (2.6)
that satisfies (2.5).

Theorem 2.15 Let uy € (H' x H}) (), f € L2 ([0,00); (H* x L?)(Q)) and let u(t) =
T(p(t), w(t)) is unique solution of (2.5) in the class (2.6). Then

(i) P (t)u(t) satisfies

P (t)u(t) = e P (0)up + /t et P (2) f(2)dz, t € [0, 00). 2.7

0
(i) Uoo(t) = T{(Poo(t), Weo(t)) = (I — P(t))u(t) belongs to class (2.6) and satisfies

Otboo + L(t)too = (I = P(t)) f, t > 0, Ueo|t=o = (I — P(0))up.

Next, let us show the asymptotic properties of % (¢, s). First, let us define a semigroup J#7t)
on L?(R™!) associated with a linear heat equation with a convective term:

0,0 — nlagla — K'"A"6 + KkoOz,0 = 0.
Definition 2.16 We define operator 7 (t) as

Ht)o = F e limtrtadi iG]

for o € L>(R™!). Here, Ky, k; and " are given by (2.4).
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Theorem 2.17 There hold the following estimates for1 <p <2andk =0,1,....
(i) 1
k —n-l(l_ 1y k
|85 () o) | L2wn-1) < Ct™ 2 27272 |0 || Lown-1),
foro € LP(R™1).

(ii) It holds the relation,

P ()U(t,s) = eI P(s).
Set 0 = [Qoul. Then

n-1s1_1

165 (Q() eI P (s)u—u® () #t —5)0) | 2qgn—r) < Clt—8) 7T 677 Jul| o),
foru € LP. Furthermore, for any o € LP(R™!) there holds

n—-1

(=% — H#(t — 5))h0ll a@n-1y < Clt — )T G705 ||| ooy,
Remark 2.18 Combining (2.7) with Theorem 2.17 (ii) we see that asymptotic leading part of
U(t, s)up is represented by u(® () J#(t — s)o, where 0 = [ ¢o(’, 2n)dz, and ug = T (o, wo)-

Theorems 2.14, 2.15 and 2.17 follow from the properties of 2 (t) and £ (t) introduced
below. Next, we introduce the properties of 2 (t) and 22 (t).

Lemma 2.19 2 (t) has the following properties:

(i)
2(t+T) = 2(), F2(t) = 2(1)d.
(ii) o
”aga:lrc’ x,,,(g (t)a)l|L2(Q) < C||0”L2(]R"_1)a 0<2j +i<m+1, k=0,1,...,
foro € L3(R"1).

(iii) 2(t) is decomposed as

2()=2001) +div'2W(t)+ 2’29 ().
Here, 2 (t)o = (F{%16})u@ (-, t), 20 (t) and 27 (t) share the same properties
given in (i) and (ii) for 2 (t).
Lemma 2.20 2 (t) has the following properties:

(i)
PE+T) = P(2), 5P (t) = P (1), 8, P () = 0.
(ii) _
1865(P Owlliaesy < Cllulliay, 02 Sm+1, k=0,1,...,
foru € L*(9).



Moreover,
12 (O)ull2@n-1) < Cllullzeo),

forue I»(Q)and1 <p<2

(ii)
P ()0 + L()u(t) = (8. — A)(Z (t)u(t),
Joru € L2,([0,00); (H' x (H? N HY))(Q)) N H([0, 00); LA(S2)).

loc

(iv) Z(t) is decomposed as

Pt)=PO +div'2V(t) + AP (1).

Here, u = T(¢,w) and
1
POu=2 D@muw)} = F R [ 3e,)da),
0
POt = F Y@, v O ()},

POty = FH{-x1(@w (¢, 1)}
PP)(t), p=0,1,2, share the same properties given in (i) and (ii) for 2 (t).
(v) There holds

165, e®=92 2@ ()| p2@n-1) < C(L+t — 8) T 6D |u|| 1oy, ¢ =0,1,2,
forue L), 1<p<2andk=0,1,....

