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The motion of compressible viscous, heat-conductive polytropic fluid reads

pt + div(pu) =0,
plu +u - Vu) = pAu+ (p + A)V(divu) — VP, (0.1)
%p(t?t +u - V0) = kA9 — Pdivu + A(divu)? + 2u|D (u)[?,

where D(u) is the deformation tensor:
1
D(u) = E(Vu + (Vu)™).

Here p,u = (u!,u?, us)t’r ,e, P(p, ), and 8 represent respectively the fluid density, veloc-

ity, specific internal energy, pressure, and absolute temperature. The constant viscosity
coefficients p and X satisfy the physical restrictions:

pn>0, 2u+3x>0. (0.2)

We study the ideal polytropic fluids so that P and e are given by the state equations:

R6

P(p,e) = (= 1)pe = Rpb, o=,

(0.3)

where v > 1 is the adiabatic constant, and R, x are both positive constants.

Let 5, 8 both be fixed positive constants. We look for the solutions (p(z, ), u(z, t),0(z, 1)),
with the far field behavior:

(p,u,0)(z,t) = (5,0,0), as |z] o0, t >0, (0.4)

(pa pu, p&)(w,t = 0) = (poa pouo, p()ao)(il?), AS RS? (05)

Moreover, for classical solutions, we replace the initial condition with

(p,u,0)(z,t =0) = (po,u0,00), = €R? with pp>0,60>0. (0.6)
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We assume that 5= 0 = 1. and define the initial energy Cy as follows:

1
Co éi/p0|u0,2dx+R/(POIOgPO —pot1)ds
(0.7)

+ ———71? 1 /po (60 — log 6o — 1) dx + /po(oo —1)%dz.

_R
2(v-1)

Then the first main result in this paper can be stated as follows:

Theorem 0.1 For given numbers M > 0 (not necessarily small), q € (3,6), and p > 2,
suppose that the initial data (po,ug,0y) satisfies

po—1€H*NW9, wye H?, 6y—1€ H?, (0.8)

0<infpy <suppp<p, infp>0, |Vuol<M, (0.9)

and the compatibility conditions:

—plAug — (p+ A)Vdivug + RV (pobo) = \/pogi, (0.10)
KAy + gjwo + (V)2 + A(divug)? = +/Poge, (0.11)

with g1, g2 € L2. Then there ezists a positive constant & depending only on u, A, k, R,
v, p, and M such that if
Co <e¢, (0.12)

the Cauchy problem (0.1) (0.4) (0.6) has a unique global classical solution (p,u,8) in
R3 x (0,00) satisfying

0<p(z,t) <2p, 6(z,t)>0, zeR3t>0, (0.13)

p—1€C(0,T; HEnW2>9), (u,8—1) € C([0,T); H?),
ue L®(r,T; H3NW39), 6-1¢€ L®(r,T; H?), (0.14)
(ut,0:) € L®(7, T; H?) N H'(7,T; HY),

and the following large-time behavior:
Jim ([lp(,2) = Ulze + IVul, )l + VO, 1)]Lr) = 0, (0.15)

with any
0<7<T <00, p€(2,00), rE26). (0.16)

The next result of this paper will treat the weak solutions. To begin with, we give
the definition of weak solutions.

Definition 0.1 We say that (p,u, E = 3|u|> + 7—’}—{0) is a weak solution to Cauchy
problem (0.1) (0.4) (0.5) provided that

p—1€ Li5([0,00); L’ N L®(R?)), u,6— 1€ L*(0,00; H'(R®)),

and that for all test functions 1 € D(R3 x (—00, 0)),

Lpvc.0ds+ [ [ (ot pu Voot =0, (0.17)
R3 0 R3
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/ POU3¢(',0)d$+/oo/ (s + pulu - Vi + P(p, 0)z;) dzdt
R3 0 JR3

% (0.18)
- / / (Ve - VY + (p+ A)(divu)ys,) dzdt =0, j=1,2,3,
0o JR3
1 R
/ (§p0|U()l2 + ——poﬂo) ¥(-,0)dz
R3 ¥ - 1
= / / (pEvt + (pE + P)u - Vo) dxdt (0.19)
0o Jm3
- / / (nVH + %uV(Iulz) + pu - Vu + /\udivu) - Vipdzdt.
0o JR3
We also define
FRf+u -V G2(@u+Ndivu—R(pf—-1), w2Vxuy, (0.20)

which are the material derivative of f, the effective viscous flux, and the vorticity
respectively. We now state our second main result as follows:

Theorem 0.2 For given numbers M > 0 (not necessarily small), and p > 2, there
ezists a positive constant € depending only on p, A, k, R, v, p, and M such that if the
initial data (po,uo,00) satisfies (0.9) and

Co <e, (0.21)

with Cy as in (0.7), there is a global weak solution (p,u,0) to the Cauchy problem (0.1)
(0.4) (0.5) satisfying

p—1€C(0,00); LN LP), (pu, plul?, p(6—1)) € C((0,00); H™Y),  (0.22)
u € C((0,00); L?), 6—1¢€ C((0,00); WIT), (0.23)

u(,t), w(-,t), G(-,t), VO(,t) € H', t>0, (0.24)

p€[0,2p] ae, 6>0 ae, (0.25)

and the following large-time behavior:
fim (p(+1) = Ulzs + 16, sz + V(- Olli) =0, (0.26)

with any p,r as in (0.16). In addition, there exists some positive constant C depending
only on u, A, k, R, v, p, and M, such that, for o(t) £ min{1,t}, the following estimates
hold

o0
sup flullz + / / ((pu); + div(pu & u)|? dadt < C, (0.27)
te(0,00) 0

sup [ ((p = 12+ plul® + p(6 ~ 1)%) dz
te(0,00)

! (0.28)
+ [T (1vuls + 19613 &t < 3,
0

sup (o?||Vulde + o*[16 — 1))
te(0,00)

