goooboooobgon
0 18330 20130 77-85

Some notes on countable Tp-spaces

Matthew de Brecht

National Institute of Information and Communications Technology
Kyoto, Japan

Abstract

We provide three canonical examples of countable perfect T)p-spaces correspond-
ing to the Tp, T1, and T; separation axioms. These three spaces are canonical
in the sense that any countable Tp-space is either quasi-Polish or else contains
one of these spaces as a subspace. These results provide valuable insight as to
why a space can fail to be complete.
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1. Introduction

All topological spaces in this paper are assumed to be countably based and
satisfy the T, separation axiom, but no further assumptions are made unless
explicitly stated.

This paper is a continuation of recent work on developing the descriptive
set theory of non-metrizable spaces initiated by V. Selivanov (see [8]). It was
recently shown in [2] that a very general class of spaces called quasi-Polish spaces
allow a smooth extension of the descriptive set theory of Polish spaces (see [4])
to the non-metrizable case. The class of quasi-Polish spaces contains not only
the class of Polish spaces, but also many non-metrizable spaces that occur in
fields such as theoretical computer science (e.g., w-continuous domains with
the Scott-topology) and algebraic geometry (e.g., the spectrum of countable
Noetherian rings with the Zariski topology).

Given that so many important spaces are known to be quasi-Polish, the
following natural question arises: Which spaces are not quasi-Polish? It was
observed in [2] that a metrizable space is quasi-Polish if and only if it is Polish,
so we can use results from classical descriptive set theory to obtain a first answer
to this question: a countable metrizable space is not quasi-Polish if and only if
it contains a homeomorphic copy of the rationals as a subspace. The purpose
of these notes is to provide a modest extension of this result to cover the case
of countable spaces satisfying the Tp separation axiom.
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The Tp-axiom is a separation axiom introduced by Aull and Thron [1] which
is strictly between the T and Tp axioms. A subset of a space is locally-closed
if it is equal to the intersection of an open set with a closed set. A topological
space satisfies the Tp separation axiom if and only if every singleton subset is
locally closed.

Countable Tp-spaces naturally occur in the field of inductive inference as
precisely those spaces that can be identified in the limit relative to some oracle
[3]. In these notes, we will show that there are three “canonical” countable
perfect Tp-spaces respectively corresponding to the Tp, T1, and T3 separation
axioms. This result implies that a countable Tp-space is either quasi-Polish or
else contains one of these three counter-examples. Thus, these spaces provide
important insight into why a space can fail to be complete. We will also prove
some other interesting results concerning countable Tp-spaces. For example, we
will show that a countable space is Tp if and only if it has a AJ-diagonal, and
that if X C Y is a countable Tp subspace, then X will be at most AJ in Y.

2. Borel Hierarchy for non-Hausdorff spaces

It is common for non-Hausdorff spaces to have open sets that are not F,
(i.e., countable unions of closed sets) and closed sets that are not G5 (i.e.,
countable intersections of open sets). The Sierpsinski space, which has {1, T}
as an underlying set and the singleton {T} open but not closed, is perhaps the
simplest example of this phenomenon. This implies that the classical definition
of the Borel hierarchy, which defines level £9 as the F,-sets and IIJ as the
Gs-sets, is not appropriate in the general setting. The following modification
of the Borel hierachy due to Victor Selivanov (see [6, 7, 8]) is the appropriate
definition for the more general case.

Definition 1. Let (X, 7) be a topological space. For each ordinal oo (1 < a <
w1 ) we define (X, 7) inductively as follows.

1. X, 7)=T.
2. Foroa > 1, ¥9(X, ) is the set of all subsets A of X which can be expressed
in the form
A= U Bi \ B:’
1Ew

where for each i, B; and B} are in E%i (X,T) for some B; < a.

We define TI2(X,7) = {X \ A|A € =%(X,7)} and AY(X,7) = Z(X,7) N
II%(X, 7). Finally, we define B(X,7) = U, ., Za(X,T) to be the Borel subsets
of (X, 7). O

When the topology is clear from context, we will usually write £9, (X instead
of Y (X, 7).