Properties of 2 (t) and & (t) given in Lemma 2.19 and Lemma 2.20 follow by computation
from properties of eigenfunctions ug and ug, introduced in Lemma 2.10.

3 Nonlinear problem

In this section we state the main results on the nonlinear problem (1.13)—(1.16). These results
were established in [3] and we omit their proofs here.

First, let us introduce the local existence result. To do so, we rewrite (1.13)—(1.16) in the
form

O +v-Vo=—~y*w-Vp, — pdivw, 3.1

pBew — vAw — PV divw = —#Binquﬁ —V(P(p) - P(p,)) — plv- V),  (3.2)
D
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w|80 = Oa (3'3)

(¢’ w)|t=0 = (¢0, wO)a (3.4)

where p = p, + 7 2¢ and v = v, + w.
Here, we mention the compatibility condition for uy = T(o,wo). We look for a solution

u = (6, w) of (3.1)(3.4) in ;54 C*([0, 00); H™%(Q)) satisfying [ [0s(2)|%meyd <
oo for all ¢ > 0 with m > [n/2] + 1. Therefore, we need to require the compatibility condition
for the initial value uy = 7 (¢, wy), which is formulated as follows.

Let u = T(¢, w) be a smooth solution of (3.1)~3.4). Then &/u = T(8]¢,Hw), j > 11is
inductively determined by

8l¢=—v -V ¢ — pdive] 'w — 0 'w - Vp, — {[8] " v - V]g+ [8] 7, pldivw},
and
Ofw =—p~{—vA8 'w - PVdivd] " 'w + P'(p) V] p}
—p {287, 4l0cw + (8], P'(p)] Vi)

_P_l{ﬁﬁti_l(agﬂvp‘b) - atj_lvp(lf’p)} - P_latj_l(p(” - V).

From these relations we see that &/ uls—o = T(8/¢, & w)|s—o is inductively given by uy =
(¢, wp) in the following way:

O ule=o = T (8] ¢, B{w)e=0 = T(j, w;) = u,

where

j-1

. ) —1 _ .
¢; = —vo-Vj_1— podiv wj—1—72wj—1'VPp—Z ( J ! ) {vi-Vé; 1+ *divw;_1},
1=1

and

-1

_ . _ -1\, _
w; = —py {—vAw;_1 — FVdivw;_1 + P'(p0)Vpj1} — pg" D ( 7 I ) {ypiw;

=1

j-1 .
4V -1 i1 _
+a(do; ¢1,- -, A1) Vpi—1-1} — p 1;2—/)— > ( J I ) 8702 vp(0)e + 81505 VP(pp)
P =0
-palGj—l(¢0, Wo, axwo; ¢1: ce ’¢j—'1, Wy ..., Wj—1, 6_1;'11)1, ey aﬁwj—l)’

with v; = 8lvp(0) + wy, pr = Soipp + ¥ 2¢u; and a;(@o; d1, - . ., ¢1) is certain polynomial in
¢1, ..., ¢; and so on. Here, §;; denotes the Kronecker’s delta.



By the boundary condition w|sq = 0 in (3.3), we necessarily have 6{ wlan = 0, and hence,

’wjlag =0.

Assume that u = T(¢,w) is a solution of (3.1) <(3.4) in ﬂ[%] C([0, 70); H™2(RQ2)) for

=0
some 7p > 0. Then, from above observation, we need the regularitgf u; =T (¢, w;) € (H™ ¥ x
H™2)(Q) for j = 1,...,[m/2], which follows from the fact that ug = 7 (¢, we) € H™(Q)
with m > [n/2] + 1. Furthermore, it is necessary to require that ug = T(dp, wy) satisfies the
m-~th order compatibility condition:

-1
w; € Hy(Q) forj =0,...,m = [—WL—Q——] :
Now, using local solvability result obtained in [8] one can show the following assertion.

Proposition 3.1 Let n > 2, Assumptions 1.4 be satisfied for an integer m, m > [n/2] + 1 and
M > 0. Assume that ug = T (do, wy) € H™(Q) satisfies the following conditions:

(a) ||uollgm @) < M and ug satisfies the M-th compatibility condition,

(B) —2p < ¢o.