°) (0.29)
+ / (o2 lueliZs + o3I VillZa + 046:]13) dt < CCY®.
0



Corollary 0.3 ( [12]) In addition to the conditions of Theorem 0.1, assume further
that there ezists some point xq € R3 such that po(xo) = 0. Then the unique global
classical solution (p,u,6) to the Cauchy problem (0.1) (0.4) (0.6) obtained in Theorem
0.1 has to blow up as t — oo, in the sense that for any r > 3,

IVo(:, )L = oo.

lim
t—o0
A few remarks are in order:

Remark 0.1 Theorem 0.1 is the first result concerning the global ezistence of classical
solutions with vacuum to the full compressible Navier-Stokes system. Moreover, the
conclusions in Theorem 0.1 generalize the classical theory of Matsumura-Nishida ( [17])
to the case of large oscillations since in this case, the requirement of small energy,
(0.12), is equivalent to smallness of the mean-square norm of (po — L,up,6p — 1). In
addition, the initial density is allowed to vanish and the initial temperature may be zero.
However, although the large-time asymptotic behavior (0.15) is similar to that in [17],
yet our solution may contain vacuum states, whose appearance leads to the large time
blowup behavior stated in Corollary 0.3, this is in sharp contrast to that in [17] where
the gradients of the density are suitably small uniformly for all time.

Remark 0.2 It should be noted here that Theorem 0.2 is the first result concerning the
global ezistence of weak solutions to (0.1) in the presence of vacuum and extends the

global weak solutions of Hoff ( [10]) to the case of large oscillations and non-negative
initial density. Moreover, the initial temperature is allowed to be zero.

Remark 0.3 Simple calculations yield that if

sup f(z) < 8, (0.30)
z€R3

we have
/p0(90 — 1)2d$ < 2(5—’;— 1) /po (6o — log 6p — 1) dxz,
which implies Cy < Cp < 6+ 2)C~‘0, where

2
R
+——/p0(00—10g90—1)dx
v—1

~ 1
Co 25 [ miuoldz+ R [ (mlog o~ po+ 1) o

is the usual initial energy. In other words, if we replace Cy with the usual initial energy
Co, the € in Theorems 0.1 and 0.2 will also depend on the upper bound of the initial
temperature.

We now comment on the analysis of this paper. Note that though the local existence
and uniqueness of strong solutions to (0.1) in the presence of vacuum was obtained
by Cho-Kim ( [6]), the local existence of classical solutions with vacuum to (0.1) still
remains unknown. Some of the main new difficulties to obtain the classical solutions
to (0.1) (0.4) (0.6) for initial data in the class satisfying (0.8)—(0.11) are due to the
appearance of vacuum. Thus, we take the strategy that we first extend the standard
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local classical solutions with strictly positive initial density (see Lemma 1.1) globally in
time just under the condition that the initial energy is suitably small (see Proposition
4.1), then let the lower bound of the initial density go to zero. To do so, one needs
to establish global a priori estimates, which are independent of the lower bound of the
density, on smooth solutions to (0.1) (0.4) (0.6) in suitable higher norms. It turns out
that the key issue in this paper is to derive both the time-independent upper bound
for the density and the time-dependent higher norm estimates of the smooth solution
(p,u,0). Compared to the isentropic case ( [12]), the first main difficulty lies in the
fact that the basic energy estimate cannot yield directly the bounds on the L?-norm (in
both time and space) of the spatial derivatives of both the velocity and the temperature
since the super norm of the temperature is just assumed to satisfy the a priori bound
(min{1,¢})~3/2 (see (2.6)), which in fact could be arbitrarily large for small time. To
overcome this difficulty, based on careful analysis on the basic energy estimate, we
succeed in deriving a new estimate of the temperature which shows that the spatial
L2-norm of the deviation of the temperature from its far field value can be bounded by
the combination of the initial energy with the spatial L2-norm of the spatial derivatives
of the temperature (see (2.10)). This estimate, which will play a crucial role in the
analysis of this paper, together with elaborate analysis on the bounds of the energy,
then yields the key energy-like estimate, provided that the initial energy is suitably
small (see Lemma 2.3). We remark that one of the key issues to obtain such an energy-
like estimate lies in the positivity of the far field density, which excludes the case of
compactly supported initial density.

Next, the second main difficulty is to obtain the time-independent upper bound of
the density. Based on careful initial layer analysis and making a full use of the structure
of (0.1), we succeed in deriving the weighted spatial mean estimates of the material
derivatives of both the velocity and the temperature, which are independent of the lower
bound of density, provided that the initial energy is suitably small (see Lemmas 2.4
and 2.5). This approach is motivated by the basic estimates of the material derivatives
of both the velocity and the temperature, which are developed by Hoff ( [10]) in the
theory of weak solutions with strictly positive initial density. Having all these estimates
at hand, we are able to obtain the desired estimates of L(0, min{1, T'}; L*®(R3))-norm
and the time-independent ones of L2(min{1, T}, T; L(R3))-norm of both the effective
viscous flux (see (0.20) for the definition) and the deviation of the temperature from
its far field value. It follows from these key estimates and a Gronwall-type inequality
(see Lemma 1.5) that we are able to obtain a time-uniform upper bound of the density
which is crucial for global estimates of classical solutions. This approach to estimate a
uniform upper bound for the density is new compared to our previous analysis on the
isentropic compressible Navier-Stokes equations in [12].

Then, the third main step is to bound the gradients of the density, the velocity, and
the temperature. Motivated by our recent studies ( [11]) on the blow-up criteria of
strong (or classical) solutions to the barotropic compressible Navier-Stokes equations,
such bounds can be obtained by solving a logarithm Gronwall inequality based on
a Beale-Kato-Majda-type inequality (see Lemma 1.6) and the a priori estimates we
have just derived. Moreover, such a derivation simultaneously yields the bound for
L3/2(0,T; L>(R3))-norm of the gradient of the velocity(see Lemma 3.1 and its proof).
It should be noted here that we do not require smallness of the gradient of the initial
density which prevents the appearance of vacuum ( [17]).