The definition above is equivalent to the classical definition of the Borel
hierarchy on metrizable spaces, but differs in general. V. Selivanov has investi-
gated this hierarchy in a series of papers, with an emphasis on applications to



w-continuous domains. D. Scott [5] and his student A. Tang [9, 10] have also
investigated some aspects of the hierarchy in P(w) (the power set of the natural
numbers with the Scott-topology), using the notation B, and Bs to refer to the
levels £9 and II3, respectively.

In [2] it was shown that much of the descriptive set theory of Polish spaces
can be extended to a very general class of countably based Ty-spaces called quasi-
Polish spaces. Quasi-Polish spaces are defined as the countably based spaces
which admit a Smyth-complete quasi-metric, but many other characterizations
are given in [2]. For the purposes of this paper, we can define a space to be
quasi-Polish if and only if it is homeomorphic to a II3-subset of P(w). Among
other results, it was shown that a subspace of a quasi-Polish space is quasi-
Polish if and only if it is IIJ, and a metrizable space is quasi-Polish if and only
if it is Polish.

For any topological space X we define Ax = {(z,y) € X x X |z = y} to
be the diagonal of X. The next theorem provides a useful characterization of
countably Tp-spaces in terms of the Borel complexity of the diagonal.

Theorem 2. The following are equivalent for a countably based space X with
countably many points:

1. X satisfies the Tp separation aziom,

2. Every singleton subset {z} of X is in AY(X),
3. Every subset of X is in AY(X),

4. The diagonal of X is in AY(X x X).

Proof: (1 = 2). Easily follows from the definition of the Tp-axiom because
locally closed sets are AY. '

(2 = 3). If every singleton subset of X is AJ, then the countability of X
implies that every subset of X is the countable union of A9-sets. Thus for any
S € X both S and the complement of S are X9, hence S is AJ.

(3 = 4). For each z € X, the singleton {z} is in X9(X) by assumption,
hence there are open sets U, and V, such that {z} = U; \ V;. Then Ax =
Usex [(Uz \ Vz) x (Us \ Vz)] is in (X x X). It was shown in [2] that the
diagonal of every countably based Tp-space is ITY, therefore Ax isin AJ(X x X).

(4 = 1). Assume that Ax = |, Ui \ V; for U;,V; open in X x X. Let
z be any element of X. Then there is some ¢ € w such that (z,z) € U; \ V;.
Let U be an open neighborhood of = such that (z,z) € U x U C U;. Fix any
y € U distinct from z. Clearly, (z,y) € U x U C U;, hence (z,y) € V; because
(z,y) & Ax. Let V and W be open subsets of X such that (z,y) € VxW C V;.
Then z ¢ W because otherwise we would have the contradiction (z,z) € V;.
Therefore, W is a neighborhood of y that does not contain z, hence y is not in
the closure of {z}. It follows that {z} = U N Cl({z}) is locally closed and that
X is a Tp-space. O
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3. Canonical countable perfect Tp-spaces

A space is perfect if and only if every non-empty open subset is infinite. Note
that if X is a Ty-space, then X is perfect if and only if there is no z € X such
that the singleton subset {z} is open.

It is well known that the space of rationals is the unique (up to homeomor-
phism) example of a countable perfect metrizable space (see Exercise 7.12 in [4]).
Things become more complicated when considering non-metrizable spaces that
only satisfy the Tp-axiom. There are in fact infinitely many non-homeomorphic
examples of countable perfect Tp-spaces. However, the following three spaces
are the “canonical” examples of countable perfect Tp-spaces.

o The space w defined as the set of natural numbers with the topology
generated by the upper intervals +n = {m € w|n < m} for each n € w.
This space is Tp but not 73.

e The space wcos defined as the set of natural numbers with the cofinite
topology (i.e., a subset is closed if and only if it is finite or else the whole
space). This space is 77 but not T3.

e The space Q of rational numbers with the topology inherited from the
space of real numbers. This space is T5.

These three spaces are canonical in the following sense, which is the main
result of these notes.