Then there exists a positive number o depending on M and p such that problem (3.1)~(3.4) has
a unique solution u(t) on [0, o] satisfying

(%] ‘
ue [ C9(0,); H™ (),
§=0
together with

sup [FOF + [ " IDw()l|2dz < oo

0<z<m0

Here,

(3]
IDSONIT = [0:F )12 + [0uf )y, with [FOIE = Y 18] £ )| sr-23(0, k > 0.

Jj=0

Remark 3.2 It is straightforward to see that solution u(t) of (3.1)=(3.4) is solution of (1.13)-
(1.16). Condition (b) in the previous proposition assures that y~2¢o + p, > 2p > 0.

Second, we state our main results of this paper.

Theorem 3.3 Suppose that n > 2 and Assumptions 1.4 are satisfied for an integer m, m >
[n/2] + 1. There are positive numbers vy and o such that if v > vy and y? /(v + V) > 12 then
the following assertions hold true.

There is a positive number €o such that if uy = T (¢g, wo) € (H™ N L')(Q) satisfies the -
th compatibility condition and ||u||(amnr1)q) < €o. then there exists a unique global solution

u(t) = T(¢(t), w(t)) of (1.13)~(1.16) in ﬂj[z(} C7([0, 00); H™=%(Q)) which satisfies

95
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||0£,u(t)||Lz(Q) = O( -14:1_5)’ k=0,1.
Moreover, let n = 2. There holds

lu(t) — (ou®)(t) || 120y = O@~%%), V6 > 0,

ast — oo. Here, u® = u(%(z,,1) is function given in Lemma 2.11; 0 = o(x,1) is function
satisfying
1
atO' — maﬁlo + K)OBIIO' + woa;,,l (0’2) = O, U|t=0 = / ¢0(.’L’1,l‘2) diL‘Q,
0

with given constants Kq,wy € R, k1 > 0.
Furthermore, let n > 3. There holds

n-1
lu(t) = ((u®)B)llz2@) = O ~3m(2)),
ast — oo. Here, 0 = o(z',t) is function satisfying
1
00 — k102 0 — K'A"0 + K0z, 0 =0, 04—o = / ¢o(z’, Zn) dzn,

with given constants ko € R, k1,&” > 0; where A" = 02 +---+ 82 _ ; and 0, (t) = log(1+1t)
when n = 3 and n,(t) = 1 whenn > 4.

Remark 3.4 As we already mentioned in Section 2 constants kg, x; and k” come from the
expansion (2.4) of Ao/, where e*¢'T is eigenvalue of Ug (T,0).
In the case n = 2 parameter wy appears. It comes from the quadratic nonlinearities:

) vo 02 v} 1
—div (¢w), (—aﬁ w! + —"—£¢), ———0,,(P"(pp)¢?).
Gu), 5z (O + 2 i Oen (P (09)8")
It is given as

T 1
wo = %/ / ¢(0)(xl,wn)w(0)’l(ml, Tny 2)dTn — (Fl(z)’U*(l)(z)>de’
o Jo

where u©(t) = T(¢©), w1 (t)e, ), properties of u*()(t) are specified in Lemma 2.10 and

¢ (xn) 0),1 1
F —— 0w Tp,t), —
T ( V20 @) ()

The proof of Theorem 3.3 is obtained by decomposing the solution u(t) of (1.13)~(1.16)
into the P(t)-part and (I — P(t))-part. Considering the IP(t)-part, we represent P(¢)u(t) as in
(2.7) with f(z) = F(z). We then combine various estimates on [P(t) and P(¢)U (¢, s) to obtain
the necessary estimates on P(¢)u(t). On the other hand, (I — P(¢))u(t) can be estimated by a
variant of Matsumura-Nishida energy method as in the case of the stationary parallel flow ([7]).
However, in contrast to [7], the linearized operator has time-dependent coefficients. Therefore a
modification of the argument in [7] is needed for the time-periodic case to aquire the necessary
energy estimate.

., (P”(pp(wz>){¢<°>(xn)}z)) '
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