Finally, with these a priori estimates of the gradients of the solutions at hand, one
can obtain the desired higher order estimates by careful initial layer analysis on the time



derivatives and then the spatial ones of the density, the velocity and the temperature.
It should be emphasized here that all these a priori estimates are independent of the
lower bound of the density. Therefore, we can build proper approximate solutions with
strictly positive initial density then take appropriate limits by letting the lower bound
of the initial density go to zero. The limiting functions having exactly the desired
properties are shown to be the global classical solutions to the Cauchy problem (0.1)
(0.4) (0.6). In addition, the initial density is allowed to vanish. We can also establish
the global weak solutions almost the same way as we established the classical one with
a new modified approximating initial data.

The rest of the paper is organized as follows: In Section 1, we collect some elementary
facts and inequalities which will be needed in later analysis. Section 2 is devoted
to deriving the lower-order a priori estimates on classical solutions which are needed
to extend the local solution to all time. Based on the previous results, higher-order
estimates are established in Section 3. Then finally, the main results, Theorems 0.1
and 0.2, are proved in Section 4.

1 Preliminaries

The following well-known local existence theory, where the initial density is strictly
away from vacuum, can be shown by the standard contraction mapping argument (see
for example [17,18], in particular, [17, Theorem 5.2]).

Lemma 1.1 Assume that (po, uo,0p) satisfies

(po — 1,u0,00 — 1) € H®, inf po(z) > 0. (1.1)
z€R3 .

Then there erist a small time To > 0 and a unique classical solution (p,u,8) to the
Cauchy problem (0.1) (0.4) (0.6) on R3 x (0, Ty] such that

1
z,t) 2 o inf, 1.2
et omy P&t 2 5 ok, pol(), (1.2)

(p-lauve_l) € C([O’TO];H3)7 pt € C([OaT0]7H2)7 (1 3)
(ut,0;) € C([0, To); HY), (u,0 —1) € L2(0,Tp; HY), '
and
(oug,06y) € L2(0,To; H®), (ous,a6y) € L2(0,To; HY), (1.4)
(02ust,0%0y) € L2(0,To; H?), (0%uses, 0%0us) € L2(0, To; L?), '
where o(t) £ min{1,t}. Moreover, for any (z,t) € R3 x [0, To], the following estimate
holds

To
8(z,1) > inf 6o(z) exp{—('y—l) / HdiquLoodt}, (1.5)
z€R3 0

provided inf 6y(x) > 0.
z€R3

Next, the following well-known Gagliardo-Nirenberg-Sobolev-type inequality will be
used later frequently (see [19]).
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Lemma 1.2 Forp € (1,00) and q € (3,00), there ezists some generic constant C > 0
which may depend on p and q such that for f € DY(R®), g € LP(R®) N D*9(R3), and
0,9 € H*(R3), we have

1£llzs < CIV Sz, (16)
lallogamy < CllgllEs= > oty g/ Carra=s), (L7
el < Cllollmzll¥ll g2 (1.8)

Then, the following inequality is an easy consequence of (1.6) and will be used
frequently later.

Lemma 1.3 Let the function g(x) defined in R3 be non-negative and satisfy g(-) —1 €
L?(R3). Then there exists a universal positive constant C such that for r € [1,2] and
any open set ¥ C R3, the following estimate holds

Jiras<c [ alrraz + o G I9 iaes, (19)
for all f € {f € DY(R3)| g|fI" € LY(D)} -
Next, it follows from (0.1)2 that G,w defined in (0.20) satisfy
AG = div(pw), plw =V x (pu). (1.10)

Applying the standard LP-estimate to the elliptic systems (1.10) together with (1.6)
yields the following elementary estimates (see {12, Lemma 2.3]).

Lemma 1.4 Let (p,u,0) be a smooth solution of (0.1) (0.4). Then there exists a
generic positive constant C depending only on p, A, and R such that, for any p € [2,6],

IVullzs < C(IGlze + |lwlize) + Cllpd — 1| s, (1.11)
IVGlizs + [Vwllze < Cllpi| s, (1.12)

IGllzs + wlize < ClloallE~ @ (Va2 + 108 — 1]|2) P/ (1.13)
IVulze < CIVulS?/CP) (llpull 2 + 1108 — 1| s) BP0/ ). (1.14)

Next, the following Gronwall-type inequality will be used to get the uniform (in time)
upper bound of the density p.

Lemma 1.5 Let the function y € WH(0,T) satisfy
y'(t) +ay(t) < g(t) on[0,T], y(0) =4°, (1.15)

where a is a positive constant and g € LP(0,Ty) N LY(Ty,T) for somep > 1,9 > 1, and
Ty € [0,T). Then

sup y(t) < [0l + (1 +a ") (llglliLeory) + N9llze,my) - (1.16)
0<t<T

Finally, we state the following Beale-Kato-Majda-type inequality whose proof can be
found in [2,11] and will be used later to estimate ||Vu||L and ||Vpl|2qLs-

Lemma 1.6 ( [2,11]) For3 < g < o, there is a constant C(q) such that the following
estimate holds for all Vu € L2(R3) N DM9(R3) :
[Vl Lomsy < C (Ildivul| oorsy + IV X ull oo (rs)) log(e + V2 ul| Laws))

(1.17)
+ C||Vull 23y + C.



2 A priori estimates (I): Lower-order estimates

In this section, we will establish a priori bounds for the smooth, local-in-time solution
to (0.1) (0.4) (0.6) obtained in Lemma 1.1. We thus fix a smooth solution (p, u,6) of
(0.1) (0.4) (0.6) on R3 x (0,T] for some time T > 0, with initial data (pg, uo,6o)
satisfying (1.1).