Theorem 3. If X is a non-empty countably based perfect Tp-space with count-
ably many points, then X contains a subspace homeomorphic to either w , weof,

or Q. O

Clearly, none of these spaces contain a copy of the others, so this is the best
result possible. :

A space which does not contain a non-empty perfect subspace is called scat-
tered. In [2] it was shown that a countably based Tp-space is scattered if and only
if it is a countable Tp quasi-Polish space. We therefore obtain the following.

Corollary 4. If X is a countably based Tp-space with countably many points,
then X is quasi-Polish if and only if X does not contain a subspace homeomor-
phic to either w , weor, or Q. O

In other words, w , weof and Q are the only “reasons” a countable Tp-space
can fail to be quasi-Polish.

The purpose of this section is to prove Theorem 3. For the rest of this
section we fix X to be some non-empty countably based perfect Tp-space with
countably many points.

Lemma 5. Either X contains a subspace homeomorphic to w or else X con-
tains a non-empty perfect Ty -subspace.



Proof: Let C be the specialization order on X (i.e., x C y if and only if z is in
the closure of {y}). Since X is a Ty-space, the specialization order is a partial
order. Define Max(X) to be the subset of X of elements that are maximal with
respect to the specialization order. It is immediate that Maxz(X) is a T;-space.

First assume there is some 2y € X such that there is no y € Maxz(X) with
zo C y. Then z¢ € Maxz(X), so there is some z; # zo with o C z;. The
assumption on zy implies z; ¢ Maz(X), so there is o # z1 with 2o C 21 T 2.
Continuing in this way, we produce an infinite sequence {z;}icw of distinct
elements of X with z; T xz; whenever ¢+ < j. Clearly {z;}:c., viewed as a
subspace of X, is homeomorphic to w .

So if X does not contain a copy of w , then every element of X is below
some element of Maz(X) with respect to the specialization order. This implies,
in particular, that Maxz(X) is non-empty. We show that Maz(X) is perfect as
a subspace of X. Assume for a contradiction that there is z € Maz(X) and
open V C X such that {2} = V N Maz(X). Since X is a Tp-space, there is
open U C X such that {z} = U N CIl({z}), where CI(-) is the closure operator
on X. Then W = U NV is an open subset of X containing z. Fix any y € W.
By assumption, there is some y’ € Maz(X) such that y C y. Since W is open,
the definition of C implies that y' € W. Since {z} = W N Maz(X), it follows
that y' = z hence y C z. Therefore, y € Cl({z}) which implies z = y because
{z} = W N Cl({z}). Since y € W was arbitrary, {z} = W is an open subset
of X, which contradicts X being a perfect space. Therefore, Max(X) is a non-
empty perfect T3-subspace of X. O

As a result of the above lemma, it only remains to consider the case where
X is a T)-space.

For any topological space Y, open U C Y, and y € Y, we write y < U if
y € U and for every open V containing y and non-empty open W C U, the
intersection V' N W is non-empty. In other words, y < U if and only if every
neighborhood of y is dense in the subspace U. Note that if y<U and V C U
is open and contains y, then y < V. We define D(Y) to be the set of all y € Y
such that there is open U C Y with y <« U.

Fix a countable basis {B;};c., of open subsets of X. For z € X and n € w,
we define B(z,n) = (){B; |z € B; and i < n}. Here we use the convention that
the empty intersection equals X, so B(z,n) = X if there isno ¢ < n with z € B;.
Note that for any open U containing z, there is n € w with z € B(z,n) C U.

Lemma 6. If X is a Ty -space and D(X) has non-empty interior, then X con-
tains a subset homeomorphic to wWeof.

Proof: Choose any ¢ in the interior of D(X) and let Uy be an open subset of
X with zo < Up € D(X). Then U is infinite because X is perfect, so we can
choose z, € Uy distinct from o and find open U; C U, with 21 < U;.