For o(t) £ min{1,t}, we define A;(T)(i =1,--- ,4) as follows:

T
A1 (T) = sup HVuH%z—F/ /p|d|2dzcdt, (2.1)
t€[0,T) 0
R T
4y(T) = sup [pl0=12dz+ [ IVl +1V61) &, (22)
2(y = 1) tepo,m 0
45(1) = sup (o1Vuls +* [ plafas+ o201
te(0,T] (2 3)
T . ’
+ / / (ap]u|2+a2[Vd|2+02p(9)2) dzdt,
0
T
AT) = sup o / pl612dz + / / |V 6|2 dadt. (2.4)
t€(0,T] 0

We have the following key a priori estimates on (p, u, 6).

Proposition 2.1 For given numbers M > 0 (not necessarily small), and p > 2, assume
that (po, uo, 80) satisfies
0 < inf po(x) < sup po(z) < p, inf Op(z) >0, |Vuolzz < M. (2.5)
z€R3 z€ER3 z€R3

Then there ezist positive constants K and g both depending only on u, \, k, R,~, p, and
M such that if (p,u,0) is a smooth solution of (0.1) (0.4) (0.6) on R3 x (0, T satisfying

0<p<2p, Ai(o(T)) <3K, Ai(T) <20y (i=2,3,4), (2.6)
the following estimates hold
0<p<3p/2, Ai(0(T)) <2K, Ai(T)<Cy/® (;=23,4), (2.7)
provided
Co < gp. (2.8)

Proof. Proposition 2.1 is an easy consequence of the following Lemmas 2.2, 2.3,
2.6-2.8.

In this section, we let C' denote some generic positive constant depending only on
A K, R, v, p, and M.

Lemma 2.1 Under the conditions of Proposition 2.1, there erists a positive constant
C = C(p) depending only on p, A\, k, R,~, and p such that if (p, u, ) is a smooth solution
of (0.1) (0.4) (0.6) on R x (0,T] satisfying 0 < p < 2p, the following estimates hold

s / (plul® + (p — 1)?) dz < C(p)C, (2.9)
and
166 = 1), )ll2 < CRC* + CBC|IV6(-, )]z, (2.10)

for all t € (0,T).
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Next, the following lemma will give an estimate on the term A;(c(T)).

Lemma 2.2 Under the conditions of Proposition 2.1, there exist positive constants
K > M+1 and €1 < 1 both depending only on p, A, k,R,~v,p, and M such that if
(p,u,0) is a smooth solution of (0.1) (0.4) (0.6) on R3 x (0,T) satisfying

0<p<25 As(o(T)) < 20" (2.11)
the following estimate holds
A(o(D)) < 2K, (2.12)
provided A1(o(T)) < 3K and Cp < ¢;.

The following elementary L? bounds are crucial for deriving the desired estimate on
Ay(T) (see Lemma 2.3 below).

Lemma 2.3 Under the conditions of Proposition 2.1, there exists a positive constant
g9 depending only on p, \, k, R,~, p, and M such that if (p, u,0) is a smooth solution of
(0.1) (0.4) (0.6) on R3 x (0,T) satisfying (2.6) with K as in Lemma 2.2, the following
estimate holds

A(T) < Y4, (213)

provided Cy < €.

Next, to estimate A3(7T’), we first establish the following Lemmas 2.4 and 2.5 con-
cerning some elementary estimates on 4 and 6.

Lemma 2.4 In addition to the conditions of Proposition 2.1, assume that Cy < 1. Let
(p,u,0) be a smooth solution of (0.1) (0.4) (0.6) on R3 x (0, T) satisfying (2.6) with K
as in Lemma 2.2. Then there exist positive constants C and Cy both depending only on
u, A &, R, vy, p, and M such that, for any B € (0, 1], the following estimates hold

(oBl)'(t)+g/ap|a|2d:c

: (2.14)
< CCy/*o’ + 26010V /261122 + CB7 (I1V8132 + IVull}2) + Co? | Vults,
and
(02/p|u|2dx) + %ﬂ- / o?|Vu|?dx
t (2.15)
<20 [ pliPds + Cro® 078l + C (1901 + IVulla) + CoI Vuls,
where
Bi(t) £ pl|Vul2s + (A + /.L)”diV’U.”%z + 2R/divu(p0 —1)dz. (2.16)

Lemma 2.5 In addition to the conditions of Proposition 2.1, assume that Cp < 1.
Let (p,u,0) be a smooth solution of (0.1) (0.4) (0.6) on R® x (0,T] satisfying (2.6)
with K as in Lemma 2.2. Then there exists a positive constant C depending only on
w A, k, R, v, p, and M such that the following estimate holds

(c%0)' (t) + o* / (uIVﬂF + 0(9)2) dz

(2.17)
< C (IVull2, + [V6]|22) + 20 / pliPdz + Co?||Vulls,



where ¢(t) is defined by

o0 2 [ plil(z,)dz + (1 + DBl (2.18)
with Cy as in Lemma 2.4 and
Bo(t) & 1]"%—1 (mnveu%z -2 / (divu)?0dz — 4p / |©(u)|29dm) . (2.19)

Next, we will use Lemmas 2.4 and 2.5 to obtain the following estimate on A3(T).

Lemma 2.6 Under the conditions of Proposition 2.1, there erists a positive constant
g3 depending only on u, A\, k, R,~, p, and M such that if (p, u,0) is a smooth solution of
(0.1) (0.4) (0.6) on R3 x (0,T) satisfying (2.6) with K as in Lemma 2.2, the following
estimate holds

A3(T) < Cy/°, (2.20)

provided Cy < e3.

We now proceed to derive a uniform (in time) upper bound for the density, which
turns out to be the key to obtain all the higher order estimates and thus to extend the
classical solution globally.