Let n > 1 and assume we have defined a sequence z,... ,Tn € X and
open sets Up 2 -+ 2 U, with z; 9U; C D(X). We choose z,+; € X and
open Upt1 C Uy with 2,41 < Upyq as follows. Define V;* = U; N B(z;,n) for
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0 <i<mn,andlet V* = VZN...NV,*. Since n—1 € V' ; and V' C Up—1 is non-
empty, £n—1 <Un_1 implies V,* ; NV, is non-empty. Continuing this argument
inductively shows that V" is a non-empty open set. Thus V" is infinite, so there
is Tp41 € V™ distinct from z; for 0 < i < n. Since V" C U, C D(X), there is
open Up41 C Uy with Tp41 < Uny1 € D(X).

Let S = {z; € X |i € w} be the subset of X of the elements enumerated
in the above construction. We claim that S is homeomorphic t0 weof. S is
infinite by construction, and the assumption that X is a Ti-space implies that
the subspace topology on S contains the cofinite topology. Therefore, it suffices
to show that every non-empty open subset of S is cofinite. Let U C S be non-
empty open, so there is some ¢ € w with z; € U. Let m > i be large enough that
S N B(zi,m) C U. By the construction of S, z, € V™ C B(zi,n) C B(zi,m)
for all n > m. It follows that =, € U for all n > m, hence U is a cofinite subset
of S. Therefore, S C X is homeomorphic to wey. a

The final case to consider is when X is a T;-space and X \ D(X) is dense in
X.

Lemma 7. If X is a Ti-space and X \ D(X) is dense in X, then X contains
a subspace homeomorphic to Q.

Proof: Note that if z € X \ D(X) and U is any open set containing x, then
there exists non-empty open sets V,\W C U withz € V and VNW = 0.

In the following, we denote the length of a sequence o € 2<“ by |g|. We
‘associate each ¢ € 2<% with an element z, € X \ D(X) and open set U, C X
containing z, as follows. For the empty sequence € choose any z. € X \ D(X)
and let U, = X.

Next let o € 2<% be given and assume z, € X \ D(X) and U, have been
defined. Let U,V C B(z,,|o|) N U, be non-empty open sets such that z, € U
and UNV = 0. Since V is non-empty and X \ D(X) is dense, there exists some
y € V\D(X). Let Zoo0 = oy Ugoo = U, Too1 =y, and Upoo = V.

Let S = {z,|0 € 2<“}. A simple inductive argument shows that U, N S
is clopen in S for each o € 2<¢¥. We show that S is a perfect zero-dimensional
Ty-space. Fix any o € 2<% and open U C S containing z,. Let n € w be large
enough that B(z,,n)NS C U. We can append a finite number of 0’s to the end
of o to obtain a sequence o’ with |¢/| > n and z, = Z,. Then %561 # T, and
Tgr01 € B(ze,n)NS C U. It follows that {z,} is not open in S, so S is a perfect
space. Furthermore, U,,0 NS is a clopen set containing z, and contained in
U, which implies that S is a zero-dimensional T,-space.

It follows that S is a non-empty countable perfect metrizable space, hence
S is homeomorphic to Q. O

Theorem 3 now follows from the previous three lemmas.

4. Countable A2-spaces

If Y is a countably based Ty-space, then it is immediate that every countable
X CY isin X§(Y). We will show in this section that there exist countable



subsets of quasi-Polish spaces which are strictly X9 (i.e., £3 but not II3), so
this is the best upper bound in general. However, in the special case that
X C'Y is both countable and satisfies the Tp-axiom, then X is guaranteed to
be in AJ(Y).

Theorem 8. Assume Y is a countably based Ty-space and X C Y is countable.
If for every non-empty A € II3(X) there is a finite non-empty F € AY(A), then
X € AJ(Y).

Proof: Assume X CY is countable and for every non-empty A € II3(X) there
is a finite non-empty F € A3(A). For each ordinal o, we inductively define X*
as follows:

e X=X,
o Xt = X\ {z € X*|{z} is locally closed in X},
* X% =sq X5 when a is a limit ordinal.

Since X is countable there is some ordinal oz < w; such that X = Xo+1!,
We define £(X) to be the least such ordinal. Using again the fact that X is
countable, it is straight forward to show that X € IT(X) for each a < £(X).
Thus our assumption on X implies that if X is not empty, then there is a finite
non-empty F € AJ(X®). It follows that {z} is locally closed in X* for each
z € F, hence X # X**1 Therefore, X4X) = ¢.