Lemma 2.7 Under the conditions of Proposition 2.1, there exists a positive constant
€4 depending only on u, A\, k, R,v, p, and M such that if (p,u,0) is a smooth solution of
(0.1) (0.4) (0.6) on R® x (0,T] satisfying (2.6) with K as in Lemma 2.2, the following

estimate holds 35
p
sup 6,8l < 7, (2.21)
0<t<T

provided Cy < g4.

Next, the following Lemma 2.8 will give an estimate on A4(T"), which together with
Lemmas 2.2, 2.3, 2.6 and 2.7 finishes the proof of Proposition 2.1.

Lemma 2.8 Under the conditions of Proposition 2.1, there exists a positive constant
o depending only on u, A\, K, R,~, p, and M such that if (p, u,0) is a smooth solution of
(0.1) (0.4) (0.6) on R3 x (0,T) satisfying (2.6) with K as in Lemma 2.2, the following
estimate holds

AT < 6", (222)

provided Cy < g.

3 A priori estimates (II): Higher-order estimates

In this section, we will derive the higher order estimates of a smooth solution (p, u, )
of (0.1) (0.4) (0.6) on R3 x (0,7] with smooth (po,uo, ) satisfying (0.8) and (2.5).
Moreover, we shall always assume that (p, u, 8) and (po, ug, 6y) satisfy respectively (2.6)
and (2.8). To proceed, we define ¢; and g2 as

G 2 py ' (~plug — (u+ A)Vdivug + RV (pobo)) (3.1)
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and
522 05" (k36 + B1Vuo + (Vuo) P + A(divao)?)

respectively. It thus follows from (0.8) and (2.5) that
G eL? gel’
From now on, the generic constant C will depend only on

T, |lgillc, lig2llce, lluollaz, lleo — Ula2aw2as (160 = 1ila2,

besides u, A, &, R, v, p, and M.
We begin with the important estimates on the smooth solution (p, u,8).

Lemma 3.1 The following estimates hold

T
(102l + 116 = Ul ) + / / p(6)2dadt
0

sup
0<tLT

T
+/0 (IValZz + 119260172 + lldivelZe + lwlife) dt < C,

T
3/2
sup (o~ lmowwns + luls) + [ [VulP2a <c.
0<t<T 0
Lemma 3.2 The following estimates hold

sup ([lpellmr + 116 — Lllg2 + llo = Ulg2 + llullg2)
0<t<T

T
T /0 (s + 18612 + ouelZes + 106l dt < C,

T
/0 (1(oue)ell—s + (PBe)el3—s) dt < C.

Lemma 3.3 The following estimate holds:

T
sup o (|[Vuel|22 + [lpeell2) +/ a/plutt|2dzdt <C.
0<t<T 0

Lemma 3.4 For q € (3,6) as in Theorem 0.1, it holds that

sup_(|lp — llw2e + ollull?s)
0<t<T

T
+ /0 (lullZss + 1Vl o + ol V|2 ) dt < C,

where

al . 5¢—6 99—6
po = 5 min 3q=2)5q=6 € (1,7/6).

Lemma 3.5 For q € (3,6) as in Theorem 0.1, the following estimate holds

T
sup o (18lls + V2822 + el s + ullwaa) + | Ivualzae < c.
ESAS 0

Lemma 3.6 The following estimate holds

T
sup o2 (V26| g2 + 1164l rr2) +/ o*||V8y||2.dt < C.
0<t<T 0

108

(3.2)
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(3.5)
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)



4 Proofs of Theorems 0.1 and 0.2

With all the a priori estimates in Sections 2 and 3 at hand, we are ready to prove
the main results of this paper in this section.

Proposition 4.1 For given numbers M > 0 (not necessarily small), p > 2, assume
that (po, uo, o) satisfies (1.1), (2.5), and (2.8). Then there ezists a unique classical so-
lution (p,u,0) of (0.1) (0.4) (0.6) in R3x (0, 00) satisfying (1.8)(1.5) with Ty replaced
by any T € (0,00). Moreover, (2.9), (2.6) hold for any T € (0, 00).

Proof of Theorem 0.1. Let (po,ug, o) satisfying (0.8)—(0.11) be initial data as de-
scribed in Theorem 0.1. Assume that Cj satisfies (0.12), where

€2 ¢/2, (4.1)

with ¢ as in Proposition 2.1. For constants

6,7 € (0,min{1, 5 — sup po(z)}), (4.2)
z€R3
we define ) 6+
%
gmé%*mﬁﬂh ﬁméﬁ*w» @naﬁ 0 n, (4.3)

1417 1+7

where j;5 is the standard mollifying kernel of width . Then, (p0 , uo’" 9‘57’) satisfies

(pg"—l u6" 967’ 1) € H*,

< _’1’1" A A Al PR
and
{ Jim (||p§’" = poll 2w + l1ug™ — woll 2 + 1657 — ollaz) =, "
IV (65", 4", 6"z < 1V (0, w0, 60)l1z2, V65" lwra < [V pollwne,

due to (0.8) and (0.9). Moreover, the initial norm C5" for (p0 ,uo , 00’”) i.e., the right
hand side of (0.7) with (po, uo,6o) replaced by (5", ud™, 65™), satisfies

lim lim C = Cy.
n—046—0

Therefore, there exists an 79 € (0, min{1, p— sup po(z)}) such that, for any n € (0, 7o),

TeR3
we can find some dy(n) > 0 such that
CY" < Co +£0/2 < €0, (4.6)
provided that
0<n<m, 0<d<do(n). (4.7)

We assume that d, 7 satisfy (4.7). Proposition 4.1 together with (4.6) and (4.4) thus
yields that there exists a smooth solution (p®7,u%", %) of (0.1) (0.4) (0.6) with initial
data (03", ug™,65™) on R3 x [0, T)] for all T > 0. Moreover, (2.9) and (2.6) both hold
with (p,u,6) being replaced by (p®7,ud" §%m).
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Next, for the initial data (pg"’,ug’", 03*"), the g1 in (3.1) in fact is
. _ . 5
a s (pg’") 1/2 (—uAug’" —(u+ )\)levug"'7 + RV(pg"’ﬂo’"))

= (42w p0) 201 + (N2 (ss* (V9D ~ VI ma) (g
+ R(p§™) 2V (js * (pobo) — (1 +m) "% (js * po) (s * 60))
+ Rn(1+n)~2(05") 2V (0" + 65™), -

where in the second equality we have used (0.10). Similarly, the g in (3.2) is
g2 2 (o) (nAGG" + E1Vg" + (Vug™¥ [ + Adivaf")?)
= (5") 25 * p0) V202 + (o§") ™2 (s * (Vo) = /75 * pose)
- ’—2’1(/)3”’)‘”2 (s * (IVuo + (Vo)™ [%) — |V (js * uo) + (V(js * u0))™[?)
= Mp§™) /2 (js * ((divuo)?) — (div(js * wo))?)

due to (0.11). Since g1, g2 € L?, one deduces from (4.8), (4.9), (4.4), (4.5), and (0.8)
that there exists some positive constant C independent of 4 and 7 such that

l31ll2 < @ +0)Y?||g1llL2 + Cn~Y2my(8) + Cy/m,
lG2llz2 < (1 +m)Y2||g2ll2 + Cn~2my(5),

(4.9)

(4.10)

with 0 < m;(d) = 0 (: = 1,2) as § — 0. Hence, for any 0 < n < 7, there exists some
0 < 81(n) < do(n) such that
m1(8) +ma(8) <, (4.11)

for any 0 < 6 < 81(n). We thus obtain from (4.10) and (4.11) that there exists some
positive constant C independent of § and 7 such that

g1l + lg2lle < 2llg1llz2 + 2llg2llLz + C, (4.12)

provided that
0<n<m, 0<d<si(n. (4.13)

Now, we assume that 7, § satisfy (4.13). It thus follows from (4.6), Proposition
2.1, (4.5), (4.12), and Lemmas 3.1-3.6 that for any T' > 0, there exists some positive
constant C independent of § and 7 such that (2.9), (2.6), (3.6), (3.7), (3.9), (3.11),
and (3.12) hold for (p%7,u%", 6%7). Then passing to the limit first § — 0, then n — 0,
together with standard arguments yields that there exists a solution (p,u,6) of (0.1)
(0.4) (0.6) on R3 x (0,7 for all T > 0, such that (p,u,0) satisfies (2.9), (2.6), (3.6),
(3.7), (3.9), (3.11) and (3.12). Hence, (p, u,0) satisfies (0.13), (0.14)2, (0.14)3, and

p—1€L®0,T;H2NW?9), (u,0—1) € L®(0,T; H?). (4.14)

Moreover, (0.1) holds in D'(R3 x (0, T)).
Next, to finish the existence part of Theorem 0.1, it remains to prove

p—1€C(0,T; H*nW?29), wu, 1€ C([0,T); H?). (4.15)
It follows from (3.6) and (4.14) that
p—1¢eC([0,T); H: n W) N C([0, T); H N W29 -weak), (4.16)



and for all r € [2,6),
u, §—1€C(0,T); H* nWn), (4.17)

Since (0.1) holds in D'(R3 x (0,7)) for all T € (0, 00), one derives from [15, Lemma
2.3] that, for j,(z) being the standard mollifying kernel of width v, p* £ p* j, satisfies

(ApY)¢ + div(uAp”) = —div(pAu) * j, — 2div(dip - u) * j, + R, (4.18)

where R, satisfies

T T
2 3/2
/0 IRZ2,dt < C /0 lall2 L AP 22,dt < (4.19)

due to (3.5), (3.6), and (3.9). Multiplying (4.18) by g|Ap¥|?"2Ap", we obtain after
integration by parts that

(120" 7))
=(1-9q) / |Ap”|9divudr — q/(div(pAu) * 5,)|ApY |92 ApV dx
— 2q/(div(6‘ip - Opu) * 5| ApY |92 Ap dx + q/R,,|Ap"|q_2Ap”d:c,

which together with (3.6), (3.9), and (4.19) yields that, for py as in (3.10),

T
sup [[Ap"]l1e + / (AR, @) Pods
t€[0,T] 0

<O+ 0 [ (Vs + RIS
<C.
This fact combining with the Ascoli-Arzela theorem thus leads to
180", D)z = [18p(,B)llza in C((0,T]), as v — 0F.

In particular, we have

1920, 1)z« € C([0,T)). (4.20)

Similarly, one can obtain that

IV2p(-,t)ll2 € C((0, T)). (4.21)
Therefore, the continuity of V2p in LP (p = 2,4), i.e.,

Vip e C([0,T]; L2 N L9), (4.22)

follows directly from (4.16), (4.20), and (4.21).
It follows from (3.6) and (3.7) that

put, p8; € C([0, T); L?), (4.23)
which together with (4.16), (4.17), and (4.22) gives

u € C([0,T); H?). (4.24)
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This fact combining with (4.23), (4.22), (4.17), and (3.6) leads to
6 —1€ C([0,T]; H?),

which as well as (4.16), (4.22), and (4.24) leads to (4.15).

Finally, since the proof of the uniqueness of (p, u, 8) is similar to that of [4, Theorem
1], to finish the proof of Theorem 0.1, it remains to prove (0.15). We will only show

Jim [[Vuzz =0, (4.25)

since the other terms in (0.15) follow directly from (0.26). It follows from (2.6) that

o0

|1V ullZ2)'(2)1dt

w . .
2/ /Bjulaju;dx
1
m . . .
/ /Bju’Bj(ﬁ’ — uFoput)dz
1

/ /(6ju"8jizi — JjutdjuF o’ — OjutuF o ut)de
1

_—

dt

Il
o

dt

I
o

dt

=/ ‘/(26jui8jﬂi — 28jui6juk6kui + |Vu|2divu)d:r dt
1

o0
<c / (IVell 2Vl 2 + [ Vuls) de

o0

<c / (IVal22 + [IVul2s + [ Vull) dt
1

<C,

which together with (2.6) implies (4.25). We finish the proof of Theorem 0.1.
Proof of Theorem 0.2. We will prove Theorem 0.2 in three steps.