The claim is trivial is X is finite, so fix an infinite enumeration zo,z1,. ..
of X without repetitions. Since X*X) = ), for each i € w there is a countable
ordinal a; < £(X) such that z; € X* \ X%+l Choose an open subset U; of
Y such that Cl({z;}) NU; N X* = {z;} (here and in the following, CI(-) is the
closure operator for Y).

For each 7 € w, define

Ai = (Cl({z:}) nU) \ [ J{Cl(z;) NU; | < i and a; = a;}.

Then 4; € AJ(Y), z; € A;, and A; N A; = 0 whenever j # i and a; = o;.

For each i € w, let {V'ji}jEw be a decreasing sequence of open subsets of
Y such that {z;} = Cl({z;}) "N;c, V}, and zx & V; whenever k < j and
z; € Cl({zx})- .

Define W; = U, 4iNV}. Then W =
is clear from the construction.

Next, let y € W be fixed. The set of ordinals {a; |y € A;} is non-empty, so
let a be its minimal element. Then the k € w satisfying ax = a and y € Ay is
uniquely determined.

Assume for a contradiction that there is j > k and i # k such that y €
A;NV}. Then z} € V/ because V} is an open set containing y and y € Cl({zx}).
Thus, k < j together with our definition of VJ’ implies z; € Cl({zx}). We also
have z; € Uy because y € Uy and y € Cl({z;}). Since Cl({zx}) NUp N X =

jew Wi is in II(Y),and X C W
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{xx}, we must have z; ¢ X*. But then y € A4; and o; < ax, contradicting our
choice of a.

Since y € (¢, Wj, it follows that y € Az N V[ for all j € w. Our choice of
ij implies y = zx. Since y € W was arbitrary, W C X.

Therefore, X = W € IIJ(Y). As every countable subset of a countably
based space is a X3-set, it follows that X € A}(Y). O

Corollary 9. If Y is a countably based Ty-space and X C Y is a countable
Tp-space, then X € AY(Y). m]

The use of transfinite ordinals in the proof of Theorem 8 might seem exces-
sive. However, the following example suggests that it is not avoidable.

Let w<™ be the set of sequences of natural numbers of length less than
n. Give w<" the topology generated by subbasic open sets of the form B, =
w<™\ {¢' € w<"|o =< o'}, where o varies over elements of w<" and < is the
prefix relation. The specialization order on w<" is simply >. Then {c} is locally
closed in w<" if and only if the length of o equals n — 1. Therefore, {(w<") = n.
If we take X to be the disjoint union of the sequence of spaces {w<"},¢, then
X)) =w.

If Y is quasi-Polish, then the converse of Theorem 8 holds as well. The
reader should consult [2] for background on the usage of quasi-metrics in the
following proof.

Corollary 10. Assume Y is quasi-Polish and X C'Y is countable. Then X €
AY(Y) if and only if for every non-empty A € II3(X) there is a finite non-empty
F € A(A).

Proof: For the remaining half of the proof, if X € A}(Y), then by Theorem 32
of [2] there is a quasi-metric d on X such that the induced metric space (X, d)
is Polish. Since X is countable, (X, c/i\) is scattered, hence for any A C X there
is £ € A such that {z} € 29(4, d). It follows that {z} is =3 in the quasi-metric
space (A, d), hence {z} € AJ(A, d) because singleton subsets of countably based

spaces are IT9. O
2

A simple example of a countable space without non-empty finite AJ subsets
is the space Q of rational numbers with the upper interval topology (i.e., the
topology generated by the sets 1 ¢ = {z € Q|¢g < z} for ¢ € Q). Another
example is the space w<* of all finite sequences of natural numbers with the
topology generated by open sets of the form w<¥ \ {¢’ € w<¥|o =X o'}, with
o varying over elements of w<“. It follows from the results above that both of
these spaces will be strictly £ whenever they are embedded into a quasi-Polish
space.
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