Step 1. Construction of approximate solutions. Let (po,ug,8p) satisfying (0.9) be
initial data as described in Theorem 0.2. Assume that Cj satisfies (0.21) with ¢ as in
(4.1). Let 6 and 7 be as in (4.2) and js be the standard mollifier. We define

. 5 * po + . , A s * (pobo) +
pna JEXPtn hna i gina I8 (poblo) + 1 (4.26)
1479 Js*po+m
Then, (557,357, 05") satisfies
{(ﬁo‘" ~1,a", 85" - 1) € H*, wen)
n on o PEN s n ") 4.27
0< ——<pM<t—T<p 67>—"—>0, |Vad"|2 <M,
1+77—p0-1+77 P 0_ﬁ+77 I 0”L2_
due to (0.9). Moreover, it follows from (0.9) and (0.21) that
T A8, N 20,1 36,
tim lim (1168" — pollzs + 135" — wolln + 1§"65" — pofollzz) =0.  (4.28)

We claim that the initial norm C3™ for (ﬁg"’, ﬁg"’, 62™), i.e., the right hand side of (0.7)

with (pg, uo, o) replaced by (f)g’", ﬁg’", ég"’), satisfies

3 3 AJ)" <
1171_1)% }1_% Cy" < Gy, (4.29)



which yields that there exists an 7 > 0 such that, for any 7 € (0,7), there exists some

0(n) > 0 such that
Co™ < Co + £0/2 < €0, (4.30)

provided A
0<n<7, 0<d<4(n). (4.31)

We assume that J,7 always satisfy (4.31). Proposition 4.1 as well as (4.27) and (4.30)
thus yields that there exists a smooth solution (5%7, @7, §51) of (0.1) (0.4) (0.6) with
initial data (557, a0",65™) on R3 x [0,T] for all T > 0. Moreover, for any T > 0,
(p%7, 4%n_§51) satisfies (2.9), (2.6) with (p,u,8) replaced by (p%7, a1, §n).

It remains to prove (4.29). In fact, we only have to show

lim lim [ p3" (ég’" —log 857 — 1) dr < / po (8 — log 6 — 1) dx, (4.32)

n—05—0

since the other terms in (4.29) can be proved in a similar and even simpler way. Noticing
that

p‘gan (ég,ﬂ — log égan — 1)
1
— 30m 9“6,7]_1 2/ —————a——-——-—da
P 0" =17 a(@S"—1) +1
- el [ o
1+n o a(js * (pobo) — js * po) + Js * po + N
€ [0, 77 (js * (pobo — p0))?],

we deduce from (4.28) and Lebesgue’s dominated convergence theorem that

do

i ~8,m (9‘6,77 —log 65" — 1) d
s [ Po\Y 08 v z

:/po+n(poﬁo+n_lo p000+17_1)dx
I+ \ po+n po + 1

B +
— (g / (p090 — po— (po + ) log PLPJ) L (433)
(poBo<1/2)U(pobo>2) po+n

_ 6 6o +
+(1_‘_77)1/ (po + )(Poo+77_lo Pof n—l)dw
(1/2<poBp<2) Po+n po+n

21+n) ' h+ 1491,

where we have used the following simple fact that, for f € LP(1 < p < 00),
limlljs* £ = fllze =0, lim js + f(z) = f(z), ae. z€R®.
It follows from (0.21) that
|(mobo < 1/2) U (poblo > 2)|
<4 [(poto — 1%

< 8/(;0090 — po)’dz + 8/(P0 —1)%de
<C,
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which combining with Lebesgue’s dominated convergence theorem yields

L= / (pobo — polog(pobo + 1) — nlog(pobo + 1)) dx
(pobo<1/2)U(p0b0>2)

+ / ((po + m) log(po + 1) — po) dz
(Pobo<1/2)U(pobo>2)
</ (p0flo — polog(pofo) — nlogn) dz (4.34)
(pofo<1/2)U(pobo>2)

+ / (polog(po + n) + nlog(po +n) — po) dx
(PoBo<1/2)U(pobo>2)

— po (6o —logby —1)dzx, asn—0.
(Pobo<1/2)U(pobo>2)

Noticing that

0 0

po+7 po+n
2 ! a
(b o) o a(pobo — po) + po+n

€ [0,2 (Pobo — 00)2] :

provided pofp > 1/2, we deduce from Lebesgue’s dominated convergence theorem that

lim I, = po (6o — log 6y — 1) dz,

10 /(1/25pooos2)

which together with (4.33) and (4.34) gives (4.32).

Step 2. Compactness results. For the approximate solutions (p%m, adm, 95”7) obtained
in the previous step, we will pass to the limit first § — 0, then n — 0 and apply (2.6)
to obtain the global existence of weak solutions. Since the two steps are similar, we
will only sketch the arguments for § — 0. Thus, we fix n € (0,7) and simply denote
(p%n, b0, 651y by (p?,ul,8%). For R € (0,00), let Br(zo) £ {z € R3||z — x| < R}
denote a ball centered at zo € R3® with radius R. We claim that there exists some
appropriate subsequence d; — 0 of § — 0 such that, for any 0 < 7 < T < o0 and
0 < R < oo, we have

6% —1— 6 —1 weakly in L2(0,T; H'(R?)), (4.35)

u% — y weakly star in L*®(0,T; H'(R3)), '
p% -1 p—1 in C([0,T); L*(R3)-weak), (4.36)

pi—1—=p—1 in C([0,T}; H(Br(0))), '
pliudi — pu, p% (0% —1) = p(6 —1) in C([0,T]; L*(R®)-weak), (4.37)

p%ub — pu in C([0,T]; H~'(Br(0))), '
p%|ud|? = plu|? in C([0,T); L*-weak), (4.38)

and

Wi s u, G5 G, Wi o w, V8% -V in C([r,T); H'(R3)-weak), (4.39)

uw s u, GY% 5 G, Wi = w, V8% - VO in C([r,T); L>(Br(0))). '



We thus write (0.1) in the weak forms for the approximate solutions (p°,u?, 6%), then
let § = d; and take appropriate limits. Standard arguments as well as (4.35)—(4.39)
thus yield that the limit (p,u,6) is a weak solution of (0.1) (0.4) (0.5) in the sense
of Definition 0.1 and satisfies (0.22)—(0.25) except p — 1 € C([0,00), L?) which in fact
can be obtained by similar arguments leading to (4.22). In addition, the estimates
(0.27)-(0.29) follows direct from (2.9), (2.6), and (4.35)—(4.39).

It remains to prove (4.36)—(4.39) since (4.35) is a direct consequence of (2.6). It
follows from (2.9), (2.6), and (0.1); that

sup [|ofllg-1mey < C,
te[0,00) .

which as well as (2.6), [15, Lemma C.1], and the Aubin-Lions lemma yields that there
exists a subsequence of J; — 0, still denoted by §;, such that (4.36) holds. Moreover,
one deduces that (extract a subsequence)

p -1 p—1, V¥ — vy weakly in L*(R3 x (1,00)),

with p — 1 and Vu satisfying
o0
[ o= + Vel @ < ¢ (4.40)
1

Then, simple calculations together with (2.6) yield that, for any 0 < T < oo, there
exists some C(T') independent of § and 7 such that

10 u®)ell 20,71 woy) + 1(0°6°)ell L2, -1 meyy < C(T), (4.41)

which together with (2.6), (4.36), and (4.35) gives (4.37).
Next, to prove (4.38), one deduces from (2.6) and (0.1); that, for any ¢ € H'(R3),

| JIGERIE

= ’—/div(péu6)|u6|2qu+2/p6u5-quda:

= 1/;)%‘s - V([ul|2¢)dz + 2/p‘su‘s (@ — b V) (dr

<c [ FuePvcids + o [ Prepvaicidn + o [ #hifclas
< CI 36Vl 22 + Cllu? el Vo Glzs + 1l sl (o) 20 el
< C (IVelll2 + (%) 2@ 052 ) Gl

which together with (2.6) gives
o0
/O 1P el dt < C. (4.42)

It follows from (2.6) that

sup |0 [u’ Pl pinzs < C,

OO0
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which combining with (4.42), (4.35), and (4.37) yields (4.38).

Finally, we prove (4.39) which implies the strong limits of u% and 6. We deduce from
(2.6), (1.12), (4.41) that

Sup )(Ilu" g + 02IG8 | + Pl [l g1 + 02| V6| 1) < C, (4.43)
€]0,00

and
T 6112 612 12 5112
[ (1) + 16 rosquy + 1fl-sun + 108 ey ) e < O T), - (4:4)

for all 0 < 7 < T < co. The Aubin-Lions lemma together with (4.43) and (4.44) thus
gives (4.39).
Step 3. Proofs of (0.26).

Finally, to finish the proof of Theorem 0.2, it remains to prove (0.26). Since (p,u)
satisfies (0.17), for the standard mollifier j, (z)(v > 0), p” £ ) x j, satisfies

4 3 VY —
pt +dlv(up ) - TV7‘ (4‘45)
py(zat = 0) = Po * Jv,

where 7, satisfies, for any T > 0,

T
. 2 _
lim, /0 lIr 1122t = 0, (4.46)

due to (2.9), (2.6), and [15, Lemma 2.3]. Multiplying (4.45) by 4(p” — 1)3, we obtain
after integration by parts that, for ¢ > 1,

(lo” = 1l124)’
=- / (p¥ —1)3divudz — 3 / (p¥ = 1)*divudz + 4 / r (0¥ — 1)3dx (4.47)
< Cllp” = 1|44 + C||Vull24 + Cliryll L2,

which implies that, for al 1 < N<s< N+1<t< N +2,

N+2
1" (-, 1) = Ls <lP"Cr8) = 1I7a + C/N (7" = 1lizs + IVullzs) dt

a2 (4.48)
+o/ I || ot
N

Letting v — 07 in (4.48) together with (4.46) and (0.22) yields that

4 4 N+ 4 4
llo(-2) = 1Iza <llp(, ) — 1l + C/N (o = 1llZa + Vull74) dt. (4.49)

Integrating (4.49) with respect to s over [N, N + 1] leads to
. N+2 .
swp o) =1k <C [ (o= Ute + IVullfs)

t€[N+1,N+2] N (4.50)

— 0, as N — oo,



due to (4.40). This together with (0.25) and (0.28) implies that, for all p € (2, 00),

. 1P —
tllgxo/lp 1/Pdz = 0. (4.51)
Finally, we will prove
Jim (Jlullpe + 1VO]l2) = 0, (4.52)
o0

which combining with (4.51), (0.25), (0.27)-(0.29), and the Gagliardo-Nirenberg in-
equality thus gives (0.26). In fact, one deduces from (0.27)—(0.29) that

[wmmm+wvw§ﬁ#

0 o0
<0 [" lullalvutiadt + [ Iv0l3aar (453)
S C’
©|d ) o0 X
2 (lug ot ae=a [ [ v a
1 i 1
” 4.54
< C/l ”u”Lm”U“%dlut“det ( 54)
S C,
and
©|d %
/ ,“ (Iv6(, )l1Z2) dt=2/ Vve-vatdx dt
1 dt .
(4.55)

o0
sC/IWWMWMmﬁ
1

<C.
Thus, we derive (4.52) easily from (4.53)—(4.55). The proof of Theorem 0.2 is finished.